Today

- Low Degree Destroy
* Rebimfeld-Sudan
* Palistchuk-Sprearmon

CSS. 330.1 : PCP
Limits of Approximation Algorithms
Lecture O3 (2023-2-10)
Instructor: Prahlodh Flarsha

Last time
Linearity Testing C Constontquexy PCP (booed).

+ : Constant. query
- Rate (Blowup) Exponential

QuIn: Are there properties which ane locally. testable Gut a/ morse polynomial rate?

Low. Degree Festoon:
FF - field (foils held).
m - dimension.
$f: \mathbb{F}^{m} \rightarrow \mathbb{F}$

$$
\begin{aligned}
& f: \mathbb{F}^{m} \rightarrow \mathbb{F} \\
& \begin{aligned}
& f\left(x_{1} \ldots x_{m}\right)- \\
& \text { of motynomial of degrice } \\
& \text { NFT-Y in each } \\
& \text { varroble }
\end{aligned}
\end{aligned}
$$

Low- dearee:
Iodividual Degree $\forall\left(\in[m], d_{x_{i}}(f) \leq d\right.$
Total Degree: For every monomial

$$
\begin{aligned}
& \text { (r.t } a_{42} \ldots \operatorname{con}^{\neq 0} \text {) } \\
& c_{1}+\varepsilon+\ldots+c_{n} \leqslant d .
\end{aligned}
$$

Irput: $f: \mathbb{F}^{m} \rightarrow \mathbb{F}$ (specifed as an orocle)
Test: ${ }^{f}$, Random cans R
2. $Q \leftarrow Q(R, \mathbb{F}, m, d)$
3. Pead f on Q
4. Accept if "f/Q is a volid new"

Completeness: f-low-degreen $\Rightarrow P_{R}[$ Test acc $]=1$
Permark: All tests stwdied, the above is a charact-err, pation of 'low-degree ness'

Soundnes6: $\exists \delta_{0}, \forall \delta \leq \delta_{0}$

$$
\begin{array}{r}
\text { Pri }\left[\text { Test } t^{\prime} \text { acc] } \geqslant 1-\delta \Rightarrow f \text { is ols)-close } 6\right. \\
\text { ceng bow-a }
\end{array}
$$

Qr: How large. is o!?
(a). Mulfilineore potynomials

SBabal Fortrow
Babai - Fritnow-Lund (MIP=NEXP)
Ferge-Lovarg-Goblwabser-Safra. Sjegedy

C6) Tondrudual Degree
Arora- Satrea ì $2, \delta_{0}=O\left(\frac{1}{\mathrm{~m}}\right)$
Polistotict-Spretmon 34: Clean Aroolysis.
C) Tofal Degree:

Pubinfeld- Sodan iv: $\delta_{0}=O\left(\frac{f}{\alpha^{2}}\right)$
Arora-Lund-Motwan, -Scolon- Spegedy '12: $\underbrace{m}_{\text {Key ingredtent } m}=O(1)$
Fried/-Sudon is: $\delta_{0}=1 / 8$.
Arorea-Sudan 'g6: $\delta_{0}=1$ sobl (m,d, $\frac{1}{1 n+1}$)
Paz. Satrara '96

$$
\begin{equation*}
\text { [Pr[Tesf }] \geqslant \varepsilon \Rightarrow \operatorname{agr}(f, P(m, d)) \geqslant \varepsilon-p a y(\operatorname{mos} d) \tag{1}
\end{equation*}
$$

Today: Rubinfeld-Sudon Toto- degree test

Chorectesigation for low degree ness
Convarrate: $\quad f: \mathbb{F} \rightarrow \mathbb{F}$

$$
\begin{gathered}
f=\text { of degree } \leqslant \alpha . \quad \operatorname{char}(\mathbb{F}) \geqslant d+2 \\
\forall x, h \in F, \sum_{c=0}^{\pi / 1} \alpha_{i} f(x+i h)=0
\end{gathered}
$$

$$
\text { where } \alpha_{i}=\binom{d+1}{i}(-1)^{i+1}
$$

Multivoerate: $\quad f: \mathbb{F}^{m} \rightarrow \mathbb{F}$

$$
\begin{gathered}
f \text { is of degree } \leq d \quad \quad(\operatorname{char}(\mathbb{F} \mid)>d+2) \\
\forall \alpha, h \in \mathbb{F}^{m}, \sum_{i=0}^{\mathbb{Z}} \alpha_{i} f(x+i h)=0 .
\end{gathered}
$$

