Today

- Reed Solomonon Codes
- MDS coder
css. 318.1
Coding Theory
Lecture 6 (2022-9-16)
Instructor: Prahlach Marsha.

Reed Solomon Coder:
IF - finite field ($\mid \vec{F}=9=p^{*}$ prime power)
$S \subseteq F$-set gevaluaton points, $151=n$
k- degree parameter.

$$
q \geq n \geq k \geq 1
$$

IF - alphabet. ; S - ordered ret $\left(\alpha_{1}, \alpha_{2} \ldots, \alpha_{n}\right)$
p - dey $\langle E$ polynomial w/ corf from If $p(x) \in \mathbb{F}_{<k}[x]$
$C P\left(\alpha_{1}\right), P\left(\alpha_{2}\right)$

$$
\left.p\left(\alpha_{n}\right)\right) \in R_{F}[S, \beta]
$$

$$
p(x)=\sum_{i=0}^{k-1} p_{i} x^{i}
$$

RS: $\mathbb{F}^{k} \rightarrow \mathbb{F}$

$$
p \leftrightarrow\left(p\left(\alpha_{i}\right)\right)_{\alpha_{i} \in S}
$$

$\overline{\overline{T M o}}$ settings: $S=\mathbb{F}$

$$
-S=\mathbb{F}^{*}=\mathbb{F},\{0\} .
$$

Observations:

1. $\operatorname{RS}_{\mathbb{F}}[S, E]$ - F-linear code.

Pf: Poly $\in \mathbb{T}_{k}[x]$ closed under addition. scalar multiplication.
2. $\operatorname{RS}_{I}[5, k]$ meets the Singleton Bound
re distance $=n-k+1$.
Clam. p, ge $\mathbb{F}_{k}[x], p \neq 9, \#\{\alpha \in S / p(\alpha)=q(\alpha)\}$ $\leqslant k-1$
Clam [Degree Mantra]
$p \in \mathbb{F}_{\leqslant r}[x]=p \neq 0 \Rightarrow p$ has at most r roods

Pf of previous clam: Working p-q
To s short, $\operatorname{PS}_{\mathbb{F}}[S, k]$ is a $[n, k, n-k+1]$ - cod
(A) Generator Matrix for RS:

$$
\sum_{c=0}^{k-1} P_{i} x^{i}=p(x) \underset{\alpha-\text { nnonomios/s } \rightarrow}{\longrightarrow}(p(\alpha))_{\alpha \in S}
$$

Maximum Distance Separable Codes (MDS codes)
A code is sand to be MDS if it achieves the Singleton bound.

Theorem: Let $C=A(H, F d)_{\text {, }}$-code G_{e} on MOS-code then $\forall T \subseteq[n],|T|=k$ then $\left|C_{T}\right|=q^{R}$

Cohere $\theta_{T}=\left\{c_{T} / c \in E\right\}$
Af.
Trust for PS code wog $\begin{gathered}T=\left[\alpha_{1} \ldots \alpha_{k}\right. \\ \alpha-\text { mon. } \rightarrow\end{gathered}$

C) keek Vandermonde is invertible.

Hence, the tho.
General case: C - $[n, k, d]$-code MDS

$$
d=n k+1 .
$$

$T \in[n]$, Suppose \exists G, $\varepsilon \in C$, st $G L_{T}=c_{1} /_{T}$
then $\Delta(c, c) \leqslant n-k$

$$
\Rightarrow \Leftarrow
$$

Primer on finite fields:

IF - Set of elements equipped of 2 binary operas

+ - addition
commutative, rolentity (0), associativity inverses.
- multiplication (for nonzero efts). commutative, identity (1), associativity $a \cdot 0=0 \cdot a \stackrel{\text { inverses }}{=0} \forall a \in \mathbb{F}$
disterbutive

$$
a \cdot(b+c)=a \cdot b+a \cdot c .
$$

Ring: All the above except of maltiplicatius in verse.
eg: (fields)
F-porme folds.
F where $q=p^{r} \quad p$-prime, r-postue integer.
 exactly
$F[x]$ - pobynomial rings.
Factorization: $\quad f=g \cdot h$
$f \in \mathbb{F}[x]$ is reducible if J g, h
$0<\operatorname{deg}(q), \operatorname{deg}(n)<d \lg (f)$

$$
f=g \cdot h .
$$

is reredacible offerwise
Unique-Jactoripation Doman (UFD)
$V^{\prime}=f_{1} f_{2}$.. fre where $f_{i} ; j_{j}$ are rosedunibl

$$
=g_{1} \ldots g_{3}
$$

then $r=s=$ there permatation

$$
\begin{aligned}
& \pi:[x] \rightarrow[B]= \\
& \alpha_{1} \ldots \alpha_{r} \quad \&+\pi_{i}=1 \\
& f_{i}=\alpha_{i} g_{\pi(i)}
\end{aligned}
$$

Tortegers.
Dirision. Given $a, b \in \mathbb{Z}_{\geq 0}$

$$
\begin{aligned}
& \text { J } 9, x \in \mathbb{Z}_{0} \\
& a=b q+r \text { sit } 0 \leq r<b .
\end{aligned}
$$

