Today

- Low Degree Destroy II
* Polistichuk-Spretman
* Irredl-Sudan

CSS. 330.1 : PCP
Limits of Approximation Algorithms
Lecture 04 (2023-2-17)
Instructor: Prahladh Florsha

Recall the setup from last lecture

FF - finite field.
$U, V \subseteq \mathbb{F} ; \quad U K m ; \quad \mid V /=n$
$R(x, y)$ - row polynomial degree (din)-poly
$C(x, y)$ - col polynomial degree (m,e)-poly

$$
\underset{(c, y<c \times v}{P_{P}}[R(c, v) \neq C(c, v)] \leqslant \eta
$$

$$
\mathrm{V} ? ? ? ?
$$

$\exists \operatorname{deg}(d, e)$-polynomial Q

$$
\operatorname{cor}_{(0, v)}^{P}[R(c, v) \neq Q(0, v) \text { or } C(c, v) \neq Q(c, v)] \leqslant O(\eta)
$$

Step 1: Error locator polynomial. $\eta=\mu^{2}$. J poly E (um, un)-deg.

$$
\begin{aligned}
& \text { sit } \forall(c, v), \quad R(u, v) E(c, v)=C(c, v) E(c, v) \\
&=P(c, v) \\
& P \quad \text { deg }(d+p i m, ~ e+p e n)
\end{aligned}\binom{m>d+p m}{n>e+p n}
$$

Step 2: (*) For each uerl

$$
\frac{P(u, y)}{E(u, y)}=\underbrace{C(u, y)}_{\leqslant} \text {deg e poky. }
$$

(*) For each $v \in V$

$$
\frac{P(x, 2)}{E(x, 2)}=\begin{aligned}
R(x, v) \\
L \leqslant \operatorname{deg} d \text { poly. }
\end{aligned}
$$

Pobshchuk-Spietmon Lemma:
$0, V \subseteq \mathbb{F}, \quad|\quad|=m ; \quad \mid V /=n$.
P, E are 2 bivarote poly of deg
$(\alpha m+\delta m, \beta n+\varepsilon n)=(\alpha m, \beta n)$ roopechnely

- For all $u \in U, \frac{P(u, y)}{E(u, y)}$ - degas En poly
- For all $v \in V, \frac{P(x, v)}{E(x, v)}$ - deg $\leqslant \delta_{m}$ poly.

$$
\alpha+\beta+\delta+\varepsilon<1
$$

V
J Q of deg (s men).

$$
P(x, y)=Q(x, y) E(x, y)
$$

Pf: Wlog assumphons

$$
\begin{aligned}
& \text { Crom }\left\{\begin{array}{l}
-\operatorname{deg}_{x}(P)=(\alpha+\delta) m, \quad \operatorname{deg}_{x}(E)=\alpha m \\
\text { last } \\
\text { trone) } \\
-\operatorname{deg}_{y}(P)=(\beta+\delta) n=\quad \operatorname{deg}_{y}(E)=\beta n \\
-\operatorname{gcd}(P, E)=1
\end{array}, l\right.
\end{aligned}
$$

Need to show E is constont Csobsequent to there simplitying abscmpions).
Let $\beta \geqslant \alpha$

$$
\begin{array}{cc}
P(x, y)=P_{0}(x)+P_{1}(x) \cdot y+\cdots & +P_{\left(\beta+\left.\varepsilon\right|_{n}\right.}(x) y^{(\beta+\varepsilon) n} \\
E(x, y)=E_{0}(x)+E_{1}(x) \cdot y+\cdots E_{\beta n}(x) \cdot y^{\beta n} \\
\& E_{\beta n}(x) \neq 0 .
\end{array}
$$

$$
\begin{aligned}
& R_{y}(x) \triangleq \operatorname{det}_{y} M_{y}(P E)(x) \\
& R_{y}(x)=\operatorname{Res}_{y}(P, E)
\end{aligned}
$$

