Today

- Maltiplicity Godes-III Coding Theory

Lecture 24 (2022-11-23)
Inotructor: Prahlach Harsha.

Liot-decoding univariate multiplicily coder
Kopparty, Gurcoswam-Wang
$\forall \varepsilon . J \sigma_{0}, \forall \sigma \geqslant \varepsilon_{0} \operatorname{Mulf}(F, d, s, n)$ os list. decodable $1-\frac{d}{s n}-\varepsilon$.

Problem: Given n data ponsls

$$
\left(\alpha_{1}, \beta_{1}\right),\left(\alpha_{2}, \beta_{2}\right) \ldots\left(\alpha_{1}, \beta_{n}\right) \in \mathbb{F}_{q} \times \mathbb{F}_{9}^{-6}
$$

find all (Conivariate) plynomials Pof $\operatorname{deg} s d$ b.t

$$
\left|\left\{c \in[n] / \quad p^{(s \delta)}\left(\alpha_{c}\right)=\beta_{i}\right\}\right| \geqslant T
$$

Warmup; Recall the Gurusuami-Sudan settry $\beta_{1} \in \mathbb{F}$ (poly evoluation)

G5 Algourttim
Step 1. Find a non-jero pry $Q \in \mathbb{F}[x, y]$
st
(i) (I, d)-cot degree of $Q \leqslant D$
(ii) Q vanishes wa/ multiplicity M at $\left(\alpha_{1}, \beta_{2}\right), \forall c \in[V]$.
Step 2. Quput all pdynomals P ag dey $5 d$ sit

$$
Q(x, P(x)) \equiv 0 .
$$

Analysis: Step 1: Doable as loon g as \#vars $>$ \#cons
Step 2: Let P be a candidate poly that has agreement of lost T

$$
R(x) \equiv Q(x, P(x))
$$

For each pt of agreement (α_{1}, β_{i})
R had M roots at α_{i}.

$$
\mathcal{A} D<T M \Rightarrow R \equiv 0
$$

Idea: [topparty] Extend the above phon to the multiplicity setting.

$$
Q\left(x, y_{0}, y_{1} \ldots y_{x}\right) \in \mathbb{F}\left[x y_{1}, \ldots y_{x}\right]
$$

Design choice: $0 \leq r \leq 8-1$

$$
y_{1} \approx p^{(0)}(x)
$$

at of y_{c} in Q - (doc)
\#vars $\left\{\begin{array}{l}(1, d, d-1, \ldots, d-x) \text {-cot deg of } Q \leqslant D \\ \text { Cire for each monomial } x^{e} Y_{0}^{e_{0}} y_{1}^{e} \ldots Y_{x}^{e}\end{array}\right.$
Cir for each monomial $x^{e} y_{0}^{B} y_{1}^{G}$.
et $\sum_{j=0}^{k}\left(d_{j}\right) ~$
y
\#vars $\left.=\#\left\{\left(e, e_{1}, ., e_{n}\right) / \text { et } \Sigma\left(d_{j}\right)\right)_{g} \leq D\right\}$

- Estimate number of such monomials.

Hons: n. \#cons of " Q hos malt Mat pt $\operatorname{Cx} \beta$ " "

$$
\left(\alpha_{i}, \beta_{i}\right) \quad p^{(<8)}\left(\alpha_{i}\right)=\beta_{i}
$$

$$
R_{i}(x) \triangleq \sum_{j=0}^{b-1}\left(\Theta_{i}\right)_{j}\left(x-\alpha_{c}\right)^{j}
$$

Observe : If P agrees at data at $\left(\alpha_{1}, \beta_{2}\right)$

$$
P(x) \equiv R_{e}(x)\left(\bmod \left(x-\alpha_{0}\right)^{s}\right)
$$

$$
\forall_{j}<\text { p } p^{(j)}(x) \equiv R_{i}^{(j)}(x) \quad\left(\bmod \left(x-\alpha_{i}\right)^{\delta-j}\right)
$$

Pf: $P(x)=R_{i}(x)+Q(x)\left(x-\alpha_{c}\right)^{b}$
H., The following is a basis for $F\left[\underline{X} Y_{0} . . . Y_{x}\right]$

$$
\begin{aligned}
& B_{i}:=\left\{\left(x-\alpha_{i}\right)^{e} \prod_{j=0}^{r}\left(y_{j}-R_{c}^{(j)}(x)\right)^{e j}\right. \\
& \left.e, e_{0}, c_{n} \in \mathbb{Z}_{\underline{\underline{0}}}\right\}
\end{aligned}
$$

For each $P=$ an agreement $\left(\alpha_{1}, \beta_{1}\right)$

$$
R(x)=Q\left(x, p^{(\leqslant x)}(x)\right)
$$

At a point of agreement t

$$
p_{e}^{G}(x)=p^{Q}(x)\left(\bmod \left(x-x^{(-)^{(1)}}\right)\right.
$$

Reverse- Engineering, the multiplicity regarrement.
Coffer of $\left[\left(e, e_{0} \ldots e_{n}\right) / e+\sum(b-j) g<M T=B_{1}(M)\right.$ are zero
then $R(x)$ has multiplicity $\geqslant M$ at α.
For the monomial (Cars elf)

$$
\left(x-\alpha_{i}\right)^{e} \prod_{z=0}^{r}\left(y_{y}-R_{r}^{(i)}(x)\right)_{r}^{e}
$$

