Today

- Maltplicity Codes- III.

Chivamate Setting

* Lisf-decoding
* Unbalanced Expander
css. 318.1
Coding Theory
Lecture 25 (2022-11-28)
hotructor: Prahlach Marsha.

Last time: List-decoding Chivariate Mulf.plicnk, Coder

Step 2: Extracting $P(x) \in \mathbb{F}[x]$ from $Q\left(x, y_{1}, \ldots, y_{n}\right)$ given $Q\left(x, P^{(s x)}(x)\right) \equiv 0$.

Idea: (c) Guess the frost few coefficients of P

$$
P(x)=\sum_{i=0}^{d} P_{i} x^{i}
$$

Guess $\quad P_{0}, P_{1} \ldots \quad P_{R}$.
(ii) Use Mensal lifting like procedure to obtain the remaining coefficients (if certain quanthes are nonjerero).

Let bee: P_{x+1} from $P_{1} \ldots$ P.

$$
\begin{array}{ll}
Q\left(x, p^{(k x)}(x)\right) \equiv 0 \\
Q\left(x, P(x), P^{(1)}(x), \cdots\right. & \left.P^{(x)}(x)\right) \equiv 0\left(\bmod x^{2}\right) \\
Q\left(x, P_{0}+P, x, P,+2 P_{2} x,\right. &
\end{array}
$$

Conce $P(x)=\sum_{c=0}^{d} P_{e} x^{i}$

$$
\begin{aligned}
P^{(j)}(x) & =\sum_{c=0}^{d}\left(i_{j}^{i}\right) P_{i} x^{(i j}=\sum_{c=j}^{d}\left({ }_{i j}^{i}\right) P_{c} x^{(-j} \\
& \left.=\sum_{c=0}^{d-j}\left(j_{j}^{+i}\right) P_{c+j} x^{i}\right)
\end{aligned}
$$

Apply raylor around the pont

$$
\begin{align*}
\Gamma= & \left(0, P_{0}, P_{1} \ldots \quad P_{r}\right)=\left(0, P^{(s \pi)}(0)\right) \\
Q(r)+ & \sum_{i=0}^{r}\left(\frac{\partial Q}{\partial Y_{i}}\right)(M) \cdot(i+1) P_{i+1} \cdot x+\left(\frac{\partial Q}{\partial x}\right)(\mu) \cdot x \\
& +x^{2} C \equiv\left(\text { mod } x^{2}\right) \tag{A}
\end{align*}
$$

Can infer P_{r+1} from (A) provided $\begin{array}{r}\left(\frac{\partial Q}{\partial Y_{r}}\right)(\mu)\left(\begin{array}{l}(s e r) \\ \\ \neq 0 .\end{array}\right)\end{array}$
Af $\frac{\partial Q}{\partial Y_{r}}\left(x, P^{(S x)}(x)\right) \neq 0$, fhen $\exists \alpha \in F_{E}$
(assoming $D<9^{\text {}}$)
s.t $\frac{\partial Q}{\partial Y_{r}}\left(\alpha, p^{(\leqslant \alpha)}(\alpha)\right) \neq 0$

And expand arcuind $\left(\alpha, p^{(\leqslant x)}(\alpha)\right)$ nstead

$$
\text { of } \mu=(0, p(3 x / 0))
$$

What about P_{k+r} from $P_{0, \ldots}$ P PeroT.
$-g o \bmod x^{k+1}$

$$
\begin{aligned}
& P^{(i)}(x)\left(\bmod x^{k+1}\right) \\
&=\sum_{i=0}^{d-r}\binom{r+i}{i} P_{r+i} x^{i}\left(\bmod x^{k+1}\right) \\
&=\sum_{i=0}^{k}\binom{x+i}{i} P_{r+i} x^{i}\left(\bmod x^{k+1}\right) \\
&=P^{(x)}(x)\left(\bmod x^{k}\right)+\binom{x+k}{r} P_{r+k} x^{k}
\end{aligned}
$$

Coefficient of P P_{r+k} in $Q\left(x, p^{(\leqslant x)}(x)\right)\left(\bmod x^{k r}\right)$

$$
\begin{aligned}
& =\left\{(\frac { \partial Q } { \partial Y _ { a } }) \left(x, P(x)\left(\bmod x^{k}\right)-p^{(1)}(x)\left(\bmod x^{k}\right)\right.\right. \\
& \text { 广. } \left.\left.P^{(k)}(x)\left(\bmod x^{k}\right)\right)\right\} \\
& \text { - (} \left.\begin{array}{c}
x+k \\
x
\end{array}\right) P_{a+1} x^{k} \\
& =\left\{\left(\frac{\partial Q}{\partial Y_{r}}\right)\left(0, p^{\left(S^{*}\right)}(0)\right) \cdot\binom{r_{r+k}}{r} \begin{array}{l}
\left.\operatorname{Cmod} x^{k+1}\right) \\
P_{r+k} x^{k} \\
\operatorname{Cmod} x^{k+1}
\end{array}\right)
\end{aligned}
$$

Can infer P_{r+k} if $\left(\frac{\partial Q}{\partial Y_{x}}\right)(r) \neq 0=\binom{r+k}{r} \neq 0$
Works as long as $\operatorname{char}(\mathbb{F})>\operatorname{deg}(P)=d$.

