International Journal of Foundations of Computer Science Vol. 6 No. 4 (1995) 417-430
(© World Scientific Publishing Company

THE QUINE-BERNAYS COMBINATORY CALCULUS

N. RAJA
Computer Science Group, Tata Institute of Fundamental Research,
Bombay 400 005, India
E-mail: raja@tifrvaz.tifr.res.in

and

R. K. SHYAMASUNDAR
Computer Science Group, Tata Institute of Fundamental Research,
Bombay 400 005, India
E-mail: shyam@tifrvaz.tifr.res.in

Received 3 November 1994
Revised 4 August 1995
Communicated by R. Parikh

ABSTRACT

We develop a theory for constructing Combinatory Versions of A-calculi. Our theory
is based on a method, used by Quine and Bernays, for the general elimination of variables
in formulations of first-order logic. Our Combinatory Calculus presents a significant
departure from those propounded by Schonfinkel and Curry. A non-trivial extension
of Quine’s technique is developed, to go beyond the realm of first-order quantification
theory, and cover the entire A-calculus. The system consists of five Combinators, powerful
enough to represent A-abstractions over arbitrary terms. The Combinatory Calculus is
shown to have the property of functional completeness. Algorithmic translations from
the A-calculus to the Combinatory Version, and vice-versa are provided. The approach
has the distinct advantage of being able to encode combinatory formulations of process
algebras.

Keywords: Combinatory logic, Lambda-calculus, Functional completeness, Variable-
elimination technique.

1. Introduction

The notion of substitution repeatedly occurs as a “primitive” in theories of logic

and models of programming. On closer examination, substitution appears to be
so substantially complex, that one shudders at the thought of attaching the qual-
ifier “primitive” to it anymore. This can be demonstrated easily in the context
of A-calculus.! The A-calculus models applicative behavior using the notion of 3-
reduction. At the heart of G-reduction lies the mechanism of substitution. Consider

(Az.M)N LA M[z — N] where M and N denote terms; M[z «— N] denotes the

result of substituting N for the free occurrences of z in M, and is defined as:

z[z — N]= N;

417

418 N. Raja & R. K. Shyamasundar

yle — Nl=y, ifz#y;
(Ay.My)[z — N] = dy.(My[z — NJ]), if y# 2 and y & FreeVar(N);
(M1 Ms)[x — N] = (Mi[z — N])(Mz[z — NJ]).

The very complexity of substitution has attracted the attention of many re-
searchers who have proposed distinct ways of making it more manageable in differ-
ent contexts.? ~® The most remarkable way to completely do away with substitution
was independently discovered by Schonfinkel® and Curry.” They showed, in first-
order predicate logic, that just two basic combinators — “S” and “K” — along with
appropriately placed parentheses — “)” and “(” — are sufficient to do away with
the complete apparatus of bound variables, binding constructs, and the substitution
mechanism. However, with the introduction of “S” and “K”, the expressive power
of the resulting combinatory notation goes beyond the confines of first-order logic,
and turns into a language for the entire theory of sets and classes. This becomes
clear when we find that the very same system can be used to embed the A-calculus
as well.® The reason for this ‘explosive increase’ in expressive power can be traced to
the fact that the “S” and “K” combinators support self-application, and further can
also operate on each other. Such kind of applicative freedom makes rather extreme
semantic demands on the universe in which these combinators reside — requiring
such an universe to transcend the boundaries of sets and classes.®

Importantly, this technique was designed while keeping in mind that the domain
of discourse, (from which the variables have to be eliminated), would satisfy certain
properties. For example, it presumes that the terms of the domain (after stripping
away the abstraction mechanisms), have a recursively defined <operator><operand>
structure, till one reaches the atomic elements. (This structure is evident from the
definition of the “S” and “K” combinators.) The A-calculus is an example of such
a structure, where the atomic elements are just variables.