DS: The above is a robust characterisation'

Theorem [Rubinfeld-Sudan] (char (tt)>d+2)
$J \delta_{0}=\frac{1}{((+1)(2 d+5)}, \quad \forall \delta<\delta_{0}$

$$
P_{x, h \in \mathbb{F}^{m}}\left[\sum_{c=0}^{d+1} \alpha_{i} f(x+i \hbar)=0\right] \geqslant 1-\delta
$$

f is 28- close to a dey al polynomial

Proof:
Self correction of \mathcal{I}

$$
\begin{aligned}
& g: \mathbb{F}^{m} \rightarrow \mathbb{F} \\
& g(x)=\underset{\substack{p l a r a l i l y \\
h \in \mathbb{F}^{2}}}{ }\left\{-\sum_{c=1}^{d+\prime} \alpha_{i} f(x+i h)\right\}
\end{aligned}
$$

Clam I: $\quad \delta\left(f_{g}\right) \leqslant 2 \delta$
Clam II: [Qverwhetronion magorncy]

$$
\forall x P_{r}\left(g(x)=-\sum_{c=1}^{d+1} \alpha_{c} f(x+i h)\right] \geqslant 1-2(\alpha+i) \delta
$$

Clam III: If $\delta<\frac{1}{(\alpha+1)(2 d r s)}, g(x)$ is of degree $\leq d$.
Proof of Corm I: $\left.B A D=\sum x \in T^{m} / P_{h} L_{i=0}^{\alpha_{i-1}} \alpha_{i}(x+i h)=0\right]$ $<1 / 2$

$$
\begin{aligned}
& x \notin B A D \quad \Rightarrow g(x)=f(x) \\
& C \delta(f, g) \leqslant P_{x}[x \in B A D] \\
& \delta \geq P_{x, h}\left[\sum_{c=0}^{d+1} \alpha_{c} f(x+c h) \neq 0\right] \\
& \geqslant P_{x}^{P}[x \in B A D] \underset{x, h}{P}\left[\sum_{c=0}^{d i l} \alpha_{i} f(x+i h) \neq 0 / x \in B A D\right] \\
& \geqslant \delta\left(f_{g}\right) \cdot 1 / 2
\end{aligned}
$$

Proof of Clam II:
Suffices to prove for every $x \in \mathbb{F}^{m}$

$$
\begin{aligned}
& \alpha_{k} \sum_{j=0}^{d^{(+1}} \alpha_{j} f\left(x^{\prime}+y^{h_{2}}\right)=0 \\
& i \neq 0 ; \quad x^{\prime}=x+c h, \text { random eff if } \\
& \text { b, B } \\
& \left.\forall i \neq 0 ; \quad \underset{h_{1}, h_{2}}{P_{i}} \mathcal{C} R_{i}\right] \leqslant \delta \\
& \text { random }
\end{aligned}
$$

G: $\quad \sum_{c=0}^{d+1} \alpha_{c} \alpha_{j} f\left(x+c h_{1}+h_{2}\right)=0$

$$
\begin{gathered}
\alpha \sum \alpha_{l} f\left(x^{\prime}+c h_{1}\right)=0 \\
j^{\prime} \neq 0, x^{\prime}=x+g h_{2} \text { - random att } \\
H_{y} \neq 0 h_{h_{1,2}}^{P}[>c] \leqslant \delta .
\end{gathered}
$$

Hence,

$$
\begin{aligned}
& P r\left[\left(\sum_{t=1}^{d+1}>R_{c}\right) \vee\left(V_{j=1}^{d+1}>g\right)\right] \leqslant 2(d r 1) \delta \\
& \operatorname{Pr}\left[\left(\bigwedge_{i=1}^{d+1} P_{i}\right) \wedge\left(\bigwedge_{j=1}^{d+1} G\right)\right] \geqslant 1-2(d+1) \delta . \\
& \text { However } \bigcap_{c=1}^{d+1} R_{c i} \wedge\left(\bigcap_{d=1}^{d+1} \delta\right) \\
& \sum_{i=1}^{d+1} \alpha_{0} \alpha_{i} \cdot f\left(x+i h_{1}\right)=\sum_{j=1}^{d+1} \alpha_{0} \alpha_{j} f\left(x+\rho_{2}\right)
\end{aligned}
$$ A.

Proof of Clam III.
\% show g is of degree d suffices to show.
$\forall x, h \in \mathbb{F}^{m}$

$$
\sum_{i=0}^{d+1} \alpha_{i} \cdot g(x+i h)=0
$$

$h_{1}, h_{2} \in_{R} \mathbb{F}^{m}$
$d+2$

$$
\begin{aligned}
& Y\left(h_{1} h_{2}\right) \in \mathbb{F}^{(d+2) \times\left(\alpha r_{2}\right)} \\
& Y_{i j}=\left\{\begin{array}{c}
\alpha_{i} \alpha_{j} f(x+i h \\
+j\left(\beta_{1}+i h_{2}\right) \\
\alpha_{i} \alpha_{0} g(G+i h)^{f \neq 0} \begin{array}{l}
j=0
\end{array}
\end{array}\right.
\end{aligned}
$$

$R_{i}: S$ - rector to events that the corresponding, row col som to 0 .
Suffices to stow $P_{1,2}^{P /[}[C]>0$ which is true $\sigma_{i=2}^{P_{2}}\left[\prod_{c=0}^{\alpha+2} P_{i} \bigcap_{j=1}^{d+1} g\right]>0$.

$$
\begin{gathered}
\left.G: \sum_{c=0}^{d+1} \alpha_{c} \alpha_{j} f\left(x+i h+j\left(h_{1}+i h_{2}\right)\right)=0 \quad G \neq 0\right) \\
\alpha \sum_{i=0}^{d+1} \alpha_{i} f(\underbrace{\left(x+\rho h_{1}\right.}_{x^{\prime}}+i \underbrace{\left(h+j h_{2}\right)}_{h^{\prime}})=0 \\
h_{h_{2}} \angle 7 S J \leqslant \delta
\end{gathered}
$$

$$
\begin{aligned}
& \mathbb{R}_{c}: \alpha_{c} \alpha_{0} g \underbrace{(x+i h)}_{x^{\prime}}+\sum_{\mu=1}^{\alpha_{1} 1} \alpha_{c} \alpha_{j} f(\underbrace{(x+i h}_{x^{\prime}}+j(\underbrace{\left(h_{1}+i h_{2}\right)}_{h^{\prime}}))=0 \\
& h_{1=h_{2}}^{P_{n}}\left[7 R_{i}\right] \leq 2(\operatorname{dt} 1) \delta_{\text {. }}
\end{aligned}
$$

Fence,

$$
\begin{aligned}
P_{r} L_{c=0}^{d+1}\left(>P_{c}\right) & \left.\vee\left(V_{j=1}^{d+1} G\right)\right] \\
& \leq 2(d+1)(d+2) \delta+(d+1) \delta \\
& =(d+1)(2 d+5) \delta \\
& <0 \quad \text { if } \delta<\frac{1}{(d+1)(2 d+5) .}
\end{aligned}
$$

Part 2: Low Individual Degree Test.

$$
\therefore X \times Y \rightarrow \mathbb{F} \quad ; \quad|x|=m ; \quad|y|=n, X, Y \leq \mathbb{F} .
$$

Check: $\operatorname{deg}_{x}(f) \leqslant d=\operatorname{deg}_{y}(f) \leqslant \alpha$.

Notation: $f: X * Y \rightarrow \mathbb{F}$

$$
f(x, y)=\sum_{j=0}^{\ln (r)} \sum_{i=0}^{n x|r|} a_{y} x^{i} y j \quad \text { (unique) }
$$

f is of deg (d, e) if $a_{y}=0 \forall c>d$

$$
\text { Cor } d<|x|, e<|x|) \text { yo } g>
$$

Characterization: $U, V \subseteq \mathbb{F} \quad d<|U|$ e< $\quad e|V|$

$$
f: O \times V \rightarrow F
$$

$$
f r \in V, f(x, v)-\quad d e g \leq \alpha \text { in wore } x \text {. }
$$

$R(x, y)$ - row polynomial of degree d
(re, $t r \in V, \quad R(x, r)$ - deg d)
$C(X, y)$ - column poly of deg
(le, $\forall u \in U, \quad(u, y)-\operatorname{deg} e)$
$R-\operatorname{deg}(d, n)$ polynomial
C - $\operatorname{deg}(m, e)$ polynomial.
Suppose ${\underset{c}{P}}_{(x, y) \in U \times V}^{P} \quad[R(x, y)=C(x, y)] \geq 1-\eta$
J Q of deg (die)

$$
P r(R(x, y)=Q(x, y)=C(x, y)] \geqslant 1-O(\eta) .
$$

Analysis doe to Pobistictot $=$ Spearman.
Analysis (ria Polynomial Method).

$$
\begin{array}{ll}
S=\{(x, y) \in O \times V / R(x, y) \neq C(x, y)\} \\
|S| \leqslant \eta \text { mo } & \eta=\mu^{2}
\end{array}
$$

There exists a non-erero poly $E(X, Y)$ of
deg (um, un) st

$$
\forall(x, y) \in S \quad \Rightarrow \quad E(x, y)=0 .
$$

(since \#vars $>$ \#constronts).

$$
\begin{aligned}
\forall(x, y) \in(C \times Y) & S, \quad R(x, y)=C(x, y) \\
\forall(x, y) \in C_{x} V, & R(x, y) E(x, y)=C(x, y) \cdot E(x, y) \\
P(x, y): & =R(x, y) E(x, y) \\
& =C(x, y) E(x, y)
\end{aligned}
$$

$Q C_{s:(1)}$ To every $u \in 0, \quad P(u, y)=C(u, y) . E(u, y)$

$$
\operatorname{deg}_{y} P(0, y) \leqslant e+\mu n
$$

(2) For every $v \in V, \quad P(x, \nu)=R(x, v) E(x, v)$

$$
\operatorname{deg}_{\lambda} P\left(x_{2}\right) \leq d_{+} \mu m
$$

Hence, P is of $\operatorname{deg}(d+a m$, expin).

$$
\text { (provided } \left.\begin{array}{l}
\text { drum }<m \\
\text { et pi }<n
\end{array}\right)
$$

$$
\begin{array}{cc}
P(x, y)= & R(x, y) \cdot E(x, y)=C(x, y) \cdot F(x, y) . \\
\imath & \text { (um, un) }
\end{array}
$$

Want to show that E durokes A formally.

What can we bay
(1) Jor each $u \in U$

$$
P(u, y)=C(x, y) \cdot E(u, y) \quad \forall y \in V
$$

Since, $|V|>$ etui

$$
P(u, y) \equiv C(u, y) \cdot E(u, y)
$$

$1 c$, for each fixing $u \in U$ $P(u, y)$ is divisible by $E(z, y)$ 2 the quotient $\begin{array}{r}C(2, y) \text { is of } \\ \text { dep } \leq\end{array}$ deg $\leq e$
(2) Similarly, fo each fixing reV $P(x, v)$ is divisible by $E(x, 2)$
$=$ the patient $R(x, 2)$ is of at g
$\leqslant \alpha^{\prime}$.
Polishchuk. Spelmon Lemma:
Suppose P, E are two dey ($\alpha m+\delta m, \beta n+E n)$ $=$ ($\alpha \mathrm{m}, \beta n$) polynomials.
sit $\left\{t u \in U,|U|=m ; \frac{P(u, y)}{E(u, y)}\right.$ is of deg en \& reV, $V /=n, \frac{P(x, v)}{E(x, v)}$ is of dey sn then J poly Q of $\operatorname{deg}(\operatorname{sm}$, en) st

$$
P(x, y) \equiv Q(x, y) E(x, y)
$$

prourded $\alpha+\beta+\delta+\varepsilon<1$

Want to show E divides P. re, $\operatorname{gcd}(P, E)=E$

- Simpler an $\operatorname{gcd}(D, E) \neq 1$
(in the bivariate setting)
- What about the cnivariate setting.

