Today

- Crigar Games

Conjectuve (UGC)

- Vertex Cover

CSS. 330.1 : PCP
Limils of Approxmation Algorrtimos
Lecture 10 (2023-4-14) instructor: Prahlodh Florsha

Todoy
UG. hordners of (2-E)-approximatirn Vearex Cover (thot Regev).

Recoll

$$
\text { gOP }=E_{1}-O \angle C
$$

$$
\left.\begin{array}{rl}
\Phi= & \left(G=(u, v, E), \sum, \psi\right) \\
\psi=\left\{\psi: \sum \times \sum \rightarrow\{0,1\} / \psi=1 s\right. \\
a & \text { mothting } \\
\text { relation }
\end{array}\right\}
$$

YES: $\{\bar{\phi} / \operatorname{val}(\bar{\phi}) \geqslant 1-\varepsilon\}$
No: $\{\Phi / \operatorname{val}(\Phi) \leqslant 8\}$
Khot-Reger Modifications.

Step 1. Move to a non-bportite.

$$
\Phi=(G=(V, F), \Sigma, \varphi)
$$

Completeness: $T-\varepsilon \rightarrow 1-2 \varepsilon$
Soundness: $\delta \rightarrow \delta$

Step 2. Strengthen soundness 16 a list-olecoding strost.

$$
N_{\delta}=\{\bar{\phi} / \mathrm{val}(\bar{\phi}) \leq \delta\}
$$

re, \forall colorings $A: V \rightarrow \sum$, at most S-frochon of edges are satisfied.
or For every $>\delta$ - fraction of edges $F=A: V \rightarrow \Sigma$ there is at least one ref that is violated by A.
or For every $>\nu$ frachon of edges $F=t$-coloring $A: V \rightarrow\left(\sum_{\leqslant t}\right)$. there is at least one edge (u, V) EF bit

$$
C A(0) \times A(V)) \cap \psi_{(v, V)}=\phi
$$

Step 3: Move from fraction of edges to fraction of vertices.
les gap Dit,,$-O L C$

YES, $\exists U \leq V=1-$ coloring $A: U \rightarrow \sum$

(ci) $|U| \geqslant(1-v) / V /$
(ii) For all edges $(u, v) \in(U \times U) \cap E$ $(A(u), A(v)) \in \varphi_{(c, v)}$.

$$
\begin{aligned}
& N O_{V, t}: \forall U \subseteq V,|U| \geqslant r / V \mid=t \text {-coboroggs } \\
& A: U \rightarrow(S \in) .
\end{aligned}
$$

we hove at least an edge $(,, V) \in E D(X X X)$ st

$$
(A(v) \times A(v)) \cap \varphi_{(v, v)}=\phi .
$$

Khot-Reger: UGC assumption is equirolent to the following.
$\forall r \in(0,1), t \in \mathbb{Z}_{30}$, $\exists x$ isis of label set) sit given an mestance Φ of OLC it is Nation to disfingurst $\Phi \in Y E S_{\nu}$ or $\Phi \in N O, D, t$.

Redaction to Vertex Cover:
gapp,ter $-U L C \rightarrow$ Vertex Cover
$\Phi \quad \longleftrightarrow G^{\circ}=(\nu, 8, \infty)($ vertex w her
YES, …g will hove an $\geqslant\left(\frac{1}{2}-\alpha\right) \cdot$ fiction indepent set

Cire, g hos a vertex cover go sine at most $\left(\frac{1}{2}+\alpha\right)$)
$\mathrm{NO}_{\mathrm{y}, \mathrm{t}} \ldots$ Every independent set in θ is g bine at most β Cress, every ra sine at least $-\beta$)
$\forall \alpha, \beta \in(0,1), \exists t, \nu$ such that above is trace.
t, D - will Ge constants to Ge spectied later.

$$
\begin{aligned}
& \rho=(\nu, \varepsilon, \omega) \\
& \nu=1 \times 2^{\Sigma}
\end{aligned}
$$

$$
((C, E), \Sigma, \psi)
$$

$$
\text { cove } V
$$

$$
F, G \subseteq \sum
$$

$|\Sigma|=r$

$$
(u, F) \sim(v, \sigma)
$$

Af
(i) $(u, v) \in E$
(ii) $(F \times G) \cap \Psi_{(c, y)}=\phi \quad\left(\frac{1}{2}-\varepsilon\right)$

$$
\omega(0, F)=\frac{1}{|V|} \cdot \frac{1}{2^{r}} ; \omega(0, F)=\frac{1}{|v|} \cdot\left(\frac{1}{2} \cdot \varepsilon\right)^{\text {Erased }} \text { weights }(\tilde{L}+\varepsilon)^{r \cdot / k \mid}
$$

Completeness: $\Phi \in Y E S_{\gamma}$.
h $\exists \mathrm{J} U \subseteq V,|U| \geqslant(1-8) / V \mid$ \& $A: U \rightarrow E$
of $\forall(u, v) \in(U \times O) \cap E$

$$
\begin{gathered}
(A(0), A(v)) \in \psi_{(0, v)} \\
\nabla=\{(0, F) / u \in U, A(0) \in F\}
\end{gathered}
$$

If is an inclependert set.

$$
\begin{aligned}
\omega(\sqrt{2}) \geqslant \begin{array}{c}
(1-8) \cdot \frac{1}{2} \\
(1-\nabla)\left(\frac{1}{2}-\varepsilon\right)
\end{array}=\frac{1}{2}-\frac{D}{2} . \\
=\frac{1}{2}-\alpha .
\end{aligned}
$$

Clam: $\Phi \in Y E S, \Rightarrow \sum$ has an mokpendent set

$$
\text { of } \operatorname{sige} \geqslant \frac{1}{2}(1-8) \text {. }
$$

Soundness:

Clam: There exists a $t=\epsilon(\nu, \varepsilon) \in \mathbb{N}$ sit
$\Phi \in N O_{\gamma, 6}$ then $\alpha(g) \leqslant 2 \nu$.
(rear largest independent set)
Proof by contradiction.
Assume, there exist $\sim \sim \sim 2$ sit $\omega(I) \geqslant 2$.
I_{v} - restriction of I to cloud $v \times 2^{\Sigma}$

$$
\begin{aligned}
& \text { le, } I V\left(r \times 2^{\Sigma}\right) \cap Z \\
& U \triangleq \sum r \in V / \omega\left(I_{r}\right) \geqslant 0 ? \\
& |0| \geqslant v / V \mid \quad \text { Gu averaging. }
\end{aligned}
$$

Goal：Find a t－coloring for O ．

$$
(0, F),(v, G) \in \underset{\sim}{T} .
$$

then either
（a）$(u, v) \notin E$
or
（ii）$(u, v) \in E$ ，$(F \times G) \cap \varphi_{(c, y)} \neq \phi$
For any $F^{\prime} \geq F, G^{\prime} \supseteq G$ ．there is no edge between（ $0, F^{\prime}$ ）＝$\left(V, G^{\prime}\right)$

If I is maximal，then each IV is monotone （up－closed）．

Digression into Extremal Combiratorics：
Eriedguts Theorem gives a soft comdr fir a 合 bo be approximated by a junta namely，low influence）

$$
\mu_{p}^{(x) x} \quad p \in(0,1) \quad f:[0,1]^{r} \rightarrow\{0,1\}
$$

Influence: $\operatorname{In} f_{i}^{p}(f)=\mathbb{F}{\underset{x}{-i} 1}^{x_{j} \mu_{p}^{(x r-1}}\left[\operatorname{Var}_{x_{i} \sim \mu_{p}}\left[f\left(x_{1} \ldots x_{i=1} x_{i, 1}, x_{i+1} \ldots, x_{n}\right)\right)\right]$

$$
=p(1-p){\underset{x}{x \sim p_{p}^{\otimes r r}}}_{P_{x}}\left[f(x) \neq f\left(x+e_{e}\right)\right]
$$