Another ingenious move in completely explaining away substitution was made a
few decades later independently by Quine® and Bernays.® They devised new Combi-
nators, which, when introduced in any formulation of first-order logic, could do away
with the entire baggage that accompanies variables (bound variables, binding con-
structs and substitution), while at the same time importantly, without altering the
expressive power of the formulation. A significant point of departure of the Combi-
nators designed by Quine and Bernays is that they neither support self application
nor do they operate on each other. The combinators act only on the predicates
present in the domain of discourse, and give rise to new predicates which are again
defined over the original domain alone. The important feature of this technique is
that it does not presuppose any kind of term structure of the domain of discourse.
However, the technique requires that the domain consist of at least two distinct
syntactic sorts; and that the elements of these sorts play distinct roles, say akin to
program and data. In fact, in the language of computer science, there is a clear
distinction between program and data, and the twain are never confused with each
other. Thus, the semantic basis for these combinators can be found within ordinary

The Quine-Bernays Combinatory Calculus 419

set theory. Unfortunately, in spite of their semantic simplicity and tractability, these
combinators have remained unnoticed and have thereby not received due attention.

In this paper, we examine the use of the technique of Quine and Bernays to
derive a combinatory version of the A-calculus (a unisorted theory, and the de facto
programming language used by theorists). At first sight, the goals seem irrecon-
cilable — on the one hand we want to keep the distinction between program and
data, while on the other hand the computational power of the A-calculus is derived
very much by blurring this distinction. So, it appears as if we would either land
in a system with reduced expressive power, or still worse in an inconsistent one.
On the contrary, we demonstrate in this paper that, such a construction, albeit
non-trivial, is possible. We build a combinatory version, which while maintaining
a clean separation between program and data, uses a strategy of controlled reifica-
tion to ensure that the requirements of expressive power and consistency are not
compromised with. We show that the Combinatory Calculus has the property of
functional completeness. We provide algorithmic translations from the A-calculus
to the Combinatory Version, and vice-versa. We then present a proof of correctness
of the two translations up to f-equality.

The organization of the paper is as follows: Sec. 2 briefly reviews some back-
ground material; Sec. 3 motivates and introduces a combinatory version, with five
basic combinators, for the A-calculus; Sec. 4 proves functional completeness of the
set of combinators, and provides algorithmic translations from the A-calculus to
QBC and vice-versa; Sec. 5 surveys other approaches which eliminate substitution;
and finally Sec. 6 concludes the paper.

2. Background

In this section, we review some background material relevant to this work.

2.1. Combinators for a first-order theory

The combinators we design in this paper arise from a technique that was formu-
lated independently by Bernays and Quine. However, there are slight differences
in the methods proposed by Bernays and Quine. In this subsection, we give a very
brief introduction to the method advocated by Quine.®'0 This will give the reader
a flavor of the combinators.

Consider a first-order predicate logic, with:

Alphabet: z, y, z... individual variables;

a, b, ¢... individual constants;
P, Q predicate symbols of given arities;
3 quantifier.

Terms: As usual.

Formulas: As usual.

420 N. Raja & R. K. Shyamasundar

In order to eliminate variables and quantifiers from every formula of the above
theory, Quine introduced the combinators — inv, Inv, Ref, Der — which operate
iteratively on the predicates P and @, to yield new predicates which are in turn
defined over the original universe only. The combinators are defined as:

(inv P) a1 ... Zp_g &n_y n iff P oy ... Zp_o @y Tp_1;

(Inv P)zy ... &p_q 2 iff Py a1 ... Tpoq;

(Ref P)zy ... wp iff Pay ... 2, 2,; and

(Der P)wy ... xp_q iff 32, P2y ... ®y_1 &y, where z, is a new variable.

As an example, consider the formula, dz Pzyxzz. In order to rid the quantifier 3,
and the bound variable x, from this formula, we have to use the combinators. Trans-
form the formula 3z Pzyzz to its equivalent, 3z (inv P) zyzz. Then transform,
Jz (inv P) xyza to the equivalent formula, 3z (Ref Inv inv P) yzz. With the use
of ‘Der’, we achieve the final step of the transformation as (Der Ref Inv inv P) yz,
which has neither a quantifier, nor a bound variable.

2.2. The type-free A-calculus

Terms: Terms are built from variables (z,2’,... € var), with the help of the
application and lambda-abstraction operations.

t o= wvar [t | Azt
Azioms: t = t for atomic terms;

(Az.t) = Ay.(tfxr — ¥)) (a-renaming);
(Azt1)ty = t1[e — t5] (f-conversion).
Deduction Rules:

tl Itz tlztz tlztz tlztg tlztg tg It3
t1t3 = t2t3 t3t1 = t3t2)\$.t1 =)\‘I.tg tz = tl tl = t3

3. Quine-Bernays Combinators for the A-calculus

In this section, we develop Quine-Bernays Combinatory Calculus (QBC), for the
type-free A-calculus. In the first subsection, we define the calculus formally. The
second subsection clarifies the definition of combinators and transformation rules
through a series of illustrative examples.

