Today

- List decoding of Reed. Solomon Codes
Sudan 96 Gurcuswamı-Sodan 98
$\operatorname{css} 318.1$
Coding Theory
Lecture 16 (2022-10-26)
hotrenctor: Prahladh Harsh.

Efficient List-deroding of the Reed-cslomon Code.

Problem:
Input: Fr finite field
n- \# evaluations
k- degree poramele (dey $<k)$
t - agreement parameter $(e=n-t$
$\alpha_{1} . . \quad \alpha_{n}-n$ distinct points exeroxs) m
$\beta_{1} . . \quad \beta_{n}-n$ field elements.
Qufpat. Ind all paly $P[x] \in \underset{c k}{\mathbb{F}[x]}$ of deg $<k$ of

$$
\left.\#\{\dot{i} \in \operatorname{n}] / P\left(\alpha_{i}\right)=\beta_{i}\right\} \geqslant t
$$

Question: Find efficient dol for above problems a) as low t as possible.

Qbeervations: $\quad t>\frac{n+k}{2}$ - Chique-decoding Radcus Welch-Berle Kamp

$$
t>\sqrt{n R} \text { - } \begin{gathered}
\text { Vobinson Rodius. } \\
\text { (combinatorially) }
\end{gathered}
$$

Today: Sidon it $t>\sqrt{2 k n} \quad(\rho<1-\sqrt{2 R})$
Gurcuswami-Sidan is $t>\sqrt{k n .}(\rho<1-\sqrt{k})$.

Recall the Welch-Bereletomp Crique-decoding Alg:
Step 1: Find all non-zero pares of polynomnal

$$
\begin{aligned}
(N, E) \quad \sigma \cdot t & \\
\operatorname{deg}(N) & \leq E+k-1 \\
\operatorname{deg}(E) & \leq t \\
N\left(\alpha_{i}\right) & \left.=\beta_{i} E\left(\alpha_{i}\right) \quad \forall c \in E \cap\right]
\end{aligned}
$$

Step 2: Oupat N/E

$$
Q(x, y)=N(x)-y E(x)
$$

Civery P that hos agreement $>\frac{h+k}{2}$ sotstres

$$
Q(x, P(x)) \equiv 0
$$

re, $(y-P(x))$ is a factor of $Q(x, y)$
Sudaris Generalization.
Step 1: Fird an "algebrair" explonaton for the data points in the from of a
bivariate poly Q(x,y)
Step 2: Output all factors $(y-P(x))$ of $Q(x, y)$
-Step 2: requires efficient foctor.jation alooritime for bivariate polynomials over finite fields Such algorithms exist [kaltofen, Berketamp] Assume as black box such algouthme

Solon's Algorithm (Grist attempt)
Parameter- $n \geqslant k \geqslant 1, \quad t$-agreement parameter
Step 1: Find a non-jerc polynomial Q(x, y) st

$$
\begin{aligned}
& \operatorname{deg}_{x}(Q) \leqslant l \\
& \operatorname{deg}_{y}(Q) \leqslant n / l \\
& Q\left(\alpha_{i}, \beta_{i}\right)=0 \quad \forall c e[n] .
\end{aligned}
$$

Step 2: Find all poly $p(x) \in \mathbb{F}[x]$ sit $(y-P(x))$ is a factor of $Q(x, y)$ and output bot of all such P st
(e) $\operatorname{deg}_{x}(\hat{P})<R$
(ii) $\left.|\{\dot{\{ } \dot{\in} \in \ln]| P\left(a_{i}\right)=\beta_{i}\right\} \mid \geqslant t$.

Requrrements:
(1) Lan find a nonzperc bobs by interpolation for any input data set.
(2) Cvery P that has agreement at least t a/ data must appear as a foctor $(Y-P(X))$ of $Q(x, y)$.
(1) Interpolation Requarements.

Non-zere Soln exrsts if
\# vars $>$ \# eqns
\#vars $=$ m monomial $x^{i} y^{i}$ of $0 \leq i \leqslant l$ rocy $\leqslant \frac{n}{l}$

$$
=(l+1)\left(\frac{n}{e}+1\right)
$$

\#eqns $=n$
Since $(l+1)\left(\frac{n}{e}+1\right)>n \quad \forall l$. a non-jero solution exrsts.

Clam: If $t>l+(k-1) \frac{n}{e}$, then the flowing is thee
$P(x)$ batisfies $\#\left\{i \in \ln J / P\left(\alpha_{i}\right)=\beta_{i}\right\} \geqslant 1$
VII

$$
Q(x, P(x)) \equiv 0 .
$$

Pf: $\quad R(x)=Q(x, P(x))$
If $P\left(\alpha_{c}\right)=\beta_{i}$. (re point of agrecment)
then $\quad R\left(\alpha_{c}\right)=0$
Hence, $\prod_{c: F(\alpha)=\beta_{c}}\left(x-\alpha_{c}\right)$ is a factor of $R(x)$.

$$
\operatorname{deg}(R) \leqslant l+(k-1) \frac{n}{l}
$$

So if $t>l+(k-1) \frac{n}{l}, \quad R \equiv 0$

Set $l=\sqrt{n(k-1)} ; t>2 \sqrt{n(k-1)}$
Thu. Can list-decode if \#agr $>2 \sqrt{n(k-1)}$

Balance the imbalance in $X=Y$-degree.
(a, b)-weighted degree oof $x^{i} y^{j}=a i+b j$
$D:=(1,(x-1)$-weighted degree of Q
If $E>D$ then $Q(x, P(x))=0$ for every P of agreement of least
Scion's Algorithm (Second attempt)
Parameter - $n \geqslant 2 \geqslant 1,6$-agreement parameter
D
Step 1: Find a non-zero polynomial $Q(x, y)$ sit (,$(k-1)$-weighted deg of $Q \leq D$ $Q\left(\alpha_{i}, \beta_{i}\right)=0 \quad \forall_{c} \in[n]$

Step 2: Find all poly $p(x) \in \mathbb{F}[x]$ sit
$C y-P(x))$ is a foctor of $Q(x, y)$ and output list of all such P st
(i) $\operatorname{deg}_{x}(P)<R$
(ii) $\left.\mid\left[\sum_{i} \in \ln \right] / P\left(a_{i}\right)=\beta_{i}\right\} \mid \geqslant t$.