Total Influence: $I^{p}(f)=\sum \operatorname{In} f_{i}^{D}(f)$

Triedgats Theorem: Let $p \in(1 / 3,2 / 3)$ i $\delta \in(0,1)$ $f:[0,1\}^{r} \rightarrow\{0,1\}=I^{p}(f) \leqslant k$, then there exist a junta $g:\{0,1\}^{2} \rightarrow\{0,1\}$ depending on at most $\exp (O(\delta / \delta))$ variables st

$$
\operatorname{Pr}_{x \sim \neq \mu_{0}}[f(x) \neq g(x)] \leq \delta .
$$

Monotone functions:

$$
p_{p}(f)=c_{p}(x / f(x)=1)
$$

Tore mon-constant monotone foe. As goes from 0 to l as P goes from Rugs's Lemma: $\frac{d p_{p}(f)}{d p}=\frac{I^{p}(f)}{p(1-p)}$

Dirour-Satrea Lemma for Monotone Anchors:
Let $p \in(1 / 3,2 / 3)$. Fix $\delta \in(0,1)$, $f:\{0,1\}^{r} \rightarrow\{0,1$? then there exist a $q \in(p, p+\varepsilon / 2)$ and a junta g depending on at most $\exp \left(0\left(1 / \delta_{c}\right)\right)$ variables of

$$
\operatorname{Pir}_{x \sim \mu_{9} \otimes n}[f(x) \neq g(x)] \leqslant \delta .
$$

Applying above lemma to each of I I, $v \in O$ we have that there exist

$$
\begin{aligned}
& \Delta q_{r} \in\left(\frac{1}{2}-\varepsilon, \frac{1}{2}-\frac{\varepsilon}{2}\right) \\
& \Delta \quad f_{r}:[0,1]^{4} \rightarrow[0,1] \text { is a } \quad \in(\varepsilon, \delta)=\operatorname{axp}\left(0\left(\frac{1}{\delta \varepsilon}\right)\right)
\end{aligned}
$$

Define a t-coloriong.

$$
\begin{aligned}
A: O & \rightarrow(\Sigma \epsilon) \\
V & \mapsto C .
\end{aligned}
$$

We would like to show that for all edges $(0, r) \in(O \times U) \cap E$, we have.

$$
\left(C_{0} \times C_{c}\right) \cap \omega_{(c, v)} \neq \varnothing
$$

Cress A is a valid fooloring of $\mathrm{O}=$ hence
Φ is not a $N O_{r, t}$-mstonce .
Ir one such edge (uv).
$\psi_{(c, v)}\left(\begin{array}{lllllll}u & q_{0} & I_{u} & f_{u} & C_{u} \\ v & q_{v} & I_{v} & f_{v} & C_{v} & 2 \text { suppose } \\ \left(C_{u} \times C_{v}\right) \cap \psi_{(i, v)}=\varnothing\end{array}\right.$
To simplify notation assume $\mathscr{L}_{2, v}$ is the dentil permutation

$$
\underset{\text { Identify }}{\operatorname{Tan}}\left(\begin{array}{llllll}
v_{1} & q_{1} & I_{1} & f_{1} & G_{1} \\
v_{2} & q_{2} & I_{2} & f_{2} & C_{2}
\end{array} \quad C_{1} \cap C_{2}=\varnothing\right.
$$

x coordinates
Suffices to demostrate $F_{1} \in I_{1}=F_{2} \in I_{2}$

$$
\text { st }\left(v_{1}, F_{1}\right) \underset{\mathscr{G}}{\sim}\left(v_{2}, F_{2}\right) \text {. }
$$

