Today

- Raz-Safra $\angle D T$
- PCPB from $\angle D T$
- Alphaber Reduction.

CSS. 330.1 : PCP
Limits of Approximation Algorittims
Lecture 11 (2023-4-21)
Irotructor: Prahladh Florsha

Recop from last tirme:
Pone. Pont test [Roz. Safral.
\forall fields \mathbb{F}, dim $m \geqslant 2$, deg d., There exrst

$$
\begin{aligned}
& \varepsilon_{0}=m \text { poly }\left(\frac{d}{|I F|}\right) \text {, s.f } \\
& \left.\frac{\mathbb{F}}{\frac{1}{b}} \int_{\text {iplare }} \operatorname{agr}\left(\left.f\right|_{s,} P(2, d)\right)\right] \geqslant \varepsilon \Rightarrow \operatorname{agr}(f, P(m, d)) \geqslant \varepsilon=\varepsilon_{0} .
\end{aligned}
$$

Plan for todoy:

1. High level bketch of Paz-Satra Andysus
2. Constructs $P \subset P$ from $\angle D T$
3. Apphabet Reduction.

Paz. Safra Low. Degree \%es\%
Lecture: $m=3$

Raz-Safrea (plones in a cube)
$\exists \varepsilon_{0}=\operatorname{poly}\left(\frac{d}{d \pi}\right)$ of $\forall f: \mathbb{F}^{3} \rightarrow \mathbb{F}$

$$
\operatorname{agr}(-1, P(3, \alpha)) \geqslant \underset{\text { s-plane, }}{\mathbb{E}}\left[\operatorname{agr}(f(s, P(2, \alpha))]-\varepsilon_{0}\right.
$$

The bare proof generalipes to the following?
Raz-Safra ($m-1$)-hyperplones in mamensions) $J \varepsilon_{0}=\operatorname{poly}\left(\frac{d}{(1 \pi t}\right)$ st $\forall f: F^{3} \rightarrow \mathbb{F}$

$$
\operatorname{agr}(-l, P(m, d)) \geqslant \underset{\substack{s-(m-r) \\ \text { dim trperptone. }}}{\mathbb{E}} \operatorname{agr}[f / /, P(m \cdot 1, d))]-\varepsilon_{0}
$$

dimet tupesplone.
loduction:

$$
\text { luctron: } \operatorname{agr}(f, P(m, d)) \geqslant \underset{\text { b-ploone }}{F} \operatorname{Cogr}(f / 8, P(2, d))]-(\operatorname{cos-2}) \varepsilon_{0}
$$

Planes in a Cobe:

$$
\begin{aligned}
& \left.f: F^{3} \rightarrow \mathbb{F} \quad \therefore \text { Fisplones }\right\} \rightarrow P(2, d) \\
& \Delta \mapsto \text { best-fit polynomid } \\
& \text { for that plone } \\
& \text { (breat tres artintril) } \\
& \delta \triangleq \underset{\substack{P \\
s, x}}{P_{r}}[f(x)=F(s)(x)]
\end{aligned}
$$

$$
\underset{s, s^{\prime}}{P_{r}}\left[F(s) /\left._{s n s^{\prime}} \equiv F\left(s^{\prime}\right)\right|_{s \cap s^{\prime}}\right] \triangleq \varepsilon .
$$

$$
\begin{aligned}
& \underset{x, 0,0^{\prime}}{P_{x}}\left[F(s) / x=f(x)=F\left(s^{\prime}\right) \mid x\right] \\
& =\mathbb{E}_{x}\left[(\underset{\substack{r \rightarrow x \\
s \rightarrow x}}{ }[F(s)(x)=f(x)]]^{2}\right] \\
& \left.\geqslant\left(\frac{E}{x} \int_{s \rightarrow x}^{P_{x}}[F(s)(x)=f(x)]\right]\right)^{2} \\
& =\delta^{2}
\end{aligned}
$$

Hence,

σ
$V=$ Planes
E= Planes that are parallel or consistent of each other.
C Consistent: If two planes agree on their intersection)
Dense graph (at least $\delta^{2} / \mathrm{V} /^{2}$)
Want to prove: Large digue in the greaph

What prevents cliques:

Lemma: Suppose $\left(s_{1}, x_{2}\right) \notin E$ in the consistency graph

$$
\begin{aligned}
P_{s}\left[\left(\Delta, s_{1}\right)\right. & \left.\in E=\left(s, s_{2}\right) \in E\right] \\
& \leq \frac{d+1}{q}
\end{aligned}
$$

Pruning Process:

1. Do the following
(a) If thence exists a vertex' of degrees $\leq 2 \sqrt{\varepsilon}|V|$, then remove all edges out y v.
(6) Othercuise remove all edges between.

$$
N(v)=N^{2}(v) \text {. }
$$

Find product (port peconing)
G - onion of cliques.
At least one cirque must be large rosterpolate the large dione to - blain a global polynomsol.

