Today | CSS. 330.1 : PCP = PCPs Course | Limits of Approximation $-$ htroduction $\Bigg|$ Lecture 01 (2023-01-27) $-$ PCP. $\sqrt{ }$ Views Instructor: Prahladh Harsha - FGLSS Reduction

Administerina: Fri - 9:30- 13:00 (30-45 min break) Grading Problem Sets ³ ⁴ ⁶⁰¹ Class Participation 20% Paper Presentation / Project - 20% No final exam

PCPs: 3 de codes.

^I Limits of approximation algorithms ² Proof Checking

Today's lecture: Statement of PCP Theorem C viewpoints)

Next 4-5 weeks: Proof of the PCP

Hecter

Subsequently Various extensions

Limits of Approximation Algorithms Why Approximations? NP complete problems cope of hardness - Heuristics: - Approximation Algorithms. $\frac{1}{\sqrt{1-\frac{1}{1-\$ 1) Vertex Cover: Instance: Undirected graph G= (V, E) $\omega: V \rightarrow \mathbb{R}_{\geq 0}$ (possibly) Output: $W \subseteq V$ - cover Cre, H Czy)EE, rews or vew) Goal: Output a W of minimal ast $Cc \geq \omega(r)$ is more jud. NEW

Vertex Gren 18 NP-hard. ω . - unweighted case. Claron: If M is a maximal matching in G. then $W = \frac{3}{2}$ VEV/ris an endpoint of a
edge in UM3 satisfies W- vertex coven.

 $|W| \leq 2$ opt vertex cover.

MAX3SAT: Instance ⁿ Boolean variables δ 9, known α m- Clouses of width 3 $G, G \ldots$ G_m C_{ϵ} = α_{ϵ} $V\alpha_{\epsilon}$ $V\alpha_{\epsilon}$ Output: Assignment a: In 1981 Goal: Maximine # Clouses satisfied G MAX 35AT is NP-ford. Approximation Algorithm: Random assignment C- clause as k variables (distinct) \mathbb{P}_{p} $\left\{\begin{array}{ccc} \mathcal{L} & \mathcal{L} & \mathcal{L} \\ \mathcal{L} & \mathcal{L} & \mathcal{L} \end{array}\right.$ satisfied $\left\{\begin{array}{ccc} & - & \mathcal{L} - \mathcal{L} \\ & & \mathcal{L} \end{array}\right\}$ G ... G_{m} - m clause $\mathbb{E}\left[\frac{H}{2\pi}\right]$ clauses satisfied $\mathbb{E}\left[\frac{H}{2\pi}\right]$ $\mathscr{J}^{\epsilon[\omega]}$ where $6 = # \text{mass}(5)$ $=\frac{1}{g}m$.

Easy exercise to derandomge the above algorithm Approximation Algorithm. $(\alpha \in C9)$ I Optimization Problem Maximization ^a Minimization) $p \rightarrow A \rightarrow A(p)$ $x \cdot OPT(p)$ < $A(q) \le OPT(p)$ (Maximiyator) $OPT(p) \leq A(p) < L$ OPT (p) (Minimposo, How good can ae approximate a problem? FPTAS Folly polynomial time approx scheme fee (0,1), There is a CFE/-approx ab runs in time $pdf(f, |E)$. eg KNAPSACK \odot PTAS: $\text{free}(0,1)$, there is a CI-8/-apprx alg leans in time poly Cn eg: MIN-MAKE SPAN

APX Constant factor approximation eg Vertex Cover, MAX3SAT, MAXCUT log APX log factor approximation Eg SET COVER poly APX poly factor appax eg CLIQUE Chromate Number Queston: Given a problem what is the best approximation one con Work ^w ^a specific problem MAX3SAT Vertex Cover. Food VC of minimum.enc $VERTEX-COVERR = $\frac{S}{C}C, R$ / Ja vertex cover$ $WCVC$) \leq $IW| \leq k$ (1) VERTEX-COVER - decision problem off answer Equivalent to the original problem 3 SAT & VERTEX-COVER.

