Today

- Low Degree Testroy III (Frred(-Sudon)
- PCP from $\angle D T$

CSS. 330.1 : PCP
Limils of Approximation Algorithims
Lecture OS (2023-2-24) inotructor: Prahlodh Florsha

Recall from lost trone.
Input. FF-ficld $?$
$\left.\begin{array}{l}m \text { - dimension } \\ d \text { - degrece }\end{array}\right\}$ axplicit
$f: \mathbb{F} \xrightarrow{m} \rightarrow \mathbb{F} \underset{\text { lines }^{\prime} \rightarrow}{ } \rightarrow \mathbb{R S}_{F}(d)$ oxacle acoess
Low. Deagree Yest:
(1) Prck $x C_{R} P_{m} ; h c_{R} P_{n} ; \quad l=\{x+t h l t \in \mathbb{F}$?
(2) Query f on $x=F$ in l
(3) Accopt if $F(e)(x)=f(x)$.

5hm [Jriedl-Scolon].
$\forall \varepsilon \in(0,1)$. $J \subset>0$ sit $\mid \mathbb{F}>c d$, if fo F

$$
\operatorname{Pax}_{x, h}[f(x) \neq F(e)(x)] \leqslant \delta<1 / \delta-\varepsilon
$$

Then $\mathcal{P} P \in L$ ffed $\mathbb{R N}_{\mathbb{F}}(m, d)$ sit $\delta(f, P) \leq 2 \delta$.

Reed Muller(d): Evatcation of maltivarerate poly

$$
\text { of deg } \leq d \text { over } \mathbb{F}^{m}
$$

$$
R M_{F}(\ln , d)
$$

$$
\text { Liffed-RS }{ }_{I F}(m, d):\left\{f: \mathbb{F}^{n} \rightarrow \mathbb{F} / t \text { lones in } F^{n}\right.
$$

$$
f f_{e} \in R S_{\mathbb{F}}(d)
$$

Lemma LJriedl-Scolon) IF-froite feld of qige $q=p{ }^{t}$ (piprme) If $d<q-9 / p$ then

$$
\text { Lifted-RS }(m, d)=R M_{F}(m, d) \text {. }
$$

FS Thm is trae for any F given f So, one mighl as well work w/ the lest ft

$$
F_{p}(f, d)(l)=\underset{g \in \mathbb{R S _ { F }}(d)}{\operatorname{argmin}} \delta(f(e, g)
$$

Hypotheris of FS:

$$
\begin{aligned}
& \operatorname{Pax}_{\Rightarrow h}\left[f(x) \neq p^{\left(\theta_{1} d\right)}(l)(x)\right] \leq \delta . \\
& g_{f}(l)=\underset{\substack{r \\
x \sim l}}{P_{x}}\left[f(x) \neq p^{(f, d)}(l)(x)\right] \\
& \delta_{f} \triangleq P_{x, h}^{P_{2}}\left[f(x) \neq p^{(f(x)}(l)(x)\right]
\end{aligned}
$$

$$
\delta_{f}=\frac{\mathbb{F}}{e}\left[\delta_{f}(l)\right]
$$

FS Hypothesis: $\quad \sigma_{f} \leqslant \delta$.
Self. Correction of f :

$$
\left.f x \in F^{m} ; f_{\text {Coxer }}(x)=\underset{\text { bearally }}{ }\left\{P^{(f, d)}(x+t h) x_{x}\right\}\right\}
$$

Coim : $\delta\left(f, f_{c o x x}\right) \leq 2 \delta_{f} \quad$ Smomion 6 BLP settrog 7 .