3.1. Formal Definition of QBC

Conventions 1 A term of the Quine-Bernays Combinatory Calculus is called
a QBC-term. C is a notation for any finite string of Basic Combinators. 1 is a
notation for any finite string of QBC-terms. € is a notation for an emply siring.
M,N,L, t,t1,ts... is a syntactic notation for arbitrary QBC-terms. z, y, z is a
syntactic notation for arbitrary variables. tita...t, stands for (...(t1t2)...tn)
(association to the left). The symbol = denotes syntactic equality.

The Quine-Bernays Combinatory Calculus 421
The formalism of the Quine-Bernays Combinatory Calculus (QBC) is given below:
Notation 1 (Alphabet) The alphabet of QBC comprises:

Variables: zg, Z1,...;

Explicit symbol denoting A-calculus application: o;
Basic Combinators: Act, Ref, Inv, inv, Prj;

B e o~

Auxiliary symbols:), (.

Definition 1 (Terms) QBC-terms are inductively defined:

1. Any variable is a term;
o 1s a term;

3. Ifé is a finite string of basic combinators, and t is a finite string of terms, then
(C_") is a term;

4. Ifty and ty are terms, so is (t1ta).

Transformation Rules 1 (Axiom Schemes) The aziom schemes for equality
i QBC follow:

ActioN (At CT)M =, (CT M) ;

REFLECTION (Ref Ct... th) =c¢ ((j ..ty ty)

MaJjoR INVERSION (Inv Gt .. dno1tn) = (é tal1 .. tn_1);

MINOR INVERSION (inv c t1 . tnoatnoaty) = (é t1.. thoatntn_1);
ProJECTION (Prj c t1. . tho1tn) = ((j t1.. tho1);

COMPOSITION (0 t1 ta... tn) =¢ ((t1 t2)... tn);

REIFICATION (t1ta... ty) = tita... tn.

Transformation Rules 2 (Deduction Rules) The deduction rules follow:
ReFLEXIVITY M =, M;

TransiTivitY M =. N, N =. L = M =, L.

3.2. Informal Description of the Combinators and Transformation Rules

We introduce the symbol ‘o’ to explicitly denote the operation of A-application.
This will help us to write A-terms without the use of parenthesis. Hence, instead of

‘¢y’, ‘®(yz)’, and ‘(xy)z’, we shall write ‘ozy’, ‘oz oyz ’, and ‘o o xyz’ respectively.
Though we shall write A-terms without parenthesis, we shall use parenthesis in the

formation of QBC-terms, and represent QBC-application by concatenation.

422 N. Raja & R. K. Shyamasundar

3.2.1. Combinator“Act”

Consider the A-term Az. o yx. This represents a term which is ready to accept
an input. On being provided with the input “a”, it computes to the term oya. Note
that in the above abstraction, the variable y is free, only is bound.

We introduce the Basic Combinator “Act” to represent the action of accepting
an input. The Action transformation rule reads:

AcTtioN (Act CYM =, (CT M),

where C' denotes any finite string of Basic Combinators, i denotes any finite string
of QBC-terms, and M denotes any QBC-term. We form the QBC term (Act o y)
which corresponds to the above A-abstraction. When the term (Act o y) is provided
with term a, then by the “Action” transformation rule we get:

(Act o y)a =, (o y a).

3.2.2. Combinator “Ref’

Consider the abstraction (Ay.oo zyy). In order to get the equivalent QBC-term,
we focus on o o xyy with a view to eliminate the bound variable y.

Now, we introduce the next Basic Combinator “Ref” and the “Reflection” trans-
formation rule.

REFLECTION (Ref Cty... tn) = ((j t1... e ty) .

Note that the combinator Ref duplicates the last element in the string of terms.
We get
(Ref oo zy) =, (coayy).

Next to eliminate the variable y from (Refoo zy) we use the Combinator Act intro-
duced in the last subsection, and form (Act Refoo). The QBC-term (Act Re foo x)
corresponds to the A-term (Ay. o ozyy). The application (Act Ref oox) a leads to:

(Act Refoo z)a =, (Refoo xza) (Action)
=; (oo zaa) (Reflection).

It can be seen that this is exactly the term, we require.

