Today

- Crique decodirg

RS codes
css. 318.1
Coding Theory
Lecture 10 (2022-9-26)
Inotructor: Prahladh Harsha.

Algorittimic loscues.

$$
\rho \subseteq \Sigma^{n}
$$

$$
c-\operatorname{co}, \theta, \alpha / q-\operatorname{cod}
$$

(1) Encoding
(2) Detecting Ereors
(3) Corred Iny Erorures
$\}$ Easy if code 1s.
(4) Correcting Errors
(1), (2), (3) - easy if code is lnear 2 we have access to $G=H$.
cincoding is efficient

$$
\underbrace{e: \Sigma^{k} \rightarrow \Sigma^{n} \quad \text { is efficent. }}_{\text {explicitress of a code. }}
$$

(4) Problem. Given a code Chow? wa generator or Encoding mop)
find $c \in e_{1}$ sf $\Delta(r, c)$ is minianized.

As stated a love, the problem is NAThard even for specific codes couch as RS codes)

Shannon: Can we solve it for most r (that arise out of a channel)?

Hamming: Promise (t) : $J c e, \Delta(\operatorname{lac}) \leqslant t$.
Oar approach:- Hamming's way out Find largest t for which we Chique-Decoding can solve the problem. Combinatorially: If $t<d / 2$, there exists at most one $c \in e$, of $\Delta(r c) \leqslant t$.

Algorithmically??
Reed-Solomon Code: Froterson 1960
History $\left\{\begin{array}{l}\text { Gorenstion- Fiedler }\end{array}\right\} O \operatorname{cn}^{3}$)

Cold $\quad 6>d / 2$
$\left.\begin{array}{l}\text { - Berletamp } \\ \text { Massey }\end{array}\right\} O\left(n^{2}\right)$
Cnow, nearly linear O(npobyloyn) time algorthims)

- Welch-Berletamp it O(nt)
- Gemmell-Scobn 'iz

Creinterpretation of $W B$
$t>d / 2 \quad$ algouthim).
(t) $d / 2$) Scolan is

Guruswamr. Sudon is (E- Tohnson Radius)

Today: Gemmell-Sudan style of unique deroding PS coder

Problem
loput: F - finite field, $|\vec{F}|=9$.

$$
S=\left\{\alpha_{1} \ldots, \quad \alpha\right\}, \quad|S|=n \quad S \subseteq \mathbb{F}
$$

12 - degree paramefer.
t - bd on errors
$\bar{\beta}=\left(\beta_{1} \ldots . \beta_{n}\right) \in \mathbb{F}^{s}$ (received word).
Qctput: Find all palynomials $p \in F_{k}[x]$ st

$$
\nexists\left\{c \in[n] / p\left(\alpha_{c}\right) \neq \beta_{c}\right\} \leqslant \epsilon
$$

If $2 t<d$, there is at most ane such poly. and let p le the unrgue pdy (if expe exists).

$$
\begin{array}{r}
\text { Eror } \left.=\{c \in \ln] / p\left(\alpha_{c}\right) \neq \beta_{i}\right\} \text { (Donit know } \\
\text { Era). }
\end{array}
$$

Errose-locator palynomial
polynomial whose peroes are the erromp $\hat{E}(x)=\prod_{(\in E x x}\left(x-\alpha_{i}\right) \quad$ Can't know

Propertes of \hat{E}.
(1) $\hat{E} \neq 0, \quad \operatorname{deg} \hat{E} \leqslant E$.
(2) \quad ($i \in[n], \quad p\left(\alpha_{i}\right) \cdot \hat{E}\left(\alpha_{i}\right)=\beta_{i} \cdot \hat{E}\left(\alpha_{i}\right)$

$$
\hat{N}(x) \triangleq P(x) \cdot \hat{E}(x)
$$

(a) $d \operatorname{leg} \hat{N} \leqslant t+k-1$
(b). $\forall \in \in[n], \quad \hat{N}\left(\alpha_{i}\right)=\beta_{i} E\left(\alpha_{i}\right)$

Qn: Can we find poly E of deg $\leqslant t$ s.t $\exists \hat{N}$ of deg $\leq E+k-1$ that
satisties (a) 2 (b).

LoBbies: (1) How do we find such on E?
(2) Why is such an Euscful?

Wench- Berletamp Algouthm:
Step 1:
Find a (N,E) -pare of polynomials sit

$$
-\operatorname{dg}(E) \leq \epsilon
$$

$$
-\operatorname{deg}(V) \leq \epsilon+E-1
$$

$$
-\forall c \in[n], \quad N\left(\alpha_{i}\right)=\beta_{i} E\left(\alpha_{i}\right)
$$

Step 2: Output N/E Cf if is a polynomial.
BW algorithm: Efferent

- Step 1 - linear system in \#var $26+k+1$
\#cons n
- Step 2 division.