Sample $F_{1}=F_{2} \subseteq[r]$ as follows.
For each $\sigma \in \sum$. $\left\{\begin{array}{l}\text { put } \sigma \text { in } F_{1} \text { col prob } 9 / \\ \text { put } \sigma \text { in } F_{2} \text { col prob } \frac{9}{2} \\ \text { put in neither a/ prob }\end{array}\right.$ $1-(9,+2)$
Any (F_{1}, F_{2}) sampled in the above manner are dogont.
$\left(u_{1}, F_{1}\right) \underset{q}{\sim}\left(c_{2}, F_{2}\right)$ ap probability \perp

All that we need to show are

$$
F_{1} \in I_{1} \quad, F_{2} \in I_{2}
$$

Cire $P_{r}\left[F_{1} \in I_{1}\right.$ a $\left.\left.F_{2} \in I_{2}\right]>0\right)$
What about

$$
\begin{aligned}
& P_{1}\left[f_{1}\left(F_{1}\right)=1 \wedge f_{2}\left(F_{2}\right)=1\right] \\
& =\operatorname{Pr}_{F_{1}}^{\operatorname{Pr}}\left[f_{r}\left(F_{1}\right)=1\right] \cdot \operatorname{Pr}_{\frac{F_{2}}{2}}\left[f_{2}\left(F_{2}\right)=1\right] \\
& \text { since } C O Q=\varnothing \\
& 2 f_{i} \text { is junta) } \\
& \mu_{q_{i}}\left(f_{i}\right) \geqslant \mu_{i}\left(I_{i}\right)-\delta \\
& \geqslant \mu_{p}\left(I_{i}\right)-\delta \quad \text { (where } p=\frac{1}{2}-\varepsilon \text {) } \\
& \geqslant \nu-\delta \\
& \geqslant \nu / 2 \text { if } \delta \leq \nu / 2 \text {. }
\end{aligned}
$$

Hence $\underset{F_{1,} F_{2}}{P_{r}} \quad\left(f_{1}\left(F_{1}\right)=1 \wedge f_{2}\left(F_{2}\right)=1\right] \geqslant 8^{2} / 4$.

$$
\begin{aligned}
& {\underset{F}{1}}_{P_{2}}^{P_{2}}\left[F_{1} \in I_{1} \wedge \mathcal{F}_{2} \in I_{2}\right] \\
& \geqslant \underset{F_{1} R_{2}}{P_{1}}\left[f_{1}\left(F_{1}\right)=1 \wedge \mathcal{F}_{2}\left(F_{2}\right)=1\right] \\
& \text { - } P\left[f_{1}\left(F_{1}\right)=1 \wedge \quad I_{1}\left(F_{1}\right) \neq 1\right] \\
& -\operatorname{Pr}\left[f_{1}\left(F_{2}\right)=1 \wedge I_{2}\left(F_{2}\right) \neq 1\right]
\end{aligned}
$$

$$
\begin{aligned}
& \geqslant \nu^{2} / 4-2 \delta \\
& \geqslant \nu^{2} / 8 \quad \text { if } \quad \delta \leqslant \nu^{2} / 16 .
\end{aligned}
$$

Set $\delta=\nu^{2} / 16 ; \quad t=t(\varepsilon, \delta)$.
P $\left[F_{1} \in I_{1} \wedge F_{2} \in I_{2}\right]>0$.
Hence $I_{r} I_{2}$ are not on ind
set

Part II:
Improved $P C P$ constructions. CPCPs awol very low soundness errear bypassing the use II repetition theorem)

PCP Theorem \rightarrow Parallel Repetion $1 / \mathrm{mm}$
(Low-Degree Test)
gap,0.v9 - LC hardness

$$
\begin{aligned}
& \text { gap /is - LC hardness } \\
& \text { Cream - } n^{\text {o(logy/r)time) })}
\end{aligned}
$$

Qu: Con we Glom gapis $-\angle C$ harchness for $\delta=0(1)$)
Application: [Forge] gap,1/ogn $-\angle C \rightarrow \ln n)(1-\varepsilon)$-opprece SET Cover.