Parameter Setting:
(1). \#cons $<$ \#rars
(2) $D<T M$
-
Recall from labl lecture

$$
\begin{aligned}
& \left(\omega_{1} . . \omega_{k}\right) \in \mathbb{Z}_{0}^{2} \\
& M(\omega, t)=\#\left\{\left(a_{1} . . a_{k}\right) / \sum \omega_{i}, a_{i} \leqslant t\right\} \\
& \text { Lemma. } \frac{\left(\begin{array}{l}
t+k) \\
\pi \omega_{i}
\end{array} \leqslant M(\omega, t) \leqslant \frac{\left(t_{t}\left(\omega_{i}+k\right)\right.}{\pi \omega_{i}}\right) .}{}
\end{aligned}
$$

(1)

$$
\begin{aligned}
\text { \#vars }= & \#\left\{\left(e_{1} c_{0} \ldots, c_{x}\right) / e+\sum_{J=0}^{x}\left(a_{j}\right) \leq D\right\} \\
& \geqslant \prod_{\substack{x=0 \\
\prod_{x+2}\left(d_{i-j}\right)}}^{(D+r+2)} \geqslant \frac{D^{x+2}}{(x+2)!d^{x+1}}
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \text { \#cons }=n_{i} \#\left\{\left(e, e_{0} \ldots, e_{r}\right) / e+\sum_{j=0}^{n}(t-j) g<M\right\} \\
& <n \cdot \frac{\left(\begin{array}{c}
M+r i+2+ \\
r+2
\end{array} \sum_{j=0}^{n}\left(\delta_{j} j\right)+1\right)}{\prod_{j=0}^{n}(0 j)} \\
& \leq \frac{n \cdot(M+B)^{x+2}}{\left((x+2)!(B-x)^{x+1}\right.} \quad B=f(0, x)
\end{aligned}
$$

\#cons $<$ \#vars $\Leftrightarrow \frac{D^{x+2}}{(x+2)!d^{k+1}}>\frac{n \cdot(M+B)^{x+2}}{(x+2)!(6-x)^{x+1}}$ Satisfied if $\frac{D}{M+B}>\left(\frac{d}{\sigma-x}\right)^{\frac{x+1}{x+2}} \cdot \operatorname{nen}^{1 / x+2}=: A$

For every $\varepsilon \in 6,1$)

$$
\begin{aligned}
& M=\left\lceil\frac{2 B}{E}\right\rceil ; T=(1+E) A \\
& D=T M-1
\end{aligned}
$$

for this setting of parameters, we have

$$
\begin{gathered}
D<T M \\
\frac{D}{M+B}>A
\end{gathered}
$$

(1) 2 (2) are met.

List-decoding Radius:

$$
\begin{aligned}
1-\frac{T}{n} & =1-\frac{(1+\varepsilon) A}{n} \\
& =1-\left(\frac{d}{b-x}\right)^{\frac{x+1}{x+2}}\left(\frac{1}{n}\right)^{\frac{x+1}{x+2}}(1+\varepsilon) \\
& =1-\left(\frac{d}{8 n} \frac{b}{8-x}\right)^{\frac{x+1}{x+2}}(1+\varepsilon) \\
& =1-\left(\frac{b}{b-x} \cdot R\right)^{\frac{x+1}{x+2}}(1+\varepsilon)
\end{aligned}
$$

$\approx 1-R-\delta$ for appropercate chorce of $x=3$ (in terms of $R=\delta$).
\qquad
List.decoding $=$ Combinatorial Constructions

$$
\rho:[N] \rightarrow \Sigma^{D}
$$

$M=D \cdot 9 . \quad[M]=[D] \times \Sigma$
Construct
bupartite
groph
D-leff
regalar

$$
\Gamma:[N] \times[D] \rightarrow[M]
$$

$(m, i) \longmapsto\left(i, C(m)_{c}\right)$

Zero-errur list-recovery of $C \Rightarrow$ Expansion of Γ.
(L, R, E) is a (k, A)-exponder

$$
\forall S \subseteq L, \quad|S| \leq k \quad \Rightarrow \quad|\Gamma(S)| \geqslant A|S|
$$

Desred expansion $A>1+\delta$
Best possble expansion, $A \simeq D(1-\delta)$ (lossless expansion) where D- leff regularity.

Cndalanced Expander: $M \ll N$
Gurcurwami- Omans- Vodhan:
Vaviant Fobled-RS codes \rightarrow losskess unbolaneed expanders ca) deg - polylogn.

Kalev. TaShma
Multiplicity codes also soffice.