Similar to above Decision problem counterpart for " a approximating MAX38AT" Cap Problems:
(YES, NO) = fo,17^{*} (Language) $(ESS, NO) \subseteq \{0,1\}^*$

Cij YESONO = β

(XESONO = β

(YES)NO) Cij YESONO = β $\sqrt{25}$ $\frac{D_{00}}{C_{00}}$ $\frac{1}{\sqrt{20}}$ Gap problem corresponding to diapproximation $(\alpha \in C_1)$ G_{α}^* MAX3SAT = (YES, NO) $YES = \{C\varphi, k\} / \varphi$ & a 3CNF formula F an assignment satisfying $\geq k$ clauses } $NO = \frac{1}{2} (p, k) / p$ is a sCNF formula $2f$ assignments $\lt \alpha k$ clauses are satisfied Proposition: f de Co,1) α d-approximation alg bi MAX3SAT exists $\frac{1}{2}$ ^F ^a ptime alg that solves gap MAX SAT

 $\overline{Pf}: (1)$ Suppose A is d-opper alg to YAKI5A ($B =$ O_0 input $\langle \varphi, k \rangle$ $1.$ Ran A on p 2 let $k = M(p)$ 2. Accept \mathcal{A} $\mathcal{A}' \geq \alpha k$

 $Clarm:$ B solves gap^{*} - MAX3SAT.
Pf: (φk) \in YES. (pk) \in YES . p OPT $(p) \ge k$ $F)$ k = ACP) \Rightarrow α OPTCp) \Rightarrow α k $=$ B accepts \circ $(p, k) \in N$ $\left(\begin{array}{cc} \nabla \end{array} \right)$ opt $\left(\phi \right)$ < αk =) k' = $A C \varphi$ \leq φ PT $C \varphi$ \leq αk ϵ) B rejects

Suppose ^B solves gapL MAX3SAT

 $A = \n\sqrt[n]{a}$ aput φ 1 Ron B on $\langle \varphi, \iota \rangle, \langle \varphi, \iota \rangle, \langle \varphi, \iota \rangle$ 2. Let k^* max $\{k / 8C$ < φ $k)$ = ac $\}$ 3 Output ak^{*}

 B rejects $\langle p, k^* + l \rangle \Rightarrow \langle p, k^* + l \rangle \notin YES \Rightarrow \text{OPT}(p) \leq k^*$ α ccepts $\langle \varphi \overrightarrow{k} \rangle$ => $\langle \varphi \overrightarrow{k} \rangle$ ENO => OPT(p) $\geq \alpha \overrightarrow{k}$

le, α OPT (E) \leq of k \leq OPT (E) Hence, A is an d-opproximation algorithm On: What is the hardness of gap-MAX3SAT PCP Theorem: J $\alpha \in (0,1)$ and a poly fime deterministic redn R from SAT to $992^{\frac{t}{\alpha}}$ MAX35AT ie_j $\psi \in SAT = \Re(z\psi) = \langle \varphi \kappa \rangle \in \gamma ES$ $\psi \notin SAT \implies R(\psi) = \langle \varphi, k \rangle \in NO.$ C σ : \overline{J} on the same α as in the above them there is no α - apprex for MAX35AT un less $NP = P$ gap - 19AX35AT $YES = \frac{1}{2} \langle \varphi \rangle / \varphi$ is a sCNF formula $z \propto \cos 34T$ $NO = \frac{2}{\sqrt{9}}$ p is a 3CNF formula every assignment satisfies less than dm clauses?

PCP Theorem I: J x E CO, 1) and a poly time deterministic reads R from SAT to $gap - MAX3SAT$ r , $\psi \in SAT$ =) $R(y) = \varphi$ $\in YES$ $\gamma \notin SAT$ => $R(\gamma) = \varphi$ $\in \mathcal{N}O$

Part 2: Proof Checking. NP: Proof-venification newpoint of NP. A language LENP, it there exists
a deterministic venition V and two polynomial E, m st Completerress. $rac{200}{x+1}$ $x\in L, \Rightarrow \exists \overline{x}, \exists \pi \models m(\exists x!)$
 $V(x;\overline{x}) = acc$ Course in time $f(x) = \frac{1}{\sqrt{x}} \int \frac{1}{m(\omega)}$

Soundness:
 $f(x) = \sec j$
 $f(x) = \sec j$

Various varionts of this proof verification Viecopoin - gandomiged
J - interaction as perover rosted of rust - read only tew locations of proof Led to notions Interactive Proofs (IP=PSPACE) Loro knowledge Malhprover (rherachie Proofs (MIP=NEXP) PCP Theorem. Restaucted notion of ventrer. \mathcal{F}_{σ} $\mathcal{H}, \varrho, m, t : \mathbb{N} \rightarrow \mathbb{N}$ an (κ, ϱ, m, t) -restricted verifier V is a randomized algorithm that operates as follows C) V has exploit access $\not\sim~$ (a) Torses $R \in \{6, 1\}^{\mathcal{R}(121)}$ $\frac{1}{2}$ Defermes $Q = Q(x; R) \leq [m]$ Crandomyrd $\begin{array}{lll} & \mathcal{E}\leftarrow & |\mathbb{Q}| = & 2(\mathcal{I}\mathcal{Z})\\ & \mathcal{E}\leftarrow & \mathcal{E} \leftarrow & \mathcal{E} \$ $C = C(x; R)$
Victoria in frome $f(kx)$.

- V has implient foracle access to proof π of length m Reads $\pi|_{Q}$ and acc/req based on $C(\pi|_{\mathbb{Q}})$
Output is conten as Complexity closs AGUST WON PCP_{CIB} $[9,9,75]$ C, B : $N \rightarrow$ C, I $c(c) \geqslant scc)$, $r \in N$ $L \in PC_{CS}$ (x, q, m, t) of J (seg m, f) -seestmeter verifien. such that Completeness. $x \in L = \int J \pi / \pi / \epsilon m (x)$ $P(x,y) = \frac{1}{2}$
R = {3} $P^{\text{e(kx)}}$ Soundness $x\notin \angle =)$ $\forall x$, $|x| = m(|x|)$ $\mathcal{P}_{\mathcal{R}}$ $\left(\sqrt{\frac{\pi}{x}}, \mathcal{R}\right) = \alpha \alpha \right| < 8(\alpha).$

Remarks: (1) It E, m= pdy(1x1), we deep these pattameters.

 (2) $P = PCP_{10}$ $(0, 0)$ $NP = PC_{10}^p \{O, pdy\}$ $BPP = PCP$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ (3) $C \in C$ ⁷ C=1- perfect completeness. (4) Above det is non-adoptive delp Can also define adaptive version) PCP Theorem I: J Q $\in \mathbb{Z}_{>0}$ 2 $\alpha \in (0,1)$ $H L G NP.$ J c $L \in PCP_{\text{out}}$ $Lebqn, Q$ $x \in \angle$? xe 4 \mathcal{Q} $\frac{1}{\pi}$ deterministe (V $\frac{1}{\sqrt{2}}$ $\sqrt{\lambda}$ Guns in time grandomine 6 (acl))

Observation: PCP Theorem $I = PCP$ Theorem I

Cal PCP Theorem I PCP Theorem I P_1 Suppose J a redn P_2 from SAT to $g_{\alpha\beta}$ -MAX3SAT Need to construct a restricted verites for every language ^L in NP $\begin{array}{ccc} \begin{array}{ccc} \begin{array}{ccc} \begin{array}{ccc} \end{array} & \begin{array$ $x \mapsto \gamma \mapsto \varphi$ ^V On input ^x ^a ^R $1.$ Run $\rho(x)$ to obtain 3CNF \tilde{z} Expect 2 Use R to pick a reandom $\frac{a}{b}$ proof $\frac{x}{c}$ clause $\frac{c}{d}$ $\frac{a}{c}$ the assignment
for ρ^* 3. Set $\varrho = \gamma$ ars of ζ tor p" C - predicate C

 $x \in \angle$ =) $\phi \in \angle$ =) $\exists \pi$, $\frac{P}{R} \Big(V^{\pi}(x; R) = occ \Big[\frac{1}{2} \Big]$ $xd\angle$ =) OPT (p) < am =) $\not\vdash \pi$ $\mathbb{R}/V^{\prime}(x;\mathcal{R})$ = are \mid < are

b). PCP Thesem $1 \Rightarrow PCP$ PL SAT $\frac{1}{\sqrt{6}}$ $\frac{1}{\sqrt{6}}$ poly verifies $\sqrt{}$ Construct a reduction from SAT to gap MAX35 AT On input of \vec{r} For each $R \in \{6, 1\}$ cly(pl let h_{R} be the predicate of 2. Construct Van Cl are proof bin I be additional
P almost what we want except that I is not a SCNF, but rather α $9 - C57$ Observation: For every 9, there exist $k(z)$, $k(z)$ \overline{z} for every \hat{m} \hat{h} : \hat{z} o, $\hat{\beta}^2$ \rightarrow \hat{z} $\hat{\alpha}$ $\hat{\beta}$

there is a $3CNF$ formula φ of

 $k(q)$ clockes $9 + l(9)$ variables st $h(x) = 1$ = $3xe{f01}^{l(9)}$
 $h(x) = 0$ = $7xe{f01}^{l(9)}$, $p_1(x, z) = 0$ Modify 2 to the following 2. Construct $\overline{\mathcal{D}} = \bigwedge_{\mathcal{D}} \mathcal{P}_{h_{\mathcal{R}}}$

