
CSS.330.1 10 Feb 2023

Problem Set 1

• Due Date: 24 Feb 2023

• Turn in your problem sets electronically (LATEX, pdf or text file) by email. If you submit handwritten solutions,
start each problem on a fresh page.

• Collaboration is encouraged, but all writeups must be done individually and must include names of all collabo-
rators.

• Refering sources other than class notes is strongly discouraged. But if you do use an external source (eg., other
text books, lecture notes, or any material available online), ACKNOWLEDGE all your sources (including col-
laborators) in your writeup. This will not affect your grades. However, not acknowledging will be treated as a
serious case of academic dishonesty.

• The points for each problem are indicated on the side.

• Be clear in your writing.

1. [weighted version of vertex cover] (15)

Consider the following weighted version of Vertex Cover (W-VC).

Input: Undirected graph G = (V, E) with weights w : V → Z on the vertices.
Output: A cover C ⊆ V of the vertices such that for every edge (u, v) ∈ E either u ∈ C or v ∈ C.
Objective: Minimize the weight of the cover (i.e., ∑v∈C w(v)).

Observe that the 2-approximation algorithm for the unweighted version discussed in lecture does
not extend to this weighted version. Design an alternate deterministic 2-approximation algorithm for
W-VC.

[Hint:FirstdesignaLPrelaxationoftheproblemwithvariablesforeachvertexinthegraph
andthendeterministicallyroundtheLPtoobtaina2-approximatesolution.]

2. [gap preserving reductions] (15)

A reduction from one gap problem gap-Aα to gap-Bβ (for some 0 < α, β < 1) is said to be a gap
preserving reduction if it maps YES instances of gap-Aα to YES instances of gap-Bβ and NO instances
of gap-Aα to NO instances of gap-Bβ. The existence of a gap preserving reduction from gap-Aα to
gap-Bβ implies that if it is NP-hard to approximate problem A to within α, then it is NP-hard to
approximate problem B to within β.

For every α > 0, show that there exists a and ε, β and a gap preserving reduction from gap-3SATα to
gap-2SAT1−ε,β. Hence, conclude that there exists a β ∈ (0, 1) such that approximating MAX2SAT to
within β is NP-hard.
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Note:The gap problems gap-3SATα and gap-2SAT1−ε,β are defined as follows.
gap-3SATα:

YES = {φ|φ is a satisfiable 3CNF formula}

NO = {φ|φ is a 3CNF formula such that no assignment satisfies more

than α fraction of the clauses}

gap-2SAT1−ε,β:

YES = {φ|φ is a 2CNF formula with an assignment that satsifies

at least (1− ε)-fraction of the clauses}

NO = {φ|φ is a 2CNF formula such that no assignment satisfies more

than β fraction of the clauses}

3. [three vs. two queries] (15)

In class, we stated that Håstad proved the following strengthening of the PCP Theorem which shows
that every language in NP has a PCP with 3 queries and soundness error almost 1/2.

[Håstad] ∀ε > 0, CIRCUITSAT ∈ PCP1−ε,1/2+ε[O(log n), 3].

Suppose we were able to further strengthen the above result to prove that CIRCUITSAT has a 2 query
PCP (i.e., CircuitSAT ∈ PCP1,s[O(log n), 2] for some 0 < s < 1), then show that then NP = P!

Thus, Håstad’s PCP is optimal with respect to the number of queries till the status of the P vs. NP
question is resolved.

4. [inapproximability of clique via graph products] (8+7=15)

In class, we proved the following theorem showing the inapproximability of clique. 3-COLOR ∈
PCPc,s[r, q] implies it is NP-hard to approximate MAXCLIQUE to within a factor s/c as long as 2r+q =

poly(·). This resulted in the following inapproximability result for MAXCLIQUE assuming the PCP
Theorem (i.e., 3-COLOR ∈ PCP1,1/2[O(log n), O(1)]).

∃α ∈ (0, 1), it is NP-hard to approximate CLIQUE to within α (1)

We then applied sequential repetition on the PCP (i.e., PCPc,s[r, q] ⊆ PCPck ,sk [kr, kq] for all k ∈ Z) to
obtain the following strengthening of the above result.

∀α ∈ (0, 1), it is NP-hard to approximate CLIQUE to within α (2)

2



In this problem, we will discuss an alternative approach to prove this result using graph products.
For a graph G = (V, E) we define the square of G, G2 = (V′, E′), as follows: The vertex set V′ equals
V2, the set of pairs of vertices of G. Two distinct vertices (u1, u2) and (v1, v2) are adjacent in E′ if and
only if (u1, v1) ∈ E and (u2, v2) ∈ E.

(a) Prove that the squaring operation defined above satisfies ω(G2) = (ω(G))2 where ω(G) denotes
the size of the largest clique in G.

(b) Use (a) to given an alternate proof of (2) from (1).

5. [linearity test of 3 functions] (10)

Consider the following modification of the BLR-linearity test towards testing linearity of 3 functions
f , g, h : {0, 1}n → {1,−1} simultaneously.

BLR-3-Test f ,g,h : “ 1. Choose y, z ∈R {0, 1}n independently

2. Query f (y), g(z), and h(y + z)

3. Accept if f (y)g(z)h(y + z) = 1. ′′

Clearly, if the three functions f , g, h are the same linear function, then the above test accepts with
probability 1. Suppose one of the three functions f , g, h (say f ) and its negation (i.e., − f ) is δ-far from
linear (this means maxα | f̂α| ≤ 1− 2δ), show that

Pr
y,z
[BLR-3-Test f ,g,h rejects ] ≥ δ.