Thm $\forall \mathbb{F}_{9}, 6, d$ such $15 \leqslant 6+1 \leqslant d \leqslant \operatorname{chor}\left(\mathbb{F}_{8}\right)$ there exists an explicit aroph

$$
7: F_{q}^{d+1} \times \mathbb{F}_{q} \rightarrow F_{q} \times F_{q}^{d}
$$

which is a (K, A)-expander for every $k>$

$$
A=q-\frac{d(b+1)}{2}\left(q(k)^{\frac{1}{s+1}}\right.
$$

Tor any bet $\mathrm{W} \subseteq \mathrm{F}_{\mathrm{g}}{ }^{\text {S+1 }}$

$$
\angle I S T(W)=\left\{P \in \mathbb{F}^{d+1} / \mu(P) \subseteq W\right\}
$$

To prove expansion factor of A for sets of asset suffices to prove the following:

$$
\forall W \subseteq \mathbb{F}_{g}^{\text {St }} \text { B.t }|W| \leq A K-1 \Rightarrow \angle I S T(W)<K
$$

Step 1: Find a $Q\left(x, y_{1}, \ldots y_{s-1}\right)$ bit
(i) $\forall(\alpha, \bar{\beta}) \in W, \quad Q(\alpha, \bar{\beta})=0$
(ii) $(1, d, d-1, \ldots, d-(B-1))$-out deg of $Q \leq D$.

Step 1 works if $\# \operatorname{cons}=|W| \leq$ vars

$$
\text { \#vars } \geqslant \frac{\left(\frac{D+s+1)}{s+1}\right)}{\prod_{j=0}^{B-1}\left(d_{j}\right)} \geqslant \frac{D^{b+1}}{(s+1)!d^{b}}
$$

Choose $D>\left(d^{s} \cdot(W) \cdot(s+1)!\right)^{\frac{1}{s+1}}$

For every P bit $\Gamma(P) \subseteq W$

$$
\begin{aligned}
& R(x) \equiv Q\left(x, p^{(\operatorname{css})}(x)\right) \\
& \forall \alpha \in F_{9} ; \quad R(\alpha)=0 \quad D<q \Rightarrow R \equiv 0
\end{aligned}
$$

P satisfies $Q\left(x, p^{(<0)}(x)\right) \equiv 0$

We need to carefully find
$\#\left\{p / Q\left(x, P^{(\operatorname{cs})}(x)\right) \equiv 0\right\}$.

Recall Extraction of P from Q.

- Can extract if $J p t \alpha \in \mathbb{F}_{9}$ af

$$
\left(\frac{\partial Q}{\partial \gamma_{s-1}}\right)(\underbrace{\alpha, p^{(\alpha \alpha}(\alpha)}_{(\alpha, \beta)}) \neq 0
$$

W Solve (W, Q)
(1) $Q \in \mathbb{F}\left[\begin{array}{ll}x_{1} y_{\ldots} \ldots & y_{s+}\end{array}\right]$
(2) Let $s^{*}-6 e$ the loosest rat in [0...8-1] that Q depends on. If no such 6^{*} crises output $\infty \leftarrow \phi$
(3). $\mathscr{L}_{1} \leftarrow \phi$
(4) $W_{1} \leftarrow\left\{(\alpha, \bar{\beta}) \in W_{1}\left(\frac{\partial Q}{\partial \sigma_{j}}\right)(\alpha, \beta) \neq 0\right.$.
(5) For each $(\alpha, \bar{\beta}) \in W_{1}$ extract P from Q. Gil

$$
\text { (c) } p^{(\ll)}(\alpha)=\beta
$$

$$
\text { (ii) } Q\left(x, p^{(c)}(x)\right) \equiv 0
$$

If $M(P) \subset N$, add p to R,
(6) Set $W_{0} \leftarrow W \backslash W_{1}$
(7) $L_{0} \leftarrow \operatorname{Solve}\left(\frac{\partial Q}{\partial / r_{1}}, W_{0}\right)$
(8) Cutout $2,0 \%$.
-Bounding list-sire:
Clam: $|L| \leqslant \frac{|W|}{q-D}$
P: By induction on $(0,1,1,1$, tidy of Q.
By Induction $\left|R_{0}\right| \leq \frac{\left|\omega_{0}\right|}{9-D}$
Suffices for as to prove $\left|L_{i}\right| \leq \frac{\left|W_{i}\right|}{Q-D}$
Qum: Jor a given $P \in L_{1}$, how many $(\alpha, \beta) \in W$, give raise to \hat{T}.
every $\left(\alpha, p^{(<n}(\alpha)\right)$ of $\left(\frac{\partial Q}{d V_{1}}\right)\left(\alpha, p^{(\alpha)}(\alpha)\right) \neq 0$
gives rare to P.

$$
\operatorname{deg}\left(\frac{\partial Q}{\partial r_{3}}\left(x, p^{<\theta}(x)\right)\right) \leqslant D
$$

Hence, there one at $\operatorname{lecst}(q-D)$ nonzereap

$$
\text { of }\left(\frac{\partial Q}{\partial K_{s}}\right)\left(x, p^{(\operatorname{ses})}(x)\right)
$$

Hence $|G| \leq|W| / q-$,