Step 2 Requarcments: $D>t$
Step 1 (interpolation) Requirements:
\#egns $=n$.

$$
\begin{aligned}
\not \nmid \text { vare } & =|\{(l, j) / 0 \leqslant l, j, \quad i+(t-1) j \leq D\}| \\
& =\sum_{j=0}^{l} \sum_{l=0}^{D-(l-1) j} 1 \quad l=\left[\frac{D}{k-1}\right] \\
& =\sum_{j=0}^{l}[D+1-(k-1) j] \\
& =(D+1)(l+1)-(k-1) \sum_{d=0}^{l} j \\
& =(D+1)(l+1)-(k-1) \frac{l(l+1)}{2} \\
& =\frac{(l+1)}{2}[2 D+2-(k-1) l] \\
& \geqslant \frac{l+1}{2}(D+2) \quad \text { Cbince } l \leq \frac{D}{k-1} \\
& \left.\geqslant \frac{D(D+2)}{2(k-1)} \quad \text { (since } l \geqslant \frac{D}{k-1}-1\right)
\end{aligned}
$$

If we choose D sit $\frac{D(D+2)}{2(N-1)}>n$ then Interpolation conditions are met

Set

$$
\begin{aligned}
& D=\sqrt{2(k-1) n}\rceil \\
& t=\mid \sqrt{2(k-1) n}\rceil
\end{aligned}
$$

Thin [Sudan] Can efficiently lost-decode PS code co/ \#agreements $\geq\lceil\sqrt{2(t-1) n}\rceil$

$$
(1 e, \rho>1-\sqrt{2 R})
$$

Guruswami-Sudan Improvement.
Idea: Incorporate maltplicites.
(1) Step 1: Adding more restrictions
re, $Q(x, y)$ has "r scots" at (α, β_{i}) \# eons are increasing $\Rightarrow D$ most be larges
(2) Every pt of agreement giver "r roots"

$$
r \rightarrow D \text { g } R(x)=Q(x, P(x)) \text {. }
$$

Define. (1) $Q(x, y)$ has r roots at (0,0) If coeffls of $x^{i y}$ is any (iii) sotrafyng.
(2) $Q(x, y)$ has r roots at (α, β) of $Q_{\alpha, \beta}(x, y) \triangleq Q(x+\alpha, y+\beta)$ has af $(0,0)$.

Guruswami-Sudan Algorthm.
Parameter - $n \geqslant k \geqslant 1, \quad \epsilon$ - agreement parcometer D, r

Step 1: Find a non-jero pobyomial $Q(x, y)$ sit $(C, R-1)$-werghted degree of $Q \leq D$ $Q(X, Y)$ has r roo $1 / 3$ at $\left(\sum_{i}, \beta_{i}\right), K_{c} \in[n]$.

Step 2: Find all poly $P(x) \in \mathbb{F}[x]$ s.f $C y-P(x))$ is a foctor of $Q(x, y)$ and output lrot of all such P st
(i) $\operatorname{deg}_{x}(\hat{P})<k$
(ii) $\left|\left\{\dot{S} \dot{\operatorname{lin}} \mid / P\left(a_{i}\right)=\beta_{i}\right\}\right| \geqslant t$.

Step I Requrrements: \#vars $>\frac{D(D+2)}{2(E-1)}$

$$
\begin{aligned}
\text { \#eqns } & =n \cdot \#\{(c i j) / o \leq e, j, c+j<r\}) \\
& =n \cdot\binom{r+1}{2} .
\end{aligned}
$$

$$
\frac{\partial(D+2)}{2(b-1)}>n\binom{r+1}{2}
$$

Set $D=\sqrt{((k-1) n r(r-1)}]$ to satisfy interpolation requirements

Clam: If $D<$ tr, and D hos $\geqslant E$ agreements a) dato, then $R(x)=Q(x, P(x)) \equiv 0$.

$$
\begin{aligned}
& \left.\epsilon>\frac{D}{r} ; D=\mid \sqrt{(k-1) n r(r-1)}\right] \\
& \epsilon=\left\lceil\sqrt{(k-1) n\left(1-\frac{1}{r}\right)}\right] \\
& \text { Set } \left.r=2(k-1) n, \quad \epsilon>\sqrt{(k-1) n-\frac{1}{2}}\right]>\sqrt{(k-1) n}
\end{aligned}
$$

The LGurcuscoami-Suclan] Can list-decode RS coder if \#agreements $\geqslant \sqrt{(k-1) n} \quad\left(r_{1} \rho \geqslant 1-\sqrt{R}\right)$

Proof of Claim:
Suppose we show
For every point we have $(x-\alpha)^{r}$ is a factors

$$
P(x)=Q(x, D(x))
$$

then we are done.

Special case when $(\alpha, \beta)=(0,0)$
Since $P(\alpha)=\beta$; constant form of $P(x)$ is 0 .

$$
R(x)=Q(x, P(x))=Q(\underline{x} a x+\ldots)
$$

feast deg form in $R \geqslant r$.
le, $x^{k} / R(x)$ in this case.
General $(\alpha, \beta), \quad(x-\alpha)^{r} / R(x)$.

