
CSS.318.1 Coding Theory 21 Nov, 2022

Problem Set 3

• Due Date: 9 Dec, 2022

• Turn in your problem sets electronically (LATEX, pdf or text file) by email. If you submit
handwritten solutions, start each problem on a fresh page.

• Collaboration is encouraged, but all writeups must be done individually and must include
names of all collaborators.

• Refering sources other than the text book and class notes is strongly discouraged. But if you do
use an external source (eg., other text books, lecture notes, or any material available online),
ACKNOWLEDGE all your sources (including collaborators) in your writeup. This will not
affect your grades. However, not acknowledging will be treated as a serious case of academic
dishonesty.

• The points for each problem are indicated on the side. The total for this set is 80.

• Be clear in your writing.

• Problems 3 and 7 are due to Venkat Guruswami while Problem 5 is due to Mrinal Kumar.

1. [Kakeya Sets] (4+2+2+2)

Let F be a finite field of size q. A Kakeya set in Fm is a set K ⊆ Fn such that K contains a
line in every direction. More precisely, K is a Kakeya set if for every y ∈ Fm there exists a
z ∈ Fm such that the line

Lz,y = {z + t · y|t ∈ F}

is contained in K.

A trivial upper bound on th size of K is qm and this can be improved to qm/2m−1. In this
problem, we will use the polynomial method to show a lower bound of qm/m!. More precisely,
we will show that

K ≥
(
q +m− 1

m

)
.

Suppose, for contradiction that this is not the case.

(a) Show that there exists a m-variate non-zero polynomial g of degree d ≤ q − 1 such that
g(x) = 0 for all x ∈ K.

Let gd be the homogenous part of degree d of g so that gd is non-zero and homogenous.

For any y ∈ Fm, we know that there exists a z ∈ Fm such that the line Lz,y is contained
in K. Consider the following univariate polynomial

Py,z(t) := g(z + t · y).

(b) Argue that Py,z is identically zero and hence the coefficient of td in Py,z(t) is zero.

(c) Show that the coefficient of td in Py,z(t) is exactly gd(y).

(d) Conclude that gd is identically zero, a contradiction.

2. [Linear LRCs] (15)
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(a) First, we will prove a general structural result about linear codes. Let C ⊆ Fn
q be a linear

code. Let i ∈ [n]. Prove that one of the following has to hold:

1. There exists v ∈ C⊥ such that i ∈ supp(v), ordering

2.

C = {(c1, c2, . . . , ci−1, α, ci+1, . . . , cn) : α ∈ Fq, (c1, c2, . . . , ci−1, ci+1, . . . , cn) ∈ C|[n]\i}

(b) Let C be an (r, d) LRC that is an [n, k, d]q code. Then, argue that for every i ∈ [n], there
exists a dual codeword v ∈ C⊥ with i ∈ supp(v) with supp(v) ⊆ Ri ∪{i}. (Recall that Ri

is the set of at most r values that ci can be recovered from)

(c) Using the previous part or otherwise, argue that any ci for any codeword (c1, . . . , cn) can
be recovered as a linear combination of values in cRi

3. [20 Questions] (15)

In the game of 20 questions, an oracle has an arbitrary secret s ∈ {0, 1}n and the aim is to
determine the secret by asking the oracle as few yes/no questions about s as possible. It is
easy to see that n questions are necessary and sufficient. Here we consider the variant where
the oracle has two secrets s1 and s2 in {0, 1}n and can adversarially decide to answer each
question according to either s1 or s2. That is, for a question f : {0, 1}n → {0, 1}, the oracle
may answer with either f(s1) or f(s2). Here it turns out to be impossible to pin down either of
the secrets with certainty, no matter how many questions we ask, but we can hope to compute
a small list L of secrets such that |L ∩ {s1, s2}| ̸= ∅. (In fact, |L| can be made as small as 2.)
This variant of twenty questions was apparently motivated by questions about internet traffic
routing.