Two potentiol approoches:
(1) lmopeove $\angle D T$ to get PCP of very low soundiness ercor Gapassing II repetition thm
(2) "Derandomire" the I repetition tirm.
[Feige-Kilion] - Streong negative results. Crule out invercse exponentid decay)
(1) 6.) Raz-Safra = Arora-Scolan Cmproved LDT andybes)
(6) Aphabet Redachion Eechnigue
(Moshtortz- Raz)
Dinur- Alarsha.
(2) Inverse Pdynomial Decondomined II repethon thm
Open (in full genercalify)
Dmare-Merr:(a) Con do this for "Eneare" garmes
(ii' Blowup alphatet to get linean
(iii) Apply alphatet reedn structore. tectrigace from (6).

Low-Degree Test
F-finite fold; m-dimension; d-degree

$$
f: \mathbb{F}^{m} \rightarrow \mathbb{F}
$$

$A:\{$ lines $\} \rightarrow P(1, d)$

$$
\angle D T^{f, d}(\mathbb{F}, m, d)
$$

$$
\text { r. Pack } x e_{R} \mathbb{F}^{m}
$$

2. Pict $l \ell_{R}\{$ lines $/ l a x\}$
3. Query f on $x=$ At on l
4. Accept if $f(x)=A(e)(x)$

Frieall-Sudon LDT Sounchess Theorem. $\mathcal{J C}$ $\forall \varepsilon \in(0,1)$, t-finite field, m, d of
$F \geq \max \left\{C d, O\left(\frac{1}{\varepsilon^{2}}\right)\right\}$. Then the following holds $\forall f, A$.

$$
\operatorname{Pr}[(f, A) \text { passes } \angle D T] \geqslant 1-\delta \text { for } \delta<\frac{1}{8} \cdot \varepsilon
$$

$$
\delta\left(f_{1} \quad P(m, d)\right) \leqslant 4 \delta .
$$

What is $\operatorname{Pr} \angle \angle D T$ accepts $7 \geqslant \varepsilon$
*?
I $p \in P(m, d)$, agr $(f, p) \geqslant \varepsilon^{\prime}$. for
some $\varepsilon^{\prime}=\varepsilon^{\prime}(m d$, 领
Averora-Sudon: Improved LDT anolys's
\forall fields IF, dim m, deg g. There exists

$$
\begin{aligned}
& \varepsilon_{0}=m p d_{y}\left(d, \frac{1}{|\mathbb{F}|}\right) \text { sit. } \\
& \frac{\mathbb{E}}{e}[\operatorname{agr}(f \mid e, P(1, d))] \geqslant \varepsilon \Rightarrow \operatorname{agr}(f, P(m, d)) \geqslant \varepsilon-\varepsilon_{0} .
\end{aligned}
$$

Raz-Safrea: Variant of Lines-pont $\angle D T$ Plone-point random line \rightarrow random plane.
test

Raz-Safra $\angle D T$ anolyses \forall fields \mathbb{F}, dim $m \geqslant 2$, deg d., There exist

$$
\varepsilon_{0}=m \cdot p o l y\left(\frac{d}{| | F \mid}\right) \text {, st }
$$

$$
\mathbb{F}[\operatorname{agr}(f / s, P(2, d))] \geqslant \varepsilon \Rightarrow \operatorname{agr}(f, P(m, d)) \geqslant \varepsilon \cdot \varepsilon .
$$

Comparison Getween
Arora-Sudan
Paz-Satrea
(1)

Cline-point
plone-point
(2)

$$
\varepsilon_{0}=m \cdot p o b_{y}\left(d_{1}, \frac{1}{\mid \nmid T}\right)
$$

$$
\varepsilon_{0}=\text { m.poly }\left(\frac{d}{\| F t}\right)
$$

(3)

Algetraic
Combinotorial.

