Today

- Code Concatenation
- Fyabbr Bound
- Jabtesen Codes
css. 318.1
Coding Theory
Lecture (2022-9-28)
hotructor: Prahladh Harsh.

Where c we are:
Reed -Solomon codes [n,k,n-k+1]-code

$$
\therefore q \geq n
$$

(drawback of RS codes)

$$
\begin{gathered}
\mathbb{F}=\mathbb{F}_{2} ; \quad S=\mathbb{F},\left(k, n=q=2^{t}\right) \\
k=n / 2
\end{gathered}
$$

For this setting of parameter
RS -code $\quad\left[n, \frac{n}{2}, \frac{n}{2}\right]_{2} \epsilon^{\text {cook }} \quad n=2^{t}$

Just crete out each elf of Tic in its raw encoding (ce, a lit string of length t)
$\left[n t, \frac{n t}{2}, \frac{n}{2}\right]_{2}$-code for $t=\log n$
Enlogn, $\left.\frac{n \log n}{n}, \frac{n}{2}\right]_{2}$-coddle

$$
\left[N, \frac{N}{2}, \frac{c N}{\log N]_{2}-\operatorname{cod} .} \quad N=n \log n\right.
$$

[Former]
Idea: Cis an inner code to encode the symbols I The

$$
c_{i n}:\{0,\}^{6} \rightarrow[0,\}^{2 t} \quad(2 \epsilon, t, 0.00 t / 2 \text {-code }
$$

$$
\left[2 n t, \frac{n t}{2}, \frac{n}{2} \times 0.001 t\right]-\operatorname{cod} .
$$

[Int, $\left.\frac{n t}{2}, 0.0005 n t\right]_{2}$-code.
Code Concatenation [Journey]

$$
\text { Coat: }(N, K, D)_{Q}-\operatorname{code} \quad Q \leqslant q^{k}
$$

Gin: (n, b, d) - code
Concatenated Code

Furthermore if $\angle D=F_{q}=\angle Q J=F_{Q K}-a$ feld extensicos of 奞

$$
=\text { Cut }=\text { Cin are hear }
$$

How to constract good codes using code concateration.

- Find Cinner - a good cooke in trone poly (Nn) T/O find a good lincor code, using Varshamove techingae $9^{0(k n)}$
Cfor Cout - RS. $\left.\operatorname{Cin}_{\text {in as abore }}\right\}$ Time $=2^{\theta\left(\log ^{2} n\right)}=N^{\theta(\log N)}$

$$
n=\theta(\log N)
$$

$$
k=\theta(\log N)
$$

cal book keepny Giberts greedy constroation, $-9^{\theta(n)}=$ polp (N).

AGove constraction is "explict" (Gut still mrolies brate-fore search).

Strongly Explicet. Codes: (Iineor)

Given $i \in[n],=j \in[E]$ can output G[iji]
in time poly $\left(l i, I J^{1}\right)$
(rer poly logn)

However, alove constructron is not strongly explent

Qon: What is the \mathbb{R}-us-S Grads off achieved by the above explied constraction?

Cout - RS code. $\delta_{\text {out }} 1-R_{\text {sat }}$
Cinne - Gibert constraction $\delta_{0 n} \geqslant H_{2}^{-1}(1-x)-\varepsilon$

Concatenated Code: $\quad R=R_{\text {out }} \cdot r$

$$
\delta_{\Rightarrow} \Rightarrow \delta_{\text {out }} \cdot \delta_{\text {in }}
$$

Eyoblor's Bound:

$$
\delta \geqslant \max _{x \in(0,1)}\left(1-\frac{P}{x}\right) \cdot\left(H_{2}^{-1}(1-x)-\varepsilon\right)
$$

What about strongly explicit codes that meet the Eyablor Bound!

Tustesen's Codes:

Jastesen's /dea:

- Ok if miner codes are different = sufficient if most inner codes are
- Constracact an ensemble of "inner codes such that mast of them are good.