"Division Alogithm" (for cnivariate polynomials)

$$
\begin{aligned}
& \text { Given } A(x), B(x) \in \mathbb{F}[x] \\
& \exists(x) \quad R(x) \in \mathbb{F}[x]
\end{aligned}
$$

$$
A(x)=B(x) \cdot Q(x)+R(x)
$$

where $0 \leqslant \operatorname{deg}(R)<\operatorname{deg}(B)$.
(Proof of Degree Mantra).
α is a root $O P(x) \Leftrightarrow P(\alpha)=0$

$$
P(x)=(x-\alpha) Q(x)+P(\alpha)
$$

α is a root of $P(x) \Rightarrow P(x)=(x-\alpha) Q(x)$
Continuing $\alpha_{1} \ldots \alpha_{r}-$ roots

$$
P(x)=Q_{k}\left(x_{c 1} \mid \bar{\pi}\left(x-\alpha_{c}\right)\right.
$$

Fo: All clements of F_{9} are roots of $x^{9}-x$
Fp- prime field.

$$
[0,1,2, \ldots, p-1]
$$

$$
\begin{aligned}
& \{0,1=0+1,2=(\tau), \quad, p-1=p-2+1\} \\
& p-1+1
\end{aligned}
$$

$$
\begin{aligned}
& S=F_{p}=(0,1,2, \ldots, p-1) \\
& A \in \mathbb{F}_{<k}[x] \quad(A(0) A(1) \ldots, A(\beta-1)) \\
& B(x)=A(x-1) \quad \\
& \quad(B(0), B(1) \ldots, B(\rho-1)=(A(0-1), A(0), \ldots A(\beta-2))
\end{aligned}
$$

non-prome felds.

$$
\begin{aligned}
& F_{9} \quad q=p^{r} \quad r \neq 1 \\
& \forall q=p^{x}, J \omega \in \mathbb{F}_{q}^{*}, \mathbb{F}_{q}^{x}=\left\{T \omega, \omega^{2}, \ldots, \omega^{9-2}\right\} \\
& S=T_{9}^{*} \\
& \begin{array}{ll}
(A(i), A(\omega) \ldots & \left.A\left(\omega^{9-2}\right)\right) \\
B(x)=A(\omega x) & \\
C B(i) \cdots\left(0^{9-2}\right)
\end{array} \\
& =\left(A(0) \ldots \quad A\left(\omega^{9}+2\right) A(1)\right)
\end{aligned}
$$

Parity Chect Pepresentaton of the RS code
$S=$ 有 (Craluatron points is the watole freld)
Consides $\sum_{\alpha \in \mathbb{F}} \alpha^{i} \quad 0 \leq i \leq q^{-1}$

$$
\begin{aligned}
c=0 ; \quad \sum_{\alpha \in \mathbb{F}} \alpha^{0} & =\sum_{\alpha \in \mathbb{F}} 1=0 \\
c=q-1 \quad \sum_{\alpha \in \mathbb{F}} \alpha^{q-1} & =0+\sum_{\alpha \in \mathbb{F}_{q}{ }^{*} 1}=-1 \\
0<c<q-1 \sum_{\alpha \in \mathbb{F}} \alpha^{i} & \left.=\sum_{\alpha \in \mathbb{F}^{+}} \alpha^{i} \quad \text { (bince } c \neq 0\right) \\
& =\sum_{d=0}^{q-2}\left(\omega^{i}\right)^{i} \\
& =\frac{\left(\omega^{i}\right)^{q-1}-1}{\omega^{i}-1} \quad \text { Csince } e \notin\{0, q-1]
\end{aligned}
$$

$$
\begin{gathered}
=0 \\
\sum_{\alpha \in \mathbb{F}} \alpha^{c}=\left\{\begin{array}{lll}
0 & \text { if } & c<q-1 \\
-1 & \text { if } & c=q-1
\end{array}\right.
\end{gathered}
$$

Cor: $\forall \sum_{j}$ sit $0 \leqslant i+j \leqslant q-2, \quad \sum_{\alpha \in \mathbb{F}} \alpha^{i} \alpha^{j}=0$
Cor: $\forall f, g \in \mathbb{F}[x]$ it $0 \leqslant \operatorname{deg}(f)+\operatorname{deg}(g) \leqslant 9-2$,

$$
\sum_{\alpha \in \mathbb{F}} f(\alpha) \cdot g(\alpha)=0
$$

Gequralently.

$$
\begin{aligned}
& R S_{F}[F, k]^{\perp} \supseteq \operatorname{RS}[\mid F, q-k] \text { where }|T|=0 \\
& \text { singe } \\
& k-1+q-k-1=q-2)
\end{aligned}
$$

However $\quad \operatorname{dim}\left(R S_{F}[F, B]^{+}\right)$

$$
\begin{aligned}
& =q-\operatorname{dim}\left(R S_{1}\left[A_{1} k\right]\right) \\
& =q-k
\end{aligned}
$$

Hence,
Prop: $R_{F}\left[F_{1} \in\right]^{\perp}=R S_{F}[F, q-k]$
re, When $S=\mathbb{F}$. the dual of RS is RS Gl a different degree parameter)

The some ss true te any, Sw some slight altereatonsl bee PS2.

Thus, a parity check matrix for $\mathbb{R S}_{\mathcal{F}}[\mathbb{F}, \in]$ is