(a) Let Enc : {0, 1}n → {0, 1}n̂ be a code such that every two codewords in Enc agree in at
least a 1/2− ε fraction of position, and that Enc has a polynomial-time (1/4 + ε, ℓ)- list
decoding algorithm. Show how to solve the above problem in polynomial time by asking
the n̂ questions {fi} defined by fi(x) = Enc(x).

(b) Recall (???) that if a q-ary code C ⊆ Σn of rate ρ is (δ, L)-list decodable, then ρ ≤
1 − Hq(δ, n) + logq(L)/n. Taking Enc to be such a code, deduce that n̂ = poly(n)
questions suffices.

4. [List decodable Codes vs Extractors] (15)

Given a code C : {0, 1}n → ΣD where |Σ| = q, we set N := 2n,M = q · D and associate the
elements of {0, 1}n with that of [N ] and the elements of [D]×Σ with that of [M ]. Define the
following function: Γ: [N ]× [D] → [M ] as follows:

Γ(x, i) = (i, C(x)i).

We think of the function Γ as specifying a D-left-regular bipartite graph ([N ], [M ], E) where
the ith neighbour of x ∈ [N ] is given by Γ(x, i).

For any set T ⊂ [M ] and ε ∈ [0, 1), define

ListΓ(T, ε) :=

{
x ∈ [N ] : Pr

i∈[D]
[Γ(x, i) ∈ T ] > ε

}
.

(a) Prove that C is (1− 1/q − ε, L)-list-decodable iff for every r ∈ ΣD, we have

|ListΓ(Tr, 1/q + ε)| ≤ L, (1)

where Tr := {(i, ri) : i ∈ [D]}.
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(b) A bipartite graph ([N ], [M ], E) is said the be (k, ε)-extractor if for every set X ⊆ [N ] of
size at least 2k, we have that the distribution Γ(UX , U[D]) obtained on [M ] by picking a
uniformly random element x of [N ] and independently a uniformly random element i of
[D] and outputting Γ(x, i) is ε-close to the uniform distribution1.

Suppose the code C satisfied that for all T ⊂ [M ], we have

|ListΓ(T, µ(T ) + ε)| ≤ L, (2)

where µ(T ) := |T |/M ((1) is exactly (2) but restricted to sets T of the form Tr for some
r ∈ ΣD. Note µ(Tr) = 1/q). Then show that the corresponding bipartite graph given by
Γ is a (log2 L+ log2(1/ε), 2ε)-extractor.

5. [Additive-folded Reed-Solomon Codes] (15)

In this question, we will see a list decoding algorithm for codes which are closely related to
Folded Reed-Solomon codes and multiplicity codes. We have parameters n, k, s and we work
over a field F such that |F| is a prime number larger than sn. The message space is again the
space of univariate polynomials of degree less than k over F. The encoding of a polynomial
f ∈ F[x] is given by the function Enc : F[x] → (Fs)n, defined as follows:

Enc(f) = (f(s · i), f(s · i+ 1), . . . , f(s · i+ s− 1))
n
i=1 .

In other words, the encoding outputs an n length vector where each coordinate is an s-tuple
of rational numbers, and the ith coordinate contains the evaluation of f and on inputs si, si+
1, . . . , si+ (s− 1).

We will now see a version of list decoding for these codes very closely related to the algorithm
that we saw for multiplicity codes. The main difference will be that we choose the polynomial
Q such that the degree degYi

(Q) ≤ 1 (this is the key difference between the Guruswami-Wang
and Kopparty algorithms for list-decoding).

As an input, we have a received word b ∈ (Fs)n, where for every i ∈ {1, 2, . . . , n} the ith
coordinate of b is denoted by bi = (bi,0, . . . , bi,s−1). Ideally, we would like to recover all
polynomials f ∈ F<k[x] such that Enc(f) and b have large agreement. But here, we will just
output a linear space of small dimension containing all such polynomials f .

(a) What is the minimum distance of this code, as a function of n, k, s, i.e.

min
f,g∈F[x],deg(f),deg(g)<k,f ̸=g

∆(Enc(f),Enc(g)) .

?

