Today

- List decoding
* Combinaturices
* Johnson Padus
css. 318.1
Coding Theory
Lecture 15 (2022-10-21)
Instructor: Prahlach
Harsha.

Where we are (wort Rate vs eros)?

Shannon Model
(Random givers)

Hamming Model
cuorst.case errors)

Relax the alyoutimic challenge to return a lost of at most \angle codewords instead If gust l . (ρ, \angle)-list-decodable: $\rho \in(0,1), L \in Z_{0}$. $\rho \subseteq \Sigma^{n}$ is ((ρ, l)-list decidable if there exists a decodes $D: \Sigma^{n} \rightarrow\left(\begin{array}{c}C \\ \text {) }\end{array}\right.$ sit.
$\forall c \in C, \eta \in \operatorname{Ball}(0, p n)$

$$
c \in D(c+\eta)
$$

Egurvalently.
C is (ρ, L)-list decodable if

$$
\forall g \in \Sigma^{n}, \quad \mid \text { Ball }(g,-n) \cap e l \leq \angle \text {. }
$$

Remarks
(1) Not a computational defr, Gut combimatoral.
(2) Ib if a reasonable?
(i) random errors, lest-gize is typically L
(ii) Side mformation 6 disambiguate from the llist
(iii) Cayptogreaphically biunded channels.

Limils on Pate of ($e, 4$)-lot-decoda lle coder,
Thm: Suppose $\mathrm{C}^{5} \Sigma^{n}$ is ($\rho, 4$)-list-decodable =

$$
\begin{array}{lll}
R \geqslant 1-H_{9}(\rho)+\varepsilon & \text { cofere } \quad \rho=|\Sigma| \\
\quad \angle \geqslant 2^{-\Omega(E n)} \quad \text { if } \rho \leq 1-\frac{1}{2} &
\end{array}
$$

then $L \geqslant 2^{-2(\varepsilon n)}$. If $\rho \leqslant 1-\frac{1}{2}$

Pf: Choose ycivin

Fix ce C.

$$
\begin{aligned}
& =\frac{\log _{g}\left(n_{1}, n\right)}{9^{n}} \cdot \\
& \geqslant q^{-n\left(1-H_{p}(\rho)\right)-o(n)} \\
& {\underset{y}{c}}_{\mathbb{E}}\left[\left(C \cap \text { Ball }\left(y, \rho^{n}\right)\right]\right]=\sum_{c \in e} \text { Pr }\left[c \in \text { Ball }\left(y_{r}, n\right)\right] \\
& =9^{R n} \cdot(*) \\
& \geqslant q^{-n\left(1-A_{g}(l)-R\right)-a(n)} \\
& \geqslant q^{\Omega(\mathrm{en})} \quad \text { if } R \geqslant 1-H(\rho)+\varepsilon \text {. }
\end{aligned}
$$

Hence, Fy (intact a random, y) has exp. many codewords in a pn-ball around t.

Theorem: Let $\angle \in \mathbb{Z}_{\geq 0}$. Then there exist ($(, \angle)$)-hist-decodatle codes with rate

$$
R \geqslant 1-H_{q}(\rho)-\frac{1}{L}
$$

Proof:
Prot C af random
For each $c=1.9^{D_{n}}$. prick $c_{i} \leftarrow \tau_{R} \Sigma^{n}$ moleperodently.

BAD Event: Bye ${ }^{n}=(L+1)$ codewords $C^{(2)}, C^{(1)} \ldots, c^{(4)}$ st $c^{(x)} \in$ Ball $\left(y, p^{n}\right) \quad \forall o s y \leq L$.
$7 x y$.

$$
\begin{aligned}
& {\underset{c}{\text { Pa }}}_{\text {Pl }}\left[c^{(q)} \in \text { Ball }(y, \rho n)\right]=\frac{V_{c} l_{g}(n, \rho n)}{9^{n}} \leqslant 9^{-n(1-B(\rho))}
\end{aligned}
$$

Premed event] $=$ Privy $\exists c^{(0)} \ldots c^{(L)},(* *)$ holds $]$

$$
\begin{aligned}
& \leqslant q^{n}\binom{q^{n}+1}{<+1} \cdot q^{-n(L+1)\left(1-H_{q}(\rho)\right)} \\
& \leqslant q^{n\left[1+R(L+1)-(L+1)\left(1-H_{g}(\rho)\right)\right]} \\
& \leqslant q^{n}[1-1] \quad(\operatorname{Setting} \\
& \left.=1 \quad R<1-H_{p}(\rho)-\frac{1}{4+1}\right)
\end{aligned}
$$

Hence, mopostibility a achievalility curves for ($\rho, 4$)-list-decodalle codes math.