Carm 2: $\forall \varepsilon \in(0,1), \exists c, \| \mathbb{F} \mid>c d .=\sigma_{f}<1 / s-\varepsilon$.
then $\delta_{f \text { corn }}<\delta_{f / 2}$.
(Clam $122 \Rightarrow$ FS Theorem).
Lemma [Friedl-Sodan]
If of $<1 / 8-\varepsilon$

$$
\begin{aligned}
& \text { Pr }\left[P^{(f(d)}\left(x+t h_{1}\right)(x) \neq P^{\left(f, d /\left(x+t h_{2}\right)(x)\right]}\right. \\
& x, h_{1}, h_{2} \\
& \leqslant 4 \alpha \delta_{f}
\end{aligned}
$$

where $\alpha=4 / \varepsilon^{2}|\mathbb{F}|$.

$$
\text { (Lemma } \Rightarrow \text { Claim 2) if } 4 \alpha<1 / 2 .
$$

$$
\begin{aligned}
& \leq \underset{x_{x}, h}{P}\left[f_{\text {corr }}(x) \neq P^{\left(f_{d} d\right)}(x+f h)(x)\right] \\
& \leqslant P_{y=6, h^{\prime}}^{P}\left[P^{(f, d)}(x+t h)(x) \neq P^{(x(d)}\left(x+t f^{\prime}\right)(x)\right]
\end{aligned}
$$

Lemma: States if
Ry (lines point) < $1 / 8-\varepsilon$
then
$\operatorname{Rg}(\operatorname{lin} e s-\operatorname{lin} x s)<4 \alpha . \operatorname{Ry}(\operatorname{lomes}-$ pom st)
Workhorse for the proof of lemma.
Polishichut-Spretron Axis Parallel Low Degree Test $\forall \in \in(0,1), \exists \subset>0 ; \quad|\mathbb{F}|>c d .=$

\exists brorrote poly $Q(x, y)$ of ind deg a (in either var)

$$
P_{i}\left[x_{i}(i) \neq Q\left(i_{i}\right)\right] \leqslant 1 / 4 \text {, } p(\delta(i) \neq Q(i, i)) \leqslant 1 / 4
$$

Proof of Lemma:

$$
S_{x_{1} b_{1}, b_{2}, \sigma_{3}}=\left\{x+i \sigma_{1}+j h_{2}+j b_{3} / e_{y} \in \mathbb{F}\right\}
$$

Given $S_{x, 1} h_{2} b_{3}$. e,,$\in \mathbb{F}$

$$
\begin{aligned}
& r_{c} \omega_{c}=\left\{x+c h_{1}+j\left(h_{2}+i h_{3}\right) / g \in \mathbb{F}\right\} \\
& \operatorname{cog}=\left\{x+j h_{2}+i\left(h_{1}+j \sqrt{3}\right) / c \in \mathbb{F}\right\} \\
& r_{c}(\cdot)=p^{(f(d)}\left(r_{0} \omega_{c}\right) / m(i, j)=f\left(x+i h_{1}+h_{2}\right) \\
& g(\cdot)=p^{\left(h_{1} d\right)}(\operatorname{col})
\end{aligned}
$$

Recall we count to prove

$$
x_{1} R_{1}+\frac{1}{2} \sigma_{3}\left(c_{0}(0) \neq r_{0}(0)\right] \leqslant 4 \alpha \delta_{f}
$$

Consoler the following 4 (bad) events for a random x, h, r, h
El: $\quad \underset{c \in \mathbb{E}}{\mathbb{E}}\left[\delta\left(\right.\right.$ row $\left.\left.c_{c}\right)\right] \geqslant \frac{1}{8}-\frac{s}{2}$
$E 2: \frac{E}{d \in F}[\delta(\operatorname{cof})] \geqslant \frac{1}{8}-\varepsilon / 2$
EBB: $\underset{c \in l}{\operatorname{Pr}}\left[x_{i}(0) \neq m(i ; 0)\right] \geqslant \frac{1}{8}-\frac{\varepsilon}{2}$
FF: $\quad \underset{\substack{ \\P_{R}}}{P}[g(0)+m(0, j)] \geqslant \frac{1}{8}-\varepsilon / 2$.
Suffices to show the following
(a) $\forall K \quad P[E E] \leqslant \alpha \dot{g}_{f}$
(b) $T E_{1} \wedge T E_{2}+T E_{3}, 7 E_{4} \Rightarrow r_{0}(0)=C_{6}(0)$.