(b) Let m < s be a parameter. As a first step of the decoding algorithm, show that there is a
non-zero polynomial Q(x, y0, y1, . . . , ym−1) of the form Q := Q0(x)y0+. . .+Qm−1(x)ym−1

such that the following conditions hold.

• Degree of Q is at most D + 1, where D = n(s−m+1)
m

• For every i ∈ {1, 2, . . . , n}, j ∈ {0, 1, . . . , s−m},

Q0(si+ j)bi,j + . . .+Qm−1(si+ j)bi,m−1+j = 0 .

1Two distributions P and Q on the set [N ] are said to be ε-close if for all T ⊂ [M ], we have

| Pr
m∼P

[m ∈ T ]− Pr
m∼Q

[m ∈ T ]| ≤ ε.
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(c) If f is a polynomial in F[x] of degree less than k such that there exists an i ∈ {1, 2, . . . , n},
with

bi = (f(s · i), f(s · i+ 1), . . . , f(s · i+ s− 1))

then, conclude that the univariate polynomial

R(x) := Q (x, f(x), f(x+ 1), . . . , f(x+m− 1))

has at least s−m+ 1 distinct roots in F.
(d) Conclude that if the number of coordinates i, where b and Enc(f) agree is at least D+k−1

s−m ,
then R(x) must be identically zero.

All that remains now for algorithmic list decoding of these codes is to be able to extract all
polynomials f of degree less than k from the polynomial Q satisfying

Q0(x)f(x) +Q1(x)f(x+ 1) + · · ·+Qm−1f(x+m− 1) = 0.

Observe first that the set of solutions forms a linear space.

(e) Argue that the dimension of the space of solutions, i.e., polynomials f(x) of degree less
than k such that the polynomial

R(x) = Q (x, f(x), f(x+ 1), . . . , f(x+m− 1))

is identically zero can be upper bounded by m− 1. (Hint: an appropriate change of basis
might help in the dimension counting).s

6. [Exponential lower bounds for 2-query linear LDCs] (3+4+3+5)

In this problem, we will prove an exponential lower bound for 2-query linear locally decodable
codes.

Recall that a code C : {0, 1}k → {0, 1}n is said to be (q, δ, ε)-locally decodable if there ex-
ists a (probabilistic) decoder D such that on oracle access to any y ∈ {0, 1}n that satisfies
∆(y, C(x)) ≤ δn, we have

• ∀i ∈ [k],Pr [Dy(i) = xi] ≥ 1
2 + ε.

• D makes at most q probes into y on any input i and internal random coins.

For fixed c ∈ R, ε ∈ (0, 1) and integer 2, we say that C : {0, 1}k → {0, 1}n is a (q, c, ε)-smooth
code if there exists a probabilistic oracle machine A such that:

• In every invocation, A makes at most q queries non-adaptively.

• For every x ∈ {0, 1}k and and for every i ∈ [k], we have

Pr[AC(x)(i) = xi] ≥
1

2
+ ε.

• For every i ∈ [k] and j ∈ [n], the probability that on input i the oracle machine A queries
index j is at most c

m .

(a) Show that if C : {0, 1}k → {0, 1}n is a (q, δ, ε)-locally decodable code, then C is also a
(q, q/δ, ε)-smooth code.

Let C : {0, 1}k → {0, 1}n be a linear code. Since C is linear, we might wlog. assume

that there exist a1, . . . ,an ∈ {0, 1}k, such that for all x ∈ {0, 1}k and j ∈ [n], we have
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C(x)j = ⟨aj ,x⟩. For simplicity, let us assume that all the ai’s are distinct. Suppose C
is a (2, δ, ε)-locally decodable for some δ, ε ∈ (0, 1). Let us further make a simplifying
assumption that the local D (corresponding to C) makes exactly 2 probes every time and
uses both the probes. It follows from 6a that C is (2, 2/δ, ε)-smooth.

Construct recovery graphs {Gi = ([n], Ei)}ki=1 based on the smooth decoder A for C as
follows: the vertices of all the k graphs Gi’s are [n]. Two vertices j, j′ ∈ [n] are connected
in Gi if

Pr[AC(x)(i) = xi|A queries C(x) at indices j and j′] >
1

2
.