Since $\operatorname{gcd}(P, E)=1 \quad \Rightarrow \quad P_{y}(x) \neq 0$
For each ue,$\quad x=u$

$$
\frac{P(u, y)}{E(2, y)}-\operatorname{deg} e
$$

le, top (β on) rows are sponned ly the Gottom
Hence,

$$
R_{y}\left(e_{2}\right)=0 ; R_{y}^{\prime}\left(z_{2}\right)=0,
$$

$$
R_{y}^{(a n-1)}(u)=0
$$

le, in is a root w.ith maltfplicily. pn.
Assume $\beta>0$
Recall $\operatorname{deg}_{x}\left(R_{y}\right)=m n(2 \alpha \beta+\alpha \varepsilon+\beta \delta)$
Coanting Roots at multeplicily

$$
\begin{aligned}
& =m \cdot \beta n \\
& >\operatorname{mon} \beta(\alpha+\beta+\delta+\varepsilon) \quad \text { CGy hopothek } \\
& =m n\left(\alpha \beta+\beta^{2}+\beta \delta+\beta \varepsilon\right) \\
& \left.\geqslant m n(\alpha \beta+\alpha \beta+\beta \delta+\alpha \varepsilon) \quad \begin{array}{c}
\text { (ince } \\
\beta \geqslant \alpha
\end{array}\right) \\
& =\operatorname{deg}_{x}\left(R_{y}\right)
\end{aligned}
$$

Hence $\beta=\alpha=0$ Contradicton
Hence, $E-\operatorname{deg}(\alpha, \beta)$ is a constoni.

Petarening to Axis Parallel West

$$
\begin{aligned}
& P_{r}[R(2, v)=Q(c, v)=C(u, v)] \\
&\geqslant P r L E(c, v) \neq 0] \\
& \geqslant 1-2 \mu=1-2 \eta \quad \text { (since Ers (npr) } \\
& \text {-deg poly) }
\end{aligned}
$$

We will show something stronger

$$
\begin{gathered}
\operatorname{Pr}[R(u, v)=Q(u, v)=C(0, v)] \\
\geqslant 1-2 \eta \\
S=\{(u, v) / R(u, v) \neq C(u, v)\} \quad|S| \leqslant \text { mon n } \\
T=\{(u, v) / R(u, v)=C(c, v) \neq Q(u, v)\} .
\end{gathered}
$$

Suffice for as to show $|T| \leqslant|S|$.

2- row- bad

$$
Q(x, v) \not \equiv R(x, v)
$$

or-frackon of bod row u- col bod

$$
Q(u, y) \not \equiv C(u, y)
$$

σ_{c} - fraction of bad coll

For any bod row r, at most $d+b_{c m}$ pts of T. Circe otherwise this is a good row)
T bes in the shaded region above.
$1>2 \eta+\frac{d}{m} \rightarrow$ every bod row $\geqslant \frac{m}{2}$ pts S in the intersection w) good columns.

Concluding
Tho: Suppose $R, C=2$ poly of dey (d, n). (m, e) respectively such that

$$
\left.\begin{array}{c}
2\left(\frac{d}{m}+\frac{e}{n}+\mu\right)<1 \\
\substack{P \\
(u, v)}
\end{array} \subset R(u, v) \neq C(u, v)\right] \leqslant \mu^{2} .
$$

then J of deg (d, e) st

$$
\begin{aligned}
& P_{r}[R(u, v) \neq Q(0, v) \text { or } Q(v, v) \neq C(0, v)] \leqslant 2 \mu^{2} \\
& \operatorname{Pr}[Q(v, y) \neq C(v, v)] \leqslant 2 \mu^{2} \\
& P_{r}[Q(x, v) \neq R(x, v)] \leqslant 2 \mu^{2}
\end{aligned}
$$

Axis-Parallel Test to Prandom Line Fest.

