Today
BCH Codes.
css. 318.1
Coding Theory
Lecture 7 (2022-9-19)
Inotructor: Prahladh Harsha.

BCH codes. Cramed after Bose = Raychoudhor,
Hocquergham

$$
\begin{aligned}
& q=\mathbb{F}_{2 \pi} \supseteq \mathscr{F}_{2}=\{0,1\} \\
& S=F_{2^{x}}{ }^{*} ; n=9-1=2^{x}-1 \\
& t=n-2 t
\end{aligned}
$$

$$
\begin{aligned}
& \text { (} n=2^{r}-1 \text {) }
\end{aligned}
$$

Thm: $B C A[n, t]$ B a $\left[2^{x}-1, \geqslant 2^{4}-1-t x \geqslant 2 t+1\right]_{2}$. cychc code

$$
\begin{aligned}
& |B C H[n, t]| \geqslant 2^{2^{x}-1-t x}=\frac{2^{n}}{2^{t_{x}}}=\frac{2^{n}}{(n+1)^{t}} \\
& \left.C n=2^{x}-1\right)
\end{aligned}
$$

 (IT, BCH matches the Hamming Bd upto constonts)

Pf: $B C H$ inhercts most of its properties from $A S$
The only thing leff to aregue \&s the dim (ar ecole)
Tools: (1) Treace function
(2) Dool of $R_{F} S_{F}\left[F^{*}, k\right]$ where $A F=F_{2}$

Trace function

Forre $: F_{2 r} \rightarrow \mathbb{F}$

$$
z \mapsto z+z^{2}+z^{4}+\ldots+z^{2^{r-2}}+z^{z^{2-1}}
$$

Proporition: (1) $\operatorname{Fr}(z) \in \mathbb{F} \quad\left(r e,(\operatorname{Fr}(z))^{2}=\operatorname{Fr}(z)\right)$

$$
=\pi\left(z_{1}\right)+\pi\left(\Sigma_{2}\right)
$$

(3) $\operatorname{Fr}(\alpha z)$ is also lineor for any $\alpha \in \sqrt{2 \pi}$
(4) $\pi_{x}(\alpha z) \equiv 0 \Leftrightarrow \alpha=0$
(5) $\left\{\operatorname{sr}(\alpha z) / \alpha \in \mathbb{F}_{2^{x}}\right\}=\operatorname{lin}\left(\mathbb{I}_{2^{x}}, \mathbb{F}_{2}\right)$
(6)

$$
\begin{gathered}
\eta_{1}, \ldots \eta_{x} \in \sqrt{\mathbb{F}_{2}}=\eta_{1} \ldots \eta_{r} \text { Finearely } \\
\pi_{r}(\eta, 2), \pi_{r}\left(\eta_{2} z\right) \ldots . F_{r}\left(\eta_{x} z\right)
\end{gathered}
$$

is a/so linearly inoleperatent
(re Suppose not, J $\bar{b} \neq 0^{x}$

$$
\begin{aligned}
& \sum b_{i} \operatorname{Tr}\left(\eta_{i} z\right) \equiv 0 \\
& \Leftrightarrow \operatorname{\pi r}\left(\sum b_{i} \eta_{i} z\right) \equiv 0 \\
& \Leftrightarrow \sum b_{i} \eta_{i}=0
\end{aligned}
$$

-

$$
\begin{aligned}
& \mathbb{F}_{2} \cong \mathbb{F}_{2}^{r} \quad\left(f_{x} \eta_{1} \ldots \eta_{n} \text { - } \mathbb{T}_{2}\right. \text {-lin indoperat. } \\
& \left.z \quad \longleftrightarrow C \operatorname{Fr}\left(\eta_{1} z\right), \operatorname{Fr}\left(\eta_{2} z\right) \cdots \quad \pi\left(\eta_{x} z\right)\right)
\end{aligned}
$$

Dual of $R S_{F}[\mathbb{F}, k]$
Last from: $\quad P_{F}[F, k]^{\perp}=P S_{F}[F, q-k]$ $\operatorname{asing} \sum_{\alpha \in \mathbb{F}^{*}} \alpha^{i}=0 \quad \forall 1 \leqslant i^{i}<q-1$

$$
\begin{aligned}
& \sum_{d \in \mathbb{F}^{+}} \alpha^{i} \alpha^{j}=0 \quad \forall \quad \begin{array}{l}
0
\end{array} \quad i<k \\
& 1 \leq j \leq 9^{-1-k} \\
&=n-k \quad\left(n=9^{-1}\right)
\end{aligned}
$$

re, $\forall f \in \operatorname{RS}_{\mathbb{F}}\left[\mathbb{F}^{*}, k\right]$

$$
\begin{gathered}
\sum_{\alpha \in \mathbb{F}^{*}} f(\alpha) \alpha^{j}=0 \quad \forall \quad 1 \leq y \leq n-k . \\
\operatorname{RS}\left[\mathbb{F}^{*}, k\right]^{+}=\left\{\left(\sum_{i=1}^{n-k} g_{i} x^{i} \int_{\alpha \in \mathbb{F}^{*}} \mid g_{i} \in \mathbb{F}^{*}\right\}\right.
\end{gathered}
$$

$\left(S \ldots S_{r}\right) \in R S_{\mathbb{F}}\left[T_{T}^{*}, k\right]$

$n=9-1$

In other coords $\left(b_{2} \ldots b_{n}\right) \in B C H\left[b_{1}+1\right]$

$$
\forall 1 \leqslant j \leq 2 t, \quad \sum_{i=1}^{n} \sigma_{i} \sigma_{i}^{j}=0
$$

Now, ase $z \stackrel{\varphi}{\varphi}\left(\begin{array}{c}\pi\left(\eta_{2}\right) \\ \operatorname{Tr}\left(\eta_{2}\right) \\ \frac{\pi}{n}\left(\eta_{r} z\right)\end{array}\right)$ wherc $\eta_{1} \ldots \eta_{1}$.

$$
\begin{aligned}
& \underbrace{\sum_{=i=1}^{n} \delta_{i} \cdot \alpha_{c}^{j}}_{A}=0 \quad \Leftrightarrow\left(\begin{array}{c}
\operatorname{\pi }\left(\eta_{1} A\right) \\
\operatorname{rr}\left(\eta_{2} A\right) \\
\pi\left(\eta_{r} A\right)
\end{array}\right)=0^{x} \\
& \operatorname{Tr}_{r}\left(\eta_{k} \sum_{c=1}^{n} \sigma_{i} \cdot \alpha_{c}^{j}\right)=0 \Leftrightarrow \sum_{k=1}^{n} \delta_{i} \operatorname{Tr}\left(\eta_{k} \alpha_{k}^{j}\right)=0
\end{aligned}
$$

$$
\operatorname{dim}(B C H(n, t)) \geqslant n-2 t r
$$

Constromens: $\sum_{i=1}^{n} \sigma_{i} \cdot \alpha_{i}^{j}=0 \quad 1 \leq \jmath \leq 2 t$
Consider $\quad \sum_{i=1}^{n} b_{c} \cdot \alpha_{c}^{l}=0$

$$
\sum \sigma_{c} \alpha_{l}^{2 l}=\left(\sum \sigma_{l} \alpha_{c}^{l}\right)^{2}
$$

$$
\sum_{l=1}^{n} \delta_{i} \cdot \alpha_{c}^{2 l}=0
$$

ce, Defring constraints for $B C A[B, A]$ are $\sum_{c=1}^{n} \sigma_{i} \alpha_{c}^{j} ; j \in[T, 3,5, \ldots, 2 \in 1\}$

Hence, a paserty $T_{9} \xrightarrow{\text { check }}$ matrerx os $B C A[r, 1]$ is

$区$.

Dual-BCH code:

$$
\text { dual-BCH[n,t]=} \quad B C H[n, t]^{\perp}
$$

By defr

- deal-BCH[n,t] = Span of recws of Parrly chect matrix of $\mathrm{Brc}(\mathrm{cin})$

How does the span loot like?

$$
\begin{array}{ll}
\sum_{k=1}^{n} \sum_{j=1}^{2 t} b_{k} \pi\left(\eta_{k} \alpha^{j}\right) & b_{k} \in\{0,1\} \\
\left.=\sum_{j=1}^{2 t} r_{k}\left(\sum_{k=1}^{n} \sigma_{k} \eta_{k}\right) \alpha^{j}\right) & \\
=\sum_{j=1}^{2 t} \pi\left(\beta, \alpha^{j}\right) & \beta \in \mathbb{F}_{2} \\
=\pi\left(\sum_{j=1}^{26} \beta_{j} \alpha^{j}\right)
\end{array}
$$

Hence dual BCH $[n, t]$ - eval of trace $o f$ $\operatorname{deg} \leq 2 t(w / 0$ constont pobynomials.

$$
\begin{align*}
1 \text { dual-BCA }[\operatorname{rn}, t] & \leqslant 2^{\text {rt } t} \\
& =(\operatorname{n}+1)^{t}
\end{align*}
$$

coot perove in course)
Thim [Weil Bounds]

$$
\operatorname{dist}\left(\operatorname{diad}(-B C H[D, t]) \geqslant \frac{1}{2}-\frac{t}{\sqrt{n}}\right.
$$

Coyond the seope of this