Paz-Safreo:
$\exists \varepsilon_{0}=m$ poly $\left(\frac{d}{\mathbb{N} T}\right)$ sit $V f: \mathbb{F}^{m} \rightarrow \mathbb{F}$

$$
\mathbb{E}\left[\operatorname{agr}(f(s, P(2, d))] \geqslant \varepsilon \Rightarrow \operatorname{agr}(f, P(m, d)) \geqslant \varepsilon-\varepsilon_{c} .\right.
$$ spore

Egarvalent formulation
List-decoding Stat:
$J \delta_{0}=m p o l y,\left(\frac{d}{||r|}\right)$, of $\forall \delta \geqslant \delta_{0}$
given any $f: \mathbb{F}^{m} \rightarrow \mathbb{F}, \exists Q_{1} \ldots Q_{L} \in P(m, d)$ where $L=O(1 / \delta), \forall F:$ planes $\rightarrow P(2, d)$

$$
\underset{x, s}{\operatorname{Pr}_{x}}\left[f(x)=F(\delta)(x) \wedge \nexists i \in[\leq],\left.Q_{i}\right|_{\delta} \equiv F(8)\right] \leqslant \delta .
$$

Step 2 of today Phon:
Construct o PCP from this $\angle D T$.
Simpler Question:
Is $f: F^{m} \rightarrow \mathbb{F}$ dose to a low-degree poly Q: $\mathbb{F}^{m} \rightarrow \mathbb{F}$ such that $Q / A_{m} \equiv 0$.
Claim: $Q_{/ A 1^{m}} \equiv 0$ Af $f Q_{1} \ldots Q_{m}$ st

$$
Q(x)=\sum_{i=1}^{m} g_{H 1}\left(x_{i}\right) Q_{i}(x)
$$

where $g_{H 1}(z)=\prod_{n \in H}(x-h)$

Proof:

$$
\begin{aligned}
& \bar{q}: \mathbb{F}^{m} \rightarrow \mathbb{F}^{m} \\
& \bar{q}\left(x, \ldots x_{m}\right)=\left(q_{1}(x), q_{2}(x) \ldots, q_{m}(x)\right)
\end{aligned}
$$

where each $q_{i}-Q_{i}$ honest proof l.
Zero-on. Subcube Test:
Proof: $\overline{9}: F^{m} \rightarrow F^{m+1}$
Test. T. Pick a ranaboms plane s
2. Query \bar{q} on 6 .
3. Check that $\bar{q}_{0} / \mathrm{b} 18$ low degree and reject otherwise
4. Accept $q_{0}(x)=\sum_{4}\left(x_{i}\right) f_{i}(x)$, $\forall x \in s$.

Ffanctions $\bar{q}: \mathbb{F}^{m} \rightarrow \mathbb{F}^{m+}$
$\mathcal{J} \bar{Q}_{1} \ldots \bar{Q}_{L}: \mathscr{F}^{m} \rightarrow \mathbb{F}^{m+1}$ (honest proofs)
Pr $\overline{9}$ passes the zero. on. Siblcube test

$$
\left.1 \quad \exists i \notin[A], \quad \dot{q} / s \not \equiv Q_{i} \cdot / \overline{ }\right] \leqslant \delta+\frac{\angle d}{\dot{q}}
$$

Can do some thing for arrthmetization:
Given 3SAT formula Φ.

- test. II which queseres a 3 dim abject $\Omega \mathrm{n} \mathbb{F}^{m}$
$\forall \bar{q}: \mathbb{F}^{m} \rightarrow \mathbb{F}^{0(m)}, \forall \delta$
$\mathcal{J} \bar{Q}_{1} \ldots \bar{Q}_{L}: \mathscr{F}^{m} \rightarrow \mathbb{F}^{\alpha(m)}$ (honest prod $\sqrt{3}$)
$P_{r}\left[\bar{q} / \Omega_{2}\right.$ passes test $\left.\left.\pi 1 \nexists i \bar{Q}_{i}\right|_{\Omega} \neq \overline{9} / \Omega\right] \leqslant \delta$.

$$
2
$$

Converting to Label Cover Problem

$$
\bar{q}: \mathbb{F}^{m} \rightarrow \mathbb{F}^{\alpha(m y}
$$

gapes - $\angle C$ is
Qu: Area we done?
No, lore aptobet sap.