$$
f: \mathbb{F}^{-m} \rightarrow \mathbb{F}
$$

Want to check if $\operatorname{deg}(f) \leqslant d$.
Ctotal degree, nat soliridual ategree.
Reed-Moller Codewords

$$
f \in R M_{F}(m, d) .
$$

Question: (1) Is there a local char acternation?
(2) Ib this char, robust?
"Candidate Characterinahon:

$$
f \in P M_{F}(m, d) \Leftrightarrow \forall \text { lines } l, f\left(e R_{0}(d)\right. \text {. }
$$

Counter example.

$$
\begin{array}{ll}
\text { Cr example. } & F=F_{p k} \quad 9=p^{k}(t \geqslant r) \\
Q(x, y)= & \left(x^{p-1} y\right)^{q / p} ; \operatorname{deg} Q=9
\end{array}
$$

$l: a+T b$

$$
Q_{e}(T)=\left[\left(a_{1} T+b_{1}\right)^{p-1}\left(a T+b_{2}\right)\right]^{q / p}
$$

$a=\left(0, a, a_{2}\right)$
$b=\left(C_{2}, \sigma_{2}\right)$
cicely monomial in $Q_{l}(T)$
$1 s$ of degree $\leqslant 9$
= is a multiple of ip.

$$
\begin{aligned}
& \operatorname{Cral}\left(\left(Q l_{c}\right)=\operatorname{Fral}\left(Q_{l}(T) \bmod T T^{T} T\right)\right. \\
& \operatorname{deg}\left(Q_{l}(T) \bmod \left(T^{2} T\right)\right) \leq q-\frac{q}{p}
\end{aligned}
$$

This If on every lire has alegree $\leqslant 9-\% /$ get globally it has defacer 9 .

Lemma. $q=p^{k}, d<q-q / p, f: F^{m} \rightarrow F^{*} ; m \geqslant 2$
Suppose \forall lines $l \quad f_{c} \in R_{f}(d)$

$$
\in M_{F}(m, d)
$$

Pf: Pere the contropositue.
Let $d<q-9 / p,=f \notin R M_{p}(m, d)$.
Hence, $f\left(x_{1} \ldots x_{n}\right)=\sum_{e} \alpha_{c} x_{1} x_{1} \ldots x_{n}^{e_{m}}$

Suppose \bar{e}, sit $\alpha_{c} \neq 0 ; \sum \varepsilon_{i}>\alpha$

$$
(0 \leq \varepsilon<9)
$$

Suffices to show there is a line l.
sit Ale $\in R S_{N}\left(d^{\prime}\right)$ for some $d^{\prime} d$.

$$
\begin{aligned}
& f()=\alpha_{c} x^{e}+\sum_{e^{\prime} \neq e} \alpha_{c} \cdot x^{e^{\prime}} \\
& X=O+T V \\
& U=\left(U_{1} \ldots C_{m}\right) \\
& \alpha_{c} x^{e}-\alpha_{c} \prod_{c=1}^{m}\left(U_{c}+T r_{c}\right)^{e_{i}} \\
& V=\left(V_{1} \ldots V_{n}\right) \\
& T=T \\
& =\alpha_{c} \sum_{0 \leqslant-i} \prod_{i} e_{i}^{e_{i} f_{i}} V_{c} f_{i}\left(e_{f_{i}}^{e_{i}}\right) \cdot T^{H 9} \\
& =\alpha_{e} \sum_{0 \leq f_{i} \leq a_{c}}\left(\prod_{c=1}^{m}\left(e_{c}\right) c_{c}^{e_{c}^{-R_{i}} V_{c}}\right) \\
& T^{|f|}\left(\bmod T^{9}-T\right) \\
& f \|_{U+T V}\left(\bmod T^{Q}-T\right)=\sum_{j=0}^{D} T_{j}^{i} p(U, V)
\end{aligned}
$$

If $P \cdot(U, V) \neq 0$, then there exist a (uv) sit $f_{0+T r}\left(\bmod T^{-}-T\right)$ has degree $\vec{j} i$

Suffers to show that there is one $P(0, V)$ that scruves fo $g^{>} d$.

Need to choose

$$
\begin{aligned}
& \text { choose } \\
& \left(f_{1} \ldots f_{m}\right) \text { s.t }(1) /\left(f_{c}\right) \neq 0
\end{aligned}
$$

(2).

$$
q>\operatorname{deg}\left(T^{|f|} \quad \geqslant q-\% p\right.
$$

Lucas Thm: $m=m_{0}+m_{1} p+\ldots+m_{2} p^{2}$

$$
\begin{gathered}
\left.n=n_{0}+n_{1} p+\cdots\left(\begin{array}{l}
n n_{r} p^{r} \\
\binom{m}{n}(\bmod p)
\end{array}=\|\left(m_{c}\right) \bmod p\right)\right) \\
\binom{m}{n}\left(\begin{array}{lll}
m_{r} & m_{r-1} & m_{0} \\
n_{r} & n_{r-1} & n_{0}
\end{array}\right)
\end{gathered}
$$

Carm: $0 \leqslant e_{c}<q . \quad \sum e_{c}>q-q / p$
then $\exists f_{c}$ s.t (i) $0 \leqslant r_{e} \leqslant c_{c}$.
(2) $\pi\left(c_{c}^{c}\right) \neq 0$
(3) $\quad q>\sum \delta_{c} \geqslant 9-9 / 0$.

$$
\text { Liffed- } R S_{F}(m, d)=\sum f: F{ }_{F}^{m} \rightarrow F / f_{e} \in R S_{F}(d)
$$ \forall lines l ?

Thim: $d<q-q / p$, \quad ffed- $R S_{F}(m, d)=R M_{p}(m, d)$

Plush characterization:
Whim [Frredl-Sudon].
\forall so, $J \subset<\infty$, of col $<|\mathbb{F}|$, the following told s.

$$
\begin{aligned}
& \forall f: F^{m} \rightarrow F^{F}, F:\left\{[\ln \mathrm{Cs}] \rightarrow R S_{F}(d)\right. \\
& \underset{\substack{x, e \\
x \in e}}{P}[f(x) \neq F(e)(x)] \leqslant \delta \leqslant \frac{1}{8}-\varepsilon
\end{aligned}
$$

$\exists P \in L$ fled- $\mathcal{B}_{\pi}(m, d), \quad \delta(f, p) \leqslant 4 \delta$.

Proof:
$P^{(1, d)}:\{\operatorname{lncs}\} \rightarrow R_{F}(d)$
Ge the Gest fit lines-findion that maximizes for cod line l

$$
\begin{aligned}
& \operatorname{Pax}_{x \in l}[f(x)=F(l)(x)] \\
& \delta_{f}=\underset{\substack{x, x \rightarrow \sim}}{P_{x}}\left[f(x) \neq p^{(f(\alpha)}(l)(x)\right]
\end{aligned}
$$

AGE: For any $F:\{\operatorname{lemes}\} \rightarrow R_{F}(d)$

$$
\underset{\substack{x, \\ \text { xe } \\ x \sim l}}{P}[f(x) \neq F(e)(x)] \geqslant \sigma_{f}
$$

$$
g(x)=f_{\text {cora }}(x)=\operatorname{Pporally}^{l i l i t y}\{p(B d)(l)(x)\}
$$

Clam: $\delta\left(f, f_{\text {cor }}\right) \leqslant 2 \delta_{f}$
Lemma $\delta_{\text {four }} \leqslant \delta_{f} / 2$ (under the As from assumptions)

COGS: Claim $2 \Rightarrow$ Lemma 1)

$$
\begin{aligned}
& \underset{x}{\mathbb{E}}\left[\begin{array}{l}
P_{i}, x_{x} \\
e_{\text {corr }}
\end{array}\left[(x) \neq p^{(f d)}(l)(x)\right]\right]
\end{aligned}
$$