Mot Question: M Are there explant codes which are (p, L)- lost-decodate
(2) Can the Lot. decoders made afficort?

Recall.
Jotrison Radius. $I_{2}(\delta)=\frac{1}{2}(1-\sqrt{1-28})$
Lemma. Given any $\delta \in(0,1 / 2)=C=\left(n, R_{n}, \delta /\right)_{2}-$ code then for $r=J_{2}(\delta)$

$$
\text { Fy }\{0,1\}^{n}, \quad \text { Ball }(y, i n) \cap C 1<n+?
$$

q-ary version: $J_{g}(\delta)=\left(1-\frac{1}{8}\right)\left(1-\sqrt{1-\frac{q \delta}{q-1}}\right)$
Alphabet-independent version.

$$
J_{g}(\delta)=\left(1-\frac{1}{g}\right)\left(1-\sqrt{1-\frac{q \delta}{\phi-1}}\right) \geqslant 1-\sqrt{1-\delta}=: J(\delta)
$$

Now, give an alternate (combinatorial) proof of the a fohalet-independent Johnson bound.

Lemma: C - $\left(n, R_{n}, \delta_{n}\right)_{\text {, -code then for } \tau \leqslant 1-\sqrt{1-\delta}) ~}^{\text {- }}$

$$
\text { KyGErt. } \quad \mid \text { Ball }(y, r n) n e \mid<r(1-r) n+1
$$

Proof (Taikumor Radhaturshoan).
Suppose Jg J [aT $\quad G_{1} \cdots c_{L} \in C$ sit.

$$
y \in \operatorname{Ball}(a, r n) \quad \forall 1 \leq i \leq L
$$

Consider the following bipartite graph.

(ii) exists

元
$\left(c_{j}\right)_{i}=g_{i}$
every right vertex has degree at least n(1-r)

$$
\begin{aligned}
d_{c} & =\#\left\{j \in L /\left(g_{i}\right)_{i}=y_{i}\right\} \\
\bar{d} & =\sum_{n}^{\sum d_{c}}
\end{aligned}
$$

Counting Hedges from both sides

$$
\begin{aligned}
& \bar{d} \cdot n \geqslant n \cdot(1-r) \cdot L \\
& \Rightarrow \bar{\alpha} \geqslant(1-r) \cdot L \\
& c \in[n] \\
& \operatorname{Pr}_{d_{1} F_{L}}\left[i-\operatorname{ady} \text { to Goth } d_{1}=d_{2}\right]=\frac{\left(\begin{array}{c}
L_{2}
\end{array}\right]}{\binom{L}{2}} \\
& \underset{d_{1} \neq f_{d}}{\mathbb{E}}\left[\notin \text { common nbs of } d_{1} v_{2}\right]=\sum_{c=1}^{n} \frac{\binom{d_{i}}{2}}{\binom{L}{2}} \\
& \geqslant \frac{n \cdot\left(\begin{array}{c}
- \\
d_{2}
\end{array}\right.}{\binom{L}{2}}
\end{aligned}
$$

On the other hand fo every di $\neq / 2$ \#common nor $\leqslant n(1-8)-1$

Puting fhese two together.

$$
\begin{aligned}
& n\binom{\bar{d}}{2} \leqslant\binom{ 2}{2}(n(1-8)-1) \\
& \begin{array}{r}
n \frac{((1-\tau) \angle)((-\tau)<-1)}{2} \leqslant \frac{\angle(L-1)(n(1-\delta)-1)}{2} \quad \begin{array}{l}
\sin c e \\
\alpha \geqslant(1-\tau) \angle
\end{array}
\end{array} \\
& (1-r)^{2} \angle n-(1-r) n \leqslant(1-1)(n(1-8)-1) \\
& \left.(1-r)^{2} \angle n-(1-r)_{n} \leqslant(L-1) \ln (1-r)^{2}-1\right) \quad(r<1-\sqrt{1-\delta}) \\
& \Rightarrow L \leq(1-r)_{n}-(1-r)_{n}^{2}+1 \\
& =(1-r) r \cdot n+1 \\
& =n / 4+1
\end{aligned}
$$