$$
\begin{array}{lll}
P(x)=P_{0}+P_{1} x+\ldots & +P_{r} x^{x} & r=\operatorname{deg}(P) \\
F(x)=E_{0}+E x+\ldots & +E_{x} x^{3} & s=\operatorname{deg}(E)
\end{array}
$$

Corm: $\operatorname{gcd}(P, E) \neq 1 \Leftrightarrow$ In poly A, B

$$
\operatorname{deg}(A) \leqslant 3-1, \quad \operatorname{deg}(B) \leqslant r-1 \quad \text { sit. }
$$

$$
P(x) \cdot A(x)=E(x) \cdot B(x) .
$$

Pf:

$$
\begin{array}{ll}
F=\operatorname{gcd}(P, E) \\
P=\hat{P} \cdot F ; & E=\hat{E} \cdot F \\
A=\hat{E} ; & B=\hat{P}
\end{array}
$$

Existence of such non-zero $A=B$.

Prop: $\operatorname{gcd}(P, E) \neq 1 \quad \Rightarrow \operatorname{Res}(P, E) \neq 0$.

$$
\begin{array}{ll}
P(x, y)=P_{0}(x)+P(x) y+\ldots & +P_{r}(x) y^{*} \\
E(x, y)=E_{0}(x) & \\
E_{0}(x) y^{\sigma}
\end{array}
$$

where $P_{n}(x) \neq 0$ $\bar{E}(x) \neq 0$
Prop: [Gauss' Lemma]
$\operatorname{gcd}_{y}(P, E) \neq 1 \Leftrightarrow \operatorname{Res}(D, E) \neq 0$
(in this Ease, $R(P, E) \in F[X]$).

Proof of PS Lemma:
P- (am+ Son, $\beta n+\varepsilon n)$ deg
$E-(\alpha m, \beta n) \operatorname{deg}$.

$$
\alpha+\beta+\delta+\varepsilon<1
$$

Wog, we can assume $\operatorname{deg}_{x}(P)=\alpha m+\delta n$ (exactly)

$$
o \operatorname{deg}_{y}(E)=\alpha m
$$

Cotherwise replace \propto by $\alpha-\frac{1}{m}$)
Similarly, we can assume deg y $(p)=\beta n+e n$
or (root 1)
$\operatorname{deg}(E)=\beta n$. exactly).

$$
\begin{gathered}
\operatorname{god}(P, E)=F \quad(\text { hoot to show } \quad F=F) \\
P=\hat{P} \cdot F \quad \text { F- deg }(0, b) \\
E=\hat{E} \cdot F
\end{gathered}
$$

Hypothesis is free for \hat{P}, \vec{E} as

$$
\left\{\begin{array}{l}
\text { well } \\
P(u, y)=E(u, y) \cdot c(u, y) \\
\hat{P}(u, y) \cdot F(u, y)=\hat{E}(u, y) \cdot F(u, y) \cdot C(u, y)
\end{array}\right.
$$

on $U^{\prime} \times V^{\prime}$ where $C^{\prime}|\geqslant|O|-a$

$$
\left|V^{\prime}\right| \geqslant / V /-6 .
$$

$$
\begin{aligned}
\alpha^{\prime}+\beta^{\prime}+\delta^{\prime}+\varepsilon^{\prime} & =\frac{\delta_{m-a}}{m-a}+\frac{\varepsilon n-b}{n-b}+\frac{\alpha m}{m-a}+\frac{\beta n}{n-b} \\
& =\frac{(\alpha+\delta) m-a}{m-a}+\frac{(\beta+c) n-b}{n-b} \\
& \leqslant \alpha+\delta+\beta+\varepsilon<1 .
\end{aligned}
$$

$\operatorname{gcd}(P, E) \neq 1 \Rightarrow \operatorname{Replace}(P, E)$ by (\hat{P}, \hat{E})
Assume PS Lemma hypo thesis?