(b) If G is (2, c, ε)-smooth, show that for each i ∈ [k], the graph Gi has a matching Mi ⊆ Ei

of size at least εn/c.

(c) Argue that for each i ∈ [k], if (j, j′) ∈ Ei then ei ∈ span{aj ,aj′}. It then follows from our
assumption (“the local D makes exactly 2 probes every time and uses both the probes”)
that aj + aj′ = ei.

[For extra credit, do not make this simplifying assumption and modify the following part
suitably to still yield an exponential lower bound.]

We can thus identify the vertices [n] with the set A = {aj |j ∈ [m]}, a subset of the

vertices of the hypercube {0, 1}k and the edges (j, j′) with the corresponding edges in the
hypercube. Consider the graph G = ([n], E1∪· · ·∪Ek). From the above identification, we
get that G is a subgraph of the hypercube. Furthermore, from 6c, we get that the k edge-
sets Ei are all distinct. Hence, from 6b, we have |E(A,A)| ≥

∑k
i=1 |Ei| ≥ k · (εn/c) =

εδkn/2. Here, E(A,A) refers to the edges in G both of whose endpoints in is A.

(d) Since G is a subgraph of the hypercube, use the upper bound on E(A,A) to conclude
that n ≥ 2εδk.

This proves an exponential lower bound on the size of any 2-query linear LDC (provided
all the codeword bits are distinct, ie. a′js are distinct). For extra credit, see if you can
remove this assumption of distinctness.

7. [Not for submission][Algrebraic-Geometric codes] (15)

We have mentioned objects called algebraic-geometric codes, that generalize Reed-Solomon
codes and have some amazing properties, a few times in the course. The objective of this
exercise is to construct one such AG code and establish its rate-distance tradeoff.

Let p be a prime and q = p2. Consider the equation

Y p + Y = Xp+1

over Fq.

(a) Prove that there are exactly p3 solutions in Fq × Fq to the above equation. That is, if
S ⊆ F2

q is defined as

S = (α, β) ∈ F2
q : βp + β = αp+1

then |S| = p3

(b) Prove that the polynomial f(X,Y ) = Y p+Y −Xp+1 is irreducible over Fq. Suggestion:
One approach is to use the Eisenstein criterion (feel free to look this up), considering
f(X,Y ) to be a polynomial in X with coefficients from Fq(Y ).

(c) Let n = p3. Consider the evaluation map ev : Fq[X,Y ] → Fn
q defined by

ev(f(X,Y )) = (f(α, β) : α, β ∈ S)
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where S is defined as in part (a). Argue that if f ̸≡ 0, and is not divisible by Y p+Y−Xp+1,
then ev(f) has Hamming weight at least n−deg(f)(p+1), where deg(f) is the total degree
of f . Hint: You are allowed to use Bézout’s theorem, which states that if f, g ∈ Fq[X,Y ]
are nonzero polynomials with no common factors, then they have at most deg(f) deg(g)
common zeroes.

(d) For an integer parameter ℓ ≥ 1, consider the set Fℓ of bivariate polynomials

Fℓ = {f ∈ Fq[X,Y ] : deg(f) ≤ ℓ,degX(f) ≤ p}

where degX(f) denotes the degree of f in X. Argue that Fℓ is an Fq-linear space of

dimension (ℓ+ 1)(p+ 1)− p(p+1)
2 .

(e) Consider the code C ⊆ Fn
q for n = p3 defined by

C = ev(f) : f ∈ Fℓ.

Prove that C is a linear code with minimum distance at least n− ℓ(p+ 1).

(f) Deduce a construction of an [n, k]q code with distance d ≥ n− k + 1− p(p− 1)/2.

Remark: Reed-Solomon codes have d = n − k + 1, whereas these codes are off by
p(p−1)/2 from the Singleton bound. However they are much longer than RS codes, with
a block length of n = q3/2, and the deficiency from the Singleton bound is only o(n).
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