 $\varphi \in \mathcal{S}AT = \int \oint \in \mathcal{S}AT$ $\rho \notin \text{SAT}$ =) $\nvdash \pi$, $P_R \left[h_R(\pi_{\mathcal{R}_R}) = 1 \right] < \alpha$

 \overline{Hx} any \overline{x} . # satisfied danses in I

 $\leq \alpha \cdot 2^R \cdot k + (1-\alpha) \cdot 2^R (k-1)$ = 6.2^{R} $(\alpha + (-\alpha)/(1-\frac{1}{k}))$ - $2^{R}(1-(1-\alpha)\frac{1}{6})$ $\triangleq k \cdot 2^R \stackrel{\sim}{\alpha}$ $\cancel{\Delta}$

Inapproxima Gility of Clique L'Jerge Coldwaren -Lorosy-Satho-Sededy $\alpha \in (0,1)$ gaz-CLIQUE $YES = \frac{2}{5}25.5$ (5, k) T a clique of sign $\geq k$ in G NO= {<Gb) / Every clique in G is <ark} Lemma: $\angle \in PC_{cs}^p$ $\left\{ n, \frac{p}{p} \right\}$ then there is α $q2^{k}$ - from exected from from \angle to $g_{\alpha\beta_{6f}}$ -CLIQUE. Con: J & E (O,1), & approximating CLIQUE is NP hard. (of PCP Thost Lemma) P x y y y z z z z z z a restructed voutrer $\left(\begin{matrix}C_{x},&\&&\end{matrix}\right)$ G_x : Venhoes = $\{PR, V_{rev}\}\ / \ RE \{P, P\}^{R(hx)}$
 $V_{rev} \in \{P, P\}^{P(hx)}$
 $\cong 2^R \times 2^R$

 $\bigcup_{i=1}^n\bigg(\bigg)$ $\left(\frac{1}{\sqrt{2}}\right)^{2}$ weak $(R_{1}, V_{1}e\omega_{1}) \sim (R_{1} V_{1}e\omega_{2})$ Edge8: If \vec{r} (R, View,) are accepting views f on Goth $c = 122$ Cre C_{R_i} $(C_{rev_i}) = 1)$ (ii) Vices, & Vices, must be consistent. $\bar{x} \in \angle$ =) $\mathbb{R} \int_{R} V^{\pi}(x; R) = acc^{-1} \geq C$. $W = \{CP, \pi_{Q_R}\}\ \Big/ \ \mathcal{R} \in \{0, 1\}^{\mathcal{H}(201)}$ $C_R(\pi|_{\mathcal{Q}_A}) = \text{acc}$ $|W|$ > $c.2$ $x \notin L$ =) If W is a clique of size s^2 $J \pi$, P_{κ} $\left[\sqrt[n]{(x;\kappa)} = \arccos \right] \ge \kappa'$ (by constructing π by securing together
all the consistent views in w) Hence, $s' < s$ Icy any dique in 6 is of eye <8.29.

Reduction
 $x \mapsto \langle G_x, C^x \rangle$ SAT $\rho P_{H} - CL/QUE$ Improving the Impproximability. $\begin{array}{lll} \mathcal{D} & & \mathcal{PCP}_{\mathcal{C},\mathcal{B}} \ \mathcal{D} & & \mathcal{D} & \mathcal{C} & \mathcal{D} & \mathcal{C} \ \mathcal{C} & & & \mathcal{C} & \mathcal{B} & \mathcal{A} \ \mathcal{C} & & & \mathcal{C} & \mathcal{B} & \mathcal{A} \ \mathcal{C} & & & \mathcal{C} & \mathcal{B} & \mathcal{B} \ \mathcal{C} & & & \mathcal{C} & \mathcal{B} & \mathcal{B} & \mathcal{B} \end{array}$ SAT $\in PCP_{1,\alpha}$ [clogn, Q] $\subseteq PCP_{1,\alpha}$ [kclogn, kQ] Ca: + xe CO,1), gap-CLIQUE 18 NP-hard. (2) By using randomness-efficient repetition
(walk on an expander graph)
 $PC_{1,1}^p \not\subset q, q \not\supseteq C_{1,2}^p \not\subset PC_{1,2}^p$ (red(2), kg] Con: J SECOI), gopper-CLIQUE 18 NP-hard. 3 Pecycles querres. Thm [Has, $NZ\int K\epsilon\epsilon(c, l)$, gopy- ϵ -CLIQUE IS