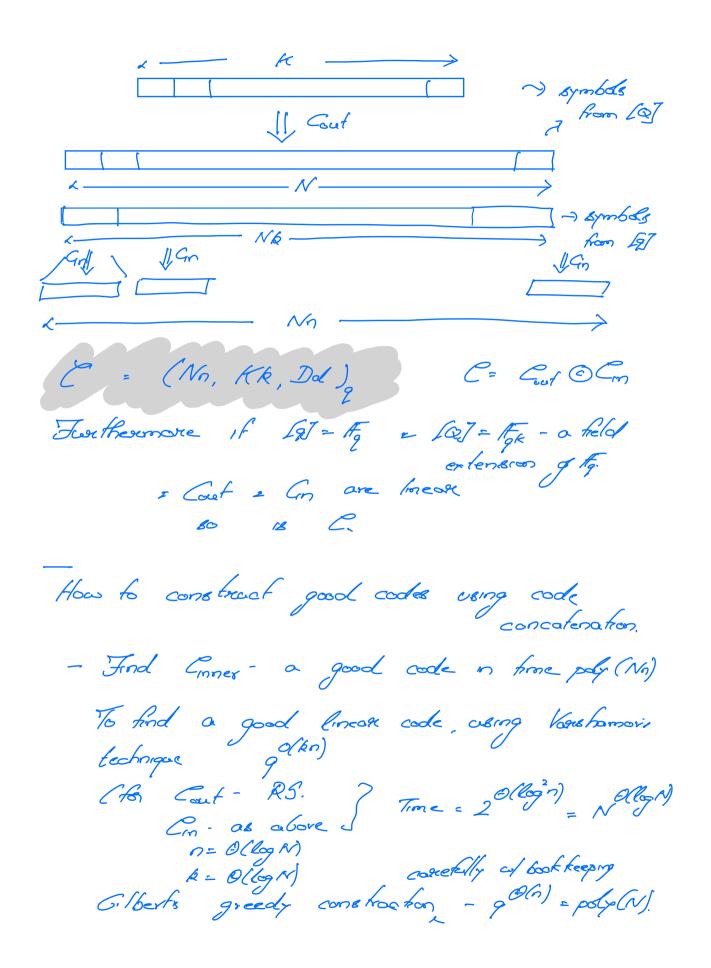
Code Concalenation Cooling Theory

- Lode Concalenation Lecture (2022-9-28)

- Justesen Cooles Instructor: Prahladh Today Where we are: Reed-Solomon codes [n, k, n-k+1] - code (obraw back of RS cooks) $F = F_{2\epsilon}$; S = F, (re, $n = q = 2^{\epsilon}$) For this selling of parametes R5-code $\left[n, \frac{n}{2}, \frac{n}{2}\right]_{n}$ -code $n=2^{\frac{\epsilon}{2}}$ GEFE EFE Just write out each ell of the in its now encoding (ie, a lit string of length)

Int, $\frac{n!}{2}$, $\frac{n}{2}$]-code for $t = \log n$
Enlogn, nlogn n J-cook
[N, $\frac{N}{2}$, $\frac{cN}{acgN}$]-coole. N=nlogn [Foxney]
Idea: Use an inner code to encode the
$C_{in}: \{0, J^{\ell} \rightarrow \{0, J^{2\ell}\} $ $C_{2\ell}(\xi, 0, \infty, \ell), -code$
$\begin{array}{c c} & & & & & \\ & & & & & \\ \hline & & & & & \\ \hline & & & &$
$ \begin{array}{c c} & & \downarrow C_m \\ & & \downarrow C_m \\ & & \downarrow C_m \end{array} $
$[2nt], \frac{nt}{2}, \frac{n}{2} \times 0.001t$ -cook.
Bnt, nt 0.0005 nt]-code.
Code Concatenation [Fourey]
Cout: $(N, K, D)_{Q}$ - code $Q \leq q^{k}$
C_{in} : $(n, k, d)_q$ - code
Concelenated Code



Above construction is "explicit" (but still mobiles brute-face search) Strongly Explicit. Codes: (linear) G= If Given ie [n], = je [k]

Con output G[ij] in time poly (lil, 1/1) (re polylogn) (The algebraic cocks (PS PM) are strongly emploist. However, above construction is not strongly explicati S=12 Consbication? Or bound Cout - RS code. Sout & FROM Ginne - Gilbert construction & > H'(1-91) - E

Concotenated Code: R = Roat .91
Zyoblovis Bound:
$\delta \geq \max_{\alpha \in (0,1)} \left(-\frac{R}{\alpha} \right) \cdot \left(H_2^{-1} \left(1-\alpha \right) - \varepsilon \right)$
What about strongly explicit codes that meet the Eyabbu Bound?
Justesen's Codes:
Cout Symbols Room [Q]
Gill Van
∠————————————————————————————————————
Justesen 3 lolea:
- Ok of mover codes one different
2 sofficient if roost inner codes are
- Construct an emsemble of more codes such that most of them are good.

Proposition: Let Cout le a (N, K, D) - code. # $\{C_m', G_n', ..., G_n'\}$ are an ensemble of $\{n, k\}$ -codes (where $Q = q^k$) such that at least (I-E) N of more codes have distance of then C: Cout @ EGn, Cm, ... Em 13 a (No, kk, D-EN)d.) - code. $m, m' \in IqJ^{kk}$ st $m \neq m$ By distance of Gut. D (Cost (m) Cost (m))>D Since all but EN of more codes have distonce 2d. A(C(m), C(m)) > (D-EN)d Do: What is a good onsemble of more codes? Wogen croft's Ensemble: Outen code: R5 5= # (re N= 26-1) K = Rout N

Inner Ensemble: $C_{\alpha}: 39,13^{6} \rightarrow 39,13^{6}$ $F_{26} \rightarrow F_{56}$ $C_{\alpha}: 39,13^{6} \rightarrow 39,13^{6}$ $C_{\alpha}: 39,1$ For each de F* Lemma: $f_{\mathcal{E}_i}$ sufficiently large N at least (1-2)N of the inner cooks $\{C_i \mid A \in F^*\}$ have distance $H_i^{-1}(\frac{1}{2}-E)$. Final Justesen code

Colfained by concodenating RS col

Wagen creatt's ensemble) Encoding map. m = (m, ... m,) - Im, x' $m \stackrel{RS}{\longmapsto} (m(\alpha))_{\alpha \in F} + \stackrel{\text{Wogen}}{\longmapsto} (m(\alpha), \alpha m(\alpha))$ Pf g Lemma: Let (2,4) + (0,0) Obs: (24) is in the image of at ross!

$\{\alpha \in F^{*} / d(C_{\alpha}) \leq H_{\alpha}^{*}(A_{\alpha}^{*} - E_{\alpha}^{*})\}$ $\leq \# \{(\alpha, \gamma) \in \{0, \}^{2} / (0) / (0) \leq h_{\alpha}^{*}(A_{\alpha}^{*} - E_{\alpha}^{*}) + h_{\alpha}^{*}(A_{\alpha}^{*$