Proof of (ब):

$$
\rightarrow E_{1} \wedge 1 E_{2} \Rightarrow \quad \begin{aligned}
& P_{x}\left(r_{i} \cdot(j) \neq C_{j}(i)\right] \leqslant \frac{1}{8}-\frac{s}{2} \\
& \frac{1}{2} \frac{1}{8}-\frac{5}{2}=\frac{1}{4}-\varepsilon .
\end{aligned}
$$

Hence, PS hypothesis is true $f Q(i, j)$ of and deg $\leqslant d$ st

$$
\operatorname{Pr}\left(Q(i, \cdot) \neq r_{c}(i)\right] \leqslant 1 / 4
$$

2 similarly for columns.

7E3:

$$
\begin{aligned}
\operatorname{Pr}_{i \in \mathbb{F}}[m(i, 0)= & \left.r_{i}(0)=Q_{i}(i ; 0)\right] \\
& \geqslant \frac{3}{4}-\left(\frac{1}{8}-\frac{5}{2}\right)
\end{aligned}
$$

Hence $C_{0}(.) \equiv Q(\cdot, 0)$.

$$
m(i ; 0)=Q(i, 0)
$$

Hence, $c_{0}(\cdot) \equiv Q(; 0)$ Cringe col. is the last til poly for col.

Similary $T E_{4}\left(\mathrm{cos} \quad 7 E_{1} \wedge>E_{2}\right) \Rightarrow r_{0}(\cdot) \equiv Q(0, \cdot)$
Hence, $T E_{1} \wedge T E_{2} \wedge T E_{3} \wedge T E_{4}$

$$
\begin{aligned}
\Rightarrow & r_{0}(0)=Q(0,0)=c_{0}(0) \\
& C \text { Proof of (b).) }
\end{aligned}
$$

Proof of (a).

$$
\mathbb{x}_{x_{1}, F_{2}, R_{3}}\left[\underset{c}{\mathbb{E}}\left[\delta\left(\text { row }_{c}\right)\right]\right]=\delta_{f}
$$

Observation: $7 x$ i, $\neq i$ random x, h_{1}, h_{2}, h_{3}

$$
\begin{aligned}
& \text { row }_{c_{1}}=\left\{x+i h_{1}+j\left(h_{2}+i_{1} h_{3}\right)[y \in \mathbb{F}\}\right. \\
& \text { row }_{c_{2}}=\left\{x+i_{2} h_{1}+j\left(h_{2}+i_{2} h_{B}\right)[f \in \mathbb{F}\}\right.
\end{aligned}
$$

row, 2 row are independent random lines (for random $\left.x, h_{1}, h_{2}, b_{3}\right)$ $\left(x+i h_{1}, x+c_{2} h_{1}\left(h_{2}+c ; h_{3}\right),\left(h_{2}+c_{2} h_{3}\right)\right)$

$$
=\left[\begin{array}{llll}
x_{1} & h_{1}, & h_{2} & h_{3}
\end{array}\right)\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
e_{1} & e_{2} & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & c_{1} & c_{2}
\end{array}\right]
$$

Hence $\{\delta($ row n $) ~ f e \in \mathbb{F}\}$ are parrourse indef

$$
\begin{aligned}
& E_{x, h, h, \hbar, c}[\delta(\text { loco })]=\delta_{f}<\frac{1}{8}-\varepsilon \\
& P_{x, h, h, \beta_{3}}^{P_{r}}\left[\frac{\sum_{i \in \pi} \delta(\text { row })}{\| F \mid} \geqslant \frac{1}{8}-\frac{\varepsilon}{2}\right] \leqslant \alpha \delta_{f}\left(1-\delta_{f}\right) \\
& \text { where } \alpha=\frac{4}{\varepsilon^{2}|\mathbb{F}|}
\end{aligned}
$$

Hence Pr $[E 1] \leqslant \alpha \delta$.
Similarly E2.
Es: $\quad P_{i}\left[r_{i}(0) \neq m(i ; 0)\right] \geqslant \frac{1}{8}-\frac{\varepsilon}{2}$
Argument 18 similar as above

are independent line-pant pares.

Part II: PCP from $\angle D T$

Recap:

$$
f: \mathbb{F}^{m} \rightarrow \mathbb{F}
$$

If there exists a F: \{lines\} $\rightarrow \operatorname{RS}_{F}(d)$

$$
\begin{gathered}
P_{x, h}[f(x) \neq F(x+f)(x)]<\delta \\
\|
\end{gathered}
$$

$\exists \quad P \in R M_{F}(m, d)$ ot $\sigma(f, P)<4 \delta$.
Cassoming $\mid \mathbb{F} />\mathrm{cd}$

$$
2 \delta<1 / 10 \quad)
$$

Alternate $\angle D T^{f}$ (no lines axacle).
Input. $f: F^{m} \rightarrow F$ (oracle)
Test: (1) Pick a random lion l
(2) Query f on all paints of l
(3) Accept of $f f \in \mathbb{R S}_{\mathbb{F}}(d)$.

Completeness: $\sqrt{\text { reval }}$
Sound cess: $\delta\left(f, P M_{F}(m, d)\right) \geqslant \delta \stackrel{?}{\Rightarrow} P_{r}\left[\right.$ cor f rejected $]$

$$
\mathbb{E}[\mathbb{I} \text { [Test recij] }]^{2(s) .}
$$

The lnes-point anolysis of $\angle D T$ yebls the followiong streanger stront
Rogust
Soundress

$$
\begin{aligned}
\delta\left(f_{1} R M_{p}(m, d)\right) & \Rightarrow \underset{x, h}{\mathbb{E}}\left[\delta\left(f f_{x+h h}, R S_{F}(d)\right)\right] \\
& \geqslant \delta \\
& \mathbb{E}[\delta(\text { local, ACCEPFIN })]
\end{aligned}
$$

Zero-on- Subcube Teat

$$
f: \mathbb{F}^{m} \rightarrow \mathbb{F}
$$

$H \subseteq \mathbb{F}$

$$
Z R M_{F}(m, d, H)=\left\{f \in R M_{\sigma}(m, d)\left(\left.f\right|_{H M}=0\right\}\right.
$$

$$
\begin{array}{ll}
f: \mathbb{F}^{m \rightarrow \mathbb{F}} \longrightarrow & f \in Z R M_{F}(m, d, H) \\
\delta\left(f, Z R M_{\mathbb{F}}(m, d, H)\right) \geqslant \delta
\end{array}
$$

QGeervation: $P \in P M_{F}(m, d) ; H \leq \mathbb{F}$

$$
P / H m \equiv 0 \Leftrightarrow J Q, \ldots Q_{m} \in R M(m, \alpha)
$$

$$
P(x) \equiv \sum_{i=1}^{m} Q_{i}(x) z_{11}\left(x_{i}\right)
$$ where $Z_{H}(Y)=\prod_{h \in H}(Y-h)$

The following is a PCP fo:
the Kero on Sublabe Problem
Irpat: $f: F^{m} \rightarrow \mathbb{F}$ (arack).
Proof: $\quad q_{1}: F^{m} \rightarrow \mathbb{F}$
$9 m$
Zero-on. Subcule Fest
(1) Pick a rondom l Fhects $f l e$, ile... Imle $\in \operatorname{RN}_{N_{-}}(d)$.
(2) For all ptsxin l check

$$
f(x)=\sum_{i=1}^{m} q_{i}(x) z_{i}\left(x_{i}\right)
$$

Soundness: IIF|>O(d,|H|)

$$
\begin{aligned}
\delta\left(f, \Sigma R M_{F}(m, d, H)\right)>\delta \Rightarrow \text { Pr } & {[\text { Eero-on-Subeche }} \\
& \text { Test regeds] } \\
\geqslant & S(\delta)+\frac{d+|H|}{|F|}
\end{aligned}
$$

PCPs for $3 C O L O R$ (csing $\angle D T$.)

3COLOR:
Instance: $G=(r, E)$
YES: Je: $V \rightarrow\{0,12\}$ of

$$
\forall\{c, v\} \in E, c(a) \neq c(v)
$$

NO: Soch a 3-coloring does not exert.
"Encode the
Arithmetraation:
Choose a field F, M, SSF

$$
\begin{aligned}
& \qquad \cdot 5^{n}=V \\
& E: V \times V \rightarrow\{0,1\}
\end{aligned}
$$

Low-degres extension
(1)

$$
\begin{aligned}
& \hat{E}: \mathbb{F}^{m} \times \mathbb{F}^{m} \rightarrow \mathbb{F} \\
& \operatorname{dog}_{,}(E) \leq 151 \\
& =\hat{E} /_{\mathrm{gm} \times \mathrm{Sm}}=E \\
& \operatorname{dog}(\hat{E}) \leq 2 \mathrm{~m}|\mathrm{~S}|
\end{aligned}
$$

(2) $C: \delta^{m} \rightarrow\{0,1,2\}$
$\hat{c}: \mathbb{F}^{m} \rightarrow \mathbb{F} \quad($ Loi-degree extension of c)

Eypect as proof: $C: \mathbb{F}^{m} \rightarrow \mathbb{F}$
Cpurportedly, the bow-degree extension a valid 3-collering).
Need to chect
(1)

$$
\left.\begin{array}{l}
\forall x \in S^{m}, \quad c(x) \in\{0,1,2\} \\
f=(c-0)(c-1)(c-2) \\
f / \text { gm } \equiv 0
\end{array}\right\} \begin{aligned}
& \text { it is } \\
& \text { a 3colonng }
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \forall(c, v) \in S^{m} \times S^{m} \\
& g: F^{m} \times F^{m} \rightarrow F \\
& g(x, y)=E(x, y)(c(x)-c(y)-1) \\
& C c(x)-c(y)+1) \\
& (c(x)-c(y)-2) \\
& (c(x)-c(y)+2) \text {. } \\
& g g_{\sin \times \sin ^{m}}=0 .
\end{aligned}
$$

PCP Proof: $C: \mathbb{F}^{\prime \prime} \rightarrow \mathbb{F}$ Cpurposted $\angle D E$ of a valid $3=c o l o i n g$)
Q $, \ldots Q_{m}: \mathbb{F}^{m} \rightarrow \mathbb{F}$ (additional poly to check That f fro $=0$)
$P_{1} \ldots P_{2 m}: F^{2 m} \mathbb{F}^{2 m}$ (poly reed to check 0 gram $=0$)
Verier: (1) Prc l in $\mathbb{F}^{n}, C^{\prime}$ in $\mathbb{F}^{2 m}$
(2) Query $C_{1} Q_{1}, \ldots Q_{m}$ on z reject if any restriction is not lowidenne
(3) Query $P_{1} \ldots P_{2 m}$ on l^{\prime} $=$ reject of any restriction 16 not bow-degrec
4)

$$
\begin{aligned}
& \text { For each } z \in l \text {, reject if } \\
& (c(z)-1)(c(z)-2)(c(z)-3)) \neq \sum_{c=1}^{m} Q_{l}(z) F_{g}\left(z_{1}\right)
\end{aligned}
$$

(5) For each $\left(x_{1}^{\prime}, y^{\prime}\right) \in l^{\prime}$-reject t

$$
\begin{gathered}
\hat{E}\left(z^{\prime}\right) \cdot C^{\left(x^{\prime}, g^{\prime}\right)}, \\
C_{C}, \\
C
\end{gathered}, \sum_{i=1}^{2 m} P_{i}\left(z^{\prime}\right) z_{i}\left(z_{i}^{\prime}\right)
$$

Next lecture: (1) Quantitave Anotyous of a bove $\begin{gathered}\text { PCP }\end{gathered}$
(2) $P C P$ Compostion.
(3) Proof of PCP Therrm.