Clam 1: If $子 p \alpha_{y}$. \# $\left\{c \in[n] / p\left(\alpha_{i}\right) \neq \phi_{i}\right\} \leqslant t$ then there is a nanzzeto sobs.
Clam 2. Let $\left(N, E_{1}\right)=\left(N, E_{2}\right)$ Ge any tow nonzero (c-(-n-k+1$\left.\frac{1}{2}\right)$ of sons $6 N_{1}=N_{1} 1$ then

$$
\frac{N_{1}}{E_{1}}=\frac{N_{2}}{E_{2}}
$$

Note: Claims $1.2 \Rightarrow$ Correctness of BW algorithm. Proof of Clam 1: (\hat{N}, \vec{E}) is a non-jero sols. Proof of Clam 2:

Need to show

$$
N_{1} E_{2} \equiv N_{2} F_{1}
$$

Appeal to degree month.

$$
\begin{aligned}
\operatorname{dgg}\left(N, E_{2}\right), \operatorname{deg}\left(N_{2} E_{1}\right) & \leqslant t+E+E-1 \\
& =2 t+E-1 \\
\forall c \in[n] \quad N_{1}\left(\alpha_{i}\right) E_{2}\left(\alpha_{i}\right) & =\beta_{i} E_{1}\left(\alpha_{c}\right) E_{2}\left(\alpha_{i}\right) \\
& =E_{1}\left(\alpha_{i}\right) N_{2}\left(\alpha_{i}\right)
\end{aligned}
$$

If $n>2 \epsilon+k-1$, then $N E_{L}=N_{2} E_{1}$
Qr:
Clam 2: \Rightarrow any E oflarned in Step is a multiple of \vec{E}
E satisfies $\quad N\left(\alpha_{i}\right)=\beta_{i} E\left(\alpha_{i}\right)$

$$
\begin{aligned}
P\left(\alpha_{c}\right) \cdot \hat{E}\left(\alpha_{i}^{\prime}\right) & =\beta_{c} \cdot \hat{E}\left(\alpha_{c}\right) \\
P\left(\alpha_{c}\right) \neq \beta_{c} \Rightarrow \quad \Rightarrow\left(\alpha_{l}\right) & =0 \\
E\left(\alpha_{l}\right)=0 \Rightarrow E\left(\alpha_{c}\right) & =0
\end{aligned}
$$

Hence \vec{E} / E.

An alternate way to solve the below question
Un: Can we find poly E of deg \leqslant sit $7 \hat{N}$ of $\operatorname{deg} \leq E+k-1$ that satisfies (a) 2 (b).

Alternate Approach:
(FOB) - pointwise product (Hodamard prockect)

$$
-\epsilon \mathbb{R S}_{F}[S, t+\epsilon]
$$

Equivalently $E O \beta \perp R S_{F}[S, t \in]^{\perp} \ldots(t)$
Tor simplicity work with
In this case we know

$$
\left.R S_{F}\left[F^{*}, k\right]^{\perp}=\operatorname{Soan} \sum \operatorname{Aol},\left(x^{l}\right) / 1 \leqslant l \leqslant n-k\right]
$$

(*) can be written as.

$$
\begin{aligned}
& \forall 1 \leqslant l \leq n-t-k, \quad \sum_{i=0}^{n-1}\left(E\left(\alpha^{i}\right) \beta_{i} \cdot\right) \cdot\left(\alpha^{i}\right)^{l}=0 \\
& E(x)=\sum_{j=0}^{t} \sum_{j} x^{j}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{c=0}^{n-1} \sum_{j=0}^{\epsilon} \sum_{j} \alpha^{\ddot{y}} \beta_{i} \alpha^{d}=0, \quad \forall 1 \leq l \leq n-t-k \\
& \sum_{d=0}^{t} E_{j} \underbrace{\sum_{c=0}^{n-1} \beta_{i} \alpha(g+l) i}_{l \prime}=0, \quad \forall 1 \leq l \leq n-t-k \\
& S_{e}:=\left\langle\bar{\beta}, \operatorname{Fval}_{s}\left(x^{j+e}\right)\right\rangle
\end{aligned}
$$

β - purportedly val of deg \in poly

$$
\text { Evals }\left(x^{l+j}\right): \quad 1 \leq l+j \leq n-k
$$

Rewriting ($A *$)

$$
\sum_{d=0}^{6} E_{j}^{-j} S_{l_{+j}}=0, \quad 1 \leq l \leq n-t-k
$$

Step 1: Compute Syndrome (S... SeEk)
Step 2: Solve E that satsties ($A \neq A$)
Step 3: Given E, find the err a use erasure decoding.
Peterson, BM, subsequent improvements are just implementations of a love ido.