[Hint:TheCauchy-Schwarzinequality(∑aibi)
2
≤(∑a2

i)·(∑a2
i)maycomeuseful.]

6. [recycling queries in linearity test] (3 + 6 + 3 + 3 = 15)

In lecture, we analyzed the soundness of the BLR-Test to show that if f is (1/2− ε)-far from linear,
then the test accepts with probability at most 1/2 + ε. If we repeat this test k times, we obtain a
linearity test which makes 3k queries and has the following property: if f is (1/2− ε)-far from linear,
then the test accepts with probability at most (1/2 + ε)k = 1/2k + δ. Thus every additional 3 queries
improves the soundness by a factor of 1/2. In this problem, we show that this can be considerably
improved.

Assume that both f and − f are (1− ε)/2-far from linear (i.e., maxα | f̂α| ≤ ε). Consider the following
linearity test (parameterized by k).

Test
f
k : “ 1. Choose z1, z2, . . . , zk ∈R {0, 1}n

2. For each distinct pair (i, j) ∈ {1, . . . , k}

Check if f (zi) f (zj) f (zi + zj) = 1.

3. Accept if all the tests pass. ”

Observe that this test makes at most k + (k
2) queries. We will show below that the soundness of the
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test is roughly 2−(
k
2), thus showing that every additional query improves the soundness by a factor of

1/2 (almost).

Assume that both f and − f are (1− ε)/2-far from linear.

(a) Show that the acceptance probability of the above test is given by

Pr[acc] = Ez1,...,zk

[
∏
i,j

(
1 + f (zi) f (zj) f (zi + zj)

2

)]

=
1

2(
k
2)
· ∑

S⊆([k]2 )

Ez1,...,zk

 ∏
(i,j)∈S

f (zi) f (zj) f (zi + zj)


(b) Consider any term in the above summation corresponding to a non-empty S

(i.e., Ez1,...,zk

[
∏(i,j)∈S f (zi) f (zj) f (zi + zj)

]
). Suppose (1, 2) ∈ S. Show that

Ez1,...,zk

 ∏
(i,j)∈S

f (zi) f (zj) f (zi + zj)

 ≤ Ez1,z2 [ f (z1 + z2)g(z1)h(z2)]

for some functions g, h : {1,−1}n → {±1}.

[Hint:Fixallthevariablesotherthanz1andz2suchthatthattheexpectationismaximized.]

(c) Use the result of item 5 to conclude that the expression in the above (for non-empty sums) is at
most ε (i.e., Ez1,...,zk

[
∏(i,j)∈S f (zi) f (zj) f (zi + zj)

]
≤ ε for non-empty S).

(d) Conclude that Pr[acc] is at most 2−(
k
2) + ε.

7. [derandomized linearity testing] (3 + 2 + 4 + 4 + 2 = 15)

A subset S ⊆ {0, 1}n is said to be an ε-biased set if for all α ∈ {0, 1}n \ {0n}, we have |Prx∈S[〈x, α〉 =
1]− Prx∈S[〈x, α〉 = 0]| ≤ ε.

Consider the following modification of the BLR test to check if f : {0, 1}n → {±1} is linear:

S-derandomized BLR-Test f : “ 1. Choose y ∈R {1,−1}n and z ∈R S independently

2. Query f (y), f (z), and f (y + z)

3. Accept if f (y) f (z) f (y + z) = 1. ′′

Observe that the number of random coins required for this test is only n + log2 |S|. There exist ex-
plicit constructions of ε-biased sets S of size at most O(n2/ε2). Thus, the randomness is at most
n + O(log n + log(1/ε)) as opposed to 2n for the (non derandomized) BLR test. In this problem, we
will show that this S-derandomized test performs as well as the BLR test in terms of soundness. More
precisely, we will show that Pr[acc] ≥ (1 + δ)/2, then there exists a Fourier coefficient of absolute
value at least

√
δ2 − ε, thus matching the soundness of the BLR test but for the ε loss factor.

(a) Show that if S is an ε-biased set then |Ex∈S[χα(x)]| ≤ ε forall α 6= 0n.
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(b) Show that if f is a linear function (i.e, f = χβ), f passes the S-derandomized BLR-Test with
probability 1.

For two functions f , g : {0, 1}n → R, define the inner product 〈 f , g〉S and S-norm ‖ f ‖S as
follows:

〈 f , g〉S = Ez∈S [ f (z)g(z)] ; ‖ f ‖S =
√
〈 f , f 〉S.

(c) For an arbitrary f : {0, 1}n → {±1}, show that the acceptance probability of the above test is
given by

Pr[acc] =
1
2

(
1 + ∑

α

f̂α
2 · 〈 f , χα〉S

)

=
1
2

(
1 +

〈
f , ∑

α

f̂α
2
χα

〉
S

)
.

(d) Use the fact that S is an ε-biased set and f is a {±1}-valued function to prove that∣∣∣∣∣
〈

f , ∑
α

f̂α
2
χα

〉
S

∣∣∣∣∣ ≤
√
(1− ε)∑

α

f̂α
4
+ ε.

(e) Conclude that if the S-derandomized BLR-Test accepts with probability at least (1 + δ)/2, then
there exists an α such that | f̂α| ≥

√
δ2 − ε.
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