- maltiplicily $\left.e+\sum_{j=0}^{r} \operatorname{coj} j\right) g_{j}=t$
\#cons $=n \cdot \#\left\{\left(e, \varepsilon_{0} . . e_{x}\right) / e_{+} \sum_{j=0}^{x}\left(\sigma_{i j}\right) g<M\right\}$

Counting number of integral pts coder a hyperplane
k -dimensions
$\omega^{2}\left(\omega_{1} \ldots \omega_{k}\right) \in \mathbb{Z}_{\geq 0}$ weight rector.
ϵ - target

$$
\begin{aligned}
& N(\omega, t)=\left\{\left(a_{1} \ldots a_{k}\right) / \sum \omega_{i} a_{i} \leqslant t\right\} \\
& n(\omega, t)=1 N(\omega, t) \mid \\
& \text { Clam: } \frac{(t+k)}{\pi \omega_{i}} \leqslant n(\omega, t) \leqslant \frac{\left(t+\sum_{k} \omega_{i}+k\right)}{\pi \omega_{c}}
\end{aligned}
$$

Pf: For any integer l

$$
\begin{aligned}
& B\left(a_{1} \ldots a_{k}\right)=\left\{\left(x_{1} . . x_{k}\right) \in Z_{N_{1}}^{k} / \omega_{c} a_{c} \leq x<a_{i}\left(a_{c}+1\right)\right\} \\
& |B(a)|=\pi c_{c}{ }^{t_{i}} \\
& x \in P(t) \Rightarrow J \bar{a} \text { bf } x \in B(\bar{a}) \text { i } a \in N(\omega, t) \\
& \Rightarrow \int_{a \in N(\omega, t)} B(\alpha) \supseteq P(t) \cdots\left(\epsilon^{*}\right) \\
& n(c, t) \cdot \overline{\pi \omega_{i}} \geqslant\binom{ t+k}{k} \\
& P\left(t+\sum \omega_{i}\right) \supseteq \bigcup_{a \in N(\omega, t)} B(\dot{a})
\end{aligned}
$$

$$
n(\omega, t) \cdot \pi \omega_{c} \leqslant\binom{ t+\sum \omega_{c}+k}{k}
$$

Stop 1: Find a non-jero $Q \in \mathbb{F}\left[\begin{array}{|}1 & \ldots & \left.Y_{2}\right]\end{array}\right.$
(i) $\left(1, d_{1} d-1, \ldots, d-x\right)$-wt deg of $Q \leq D$
(ii) For each $c \in[r], Q$ when wortton in the basis B_{i} has O cocticients of B. (M).

Step 1 is guaranteed to find a Q \#cons $<$ rats.
Analysis a
Step 2: Let P be a polynomial that agrees w/ T points of the data.

$$
\left.R(x) \equiv Q<x, P^{(\leqslant x)}(x)\right) \quad(\operatorname{deg}(R) \leqslant D)
$$

has \geqslant TM roots a/ malfiplichies Hence if $D<T M, R \equiv 0$.

Step 2: Find every polynomial p of defied sit $Q\left(x, p^{(\leqslant x)}(x)\right) \equiv 0$.

Extracting P from $Q\left(X, Y \ldots Y_{r}\right)$
re. find $P(x)=\sum_{c=0}^{d} P_{c} x^{i}$ sit $Q\left(x, P(x), P(i)(x) \ldots, P^{(n)}(x)\right)$ $\equiv 0$.

$$
Q\left(x, p^{(\leqslant k)}(x)\right) \equiv 0
$$

Guess $P_{0}, P_{1}, P_{n} \in A_{q}^{x+1}$
lets food P_{r+1}

$$
\begin{aligned}
& Q\left(x, P^{(\leqslant x)}(x)\right) \equiv 0\left(\bmod x^{2}\right) \\
& Q\left(x, P_{0}+P_{2} x, P+2 P_{2} x, \ldots, \alpha \cdot P_{r-1}+\beta P_{r} x\right) \\
& \sim^{\widetilde{p}}, p^{\prime} \equiv 0\left(\bmod x^{2}\right) \\
& Q\left(\left(0, P_{0}, P_{1} \ldots\right)+x()\right) \\
& =Q(\tilde{P})+\left(\frac{\partial Q}{\partial x}\right)_{\tilde{P}} x+\sum_{j=0}^{2}\left(\frac{\partial Q}{\left.\partial x_{j}\right)_{\tilde{P}}} P_{j}^{\prime} x\right. \\
& \left(\bmod x^{2}\right)
\end{aligned}
$$

Can extract Pr if its accompanying coefficient is nonzero.

Accompanying Coefficient $=\left(\frac{\partial Q}{\partial V_{r}}\right)_{\tilde{p}}\binom{r+1}{r}$

Choose chor of helld loage enaugh st all the binomid coefficionts are nanzzero

$$
\frac{\partial Q}{\partial y_{r}}\left(x, p^{(\leqslant x)}(x)\right) \equiv 0
$$

Work w/ $\frac{\partial Q}{\partial y_{r}}$ instod of Q.

Carcaswom, harng. Fnd Q of forn

$$
A(x)+A_{0}(x) y_{0}+A(x) y_{1}+\ldots \quad+A_{\pi}(x) y_{n}
$$

(several steps Gecome easier).