Proposition: Let Gout Ce a $(N, k, D)_{Q}$-code. $=\left\{C_{m}^{\prime}, C_{n}^{2}, \ldots C_{n}^{N}\right\}$ are an ensemble
($n, b)$-codes (where $Q=q^{k}$) such that at least (F-E)N of miner codes have distance d, then

$$
C=\operatorname{cout}^{\circ} \in\left\{C_{n}^{1}, c_{n}^{2}, \ldots c_{m}^{n}\right\}
$$

is a $(N n, k R,(O-\varepsilon N) d)_{q}$ - code.
Pf: $m, m^{\prime} \in[G]^{k+}$ st $\left[\begin{array}{l}\text {] }]^{k}\end{array}\right.$
By distance of Cit. $\Delta\left(C_{\text {cot }}(\operatorname{mon}) \operatorname{Cort}\left(\operatorname{mon}^{\prime}\right)\right) \geqslant D$
Since all but EN of inner codes have distance 2 d .

$$
\Delta\left(C(m) C\left(m^{\prime}\right)\right) \geqslant(D-\varepsilon N) d
$$

Que: What is a good ensemble of inner codes?
Wozencraff's Ensemble:
Water code: RS $F=F_{2}$

$$
\begin{aligned}
& \left.S=F^{*} \quad \text { Cor } N_{0} 2^{-}-1\right) \\
& K=R_{\text {out }} N
\end{aligned}
$$

Inner Ensemble:
For each $\alpha \in \mathbb{F}^{*}$.

$$
\left.\begin{array}{rl}
c_{\alpha}:\{0,1\}^{t} & \rightarrow\{0,1]^{2 t} \\
\mathbb{F}_{2} \in & \rightarrow \mathbb{F}_{2}^{2} \\
x & \rightarrow(x, \alpha x)
\end{array}\right\} \begin{aligned}
& C_{a} \cdot s \\
& {\left[2 t,[]_{2}, \operatorname{cod} t\right.}
\end{aligned}
$$

Lemma: IE, sufficiently large N at least $(1-\varepsilon) N$ of the miner cooks $\left\{\alpha \mid \alpha \in \mathbb{F}^{*}\right\}$ have distance $\mathrm{H}_{2}^{-1}\left(\frac{1}{2}-\varepsilon\right)$.

Final Justeren code
cobfained by concatenating RS w/ Woyencreaff; ensemble)
Encoding map.

$$
\begin{array}{ll}
m=\left(m_{0,} \ldots\right. & \left.m_{k-r}\right) \\
m \stackrel{m_{i}}{ } x^{i} \\
m^{R S} & (m(\alpha))_{\alpha \in \mathbb{F}^{*}} \stackrel{\text { Wizen }}{ }(m(\alpha), \alpha m(\alpha))_{\alpha \in \mathbb{T}}
\end{array}
$$

Pf of Lemma:
Let $(x, y) \neq(0,0)$
Of: (x,y) is in the image of at most one of the σ^{\prime} s.

$$
\begin{aligned}
& \#\left\{\alpha \in \mathscr{F}^{-\phi} / d\left(C_{\alpha}\right) \leq H_{2}^{-1}\left(\frac{1}{2} \cdot \varepsilon\right)\right\} \\
& \leqslant \mathbb{\#}\left\{(x, y) \in\{0,1\}^{2} \in \sigma / \cot (x, y)=\sigma^{\prime \prime}\left(\frac{1}{2} \cdot \varepsilon\right) \cdot 2 t\right\} \\
& \approx \quad V_{c}\left(2 t, h^{-1}\left(\frac{1}{2}-\varepsilon\right) 2 t\right) \\
& =2^{2 t\left(t^{2}-\varepsilon\right)}=2^{\epsilon(1-2 \varepsilon)} \\
& \operatorname{Pa}_{\alpha \in F^{2}}\left\{d(\alpha) \leqslant f_{2}^{\prime \prime}\left(\frac{1}{L}-\varepsilon\right)\right] \leqslant \frac{2^{\in(1-2 \varepsilon)}}{2^{\epsilon}-1} \text { (for b }
\end{aligned}
$$

(for login (f)