3.2.3. Discussion

Before we go on to consider more complicated terms, there are certain features
of QBC-terms that we wish to point out. A QBC-term could be just a variable or
it could have the following structure:

(< String of Basic Combinators> <String of Arguments>).

The Quine-Bernays Combinatory Calculus 423

When a QBC-term is not just a variable, it is enclosed within a pair of parenthesis.
Either, or both of the strings within, could be null-strings. The first string is
constructed from the following elements — Act, Ref, Inv, inv, Prj — and it is
devoid of parenthesis. It can be considered as forming the program segment of
the QBC-term under consideration. Every basic combinator that is part of this
string, can be thought of as a programming command. During the execution of the
program (which corresponds to term reduction following the rewrite transformation
rules), no element of the program segment acts on any other component of the
program segment. In the language of computer science, the architecture follows a
‘von Neumann Style’, where the program statements are kept distinct from the data
part, and the program statements do not operate on each other. The <String of
Arguments> forms the data segment of the QBC-term.

Let us now look at the transformation of QBC-terms. For each QBC-term, the
transformation rule corresponding to the leading basic combinator in its program
segment is applied. The Reflection transformation rule shows that the Ref combi-
nator affects only the term under consideration. It has no effect whatsoever on the
adjacent QBC-terms. This property shall hold for the combinators — Ref, Inv, inv,
Prj—i.e., the effect of their transformations are purely local. The combinator Act
is the only one which affects adjacent terms. As shown by the Action transforma-
tion rule, the Act combinator inputs the right-adjacent QBC-term, and places it at
the end of the <String of Arguments> of the current term.

3.2.4. Combinators “Inv’ and “inv”

The Basic Combinators, “Inv” and “inv”, follow the “Major Inversion” and
“Minor Inversion” transformation rules respectively. Between themselves, they
can permute any element of the argument string to an arbitrary position in the
string.

3.2.5. Combinator “Prj’

With the combinators introduced so far, we will be able to encode only the
Al-calculus, In order to be able to capture the AK-calculus, we need the Basic
Combinator “Prj” and the “Projection” transformation rule.

ProJECTION (Prj Ct.. dnoatn) = (é t1.. . tpo1).

The combinator Prj discards the last element of the <String of Arguments>.

Consider the abstraction Ay.z. Thus we get the required QBC-term as
(Aet Prj z). Notice that, it would have been very much possible to define the
combinator “Prj” in such a way that it combines the effect of the combinator
“Act” also. However for simplicity of exposition, we choose not to do so.

424 N. Raja & R. K. Shyamasundar

3.2.6. Discussion

As mentioned earlier, the technique of Quine and Bernays that we are gener-
alizing, was originally conceived to work in the setting of first-order logic, where
there is no notion of self-application. However, the Quine-Bernays Combinators
are not limited to that situation. They are also effective in situations where self-
application is present a priori, like in the A-calculus. These combinators can ‘cap-
ture’ the A-calculus without limiting its expressive power and without falling into
inconsistencies. In order to be able to represent self-application we need one more
transformation rule.

3.2.7. “Reification” transformation Rule

The “execution” of a QBC- term consists in successively applying the transfor-
mation rules corresponding to the elements of the <String of Basic Combinators>.
The “Reification” Transformation Rule comes into play when the <String of Basic
Combinators> in a QBC-term has become a null-string.

REIFICATION (f1t2...) =¢ tila... t, .

Note that there is no combinator corresponding to the “Reification” transformation
rule. The “Reification” rule removes the outermost parenthesis that was enclosing
the current QBC-term, and, in the process transforms each element of the <String
of Arguments> into an independently “executing” program unit.

3.2.8. Discussion

It is worth pointing out at this stage, that each element of the <String of
Arguments> within a QBC-term is also a QBC-term. Whenever an element of
the argument string comprises basic combinators, or if it is of a non-atomic form,
then it always begins with a parenthesis. This feature helps in discriminating be-
tween the program part and the data part of a QBC-term. QBC-terms could also
be of the form (¢; ¢2), where t; and ¢5 are themselves QBC- terms. Thus concatena-
tion of two QBC-terms represents application in QBC. Now each of the two terms
comprising an application might have their own “program” and “data” segments.
Thus, terms of the Quine—Bernays Combinatory Calculus are akin to a conglomer-
ation of independently evolving units of a concurrent system. However, they do not
just evolve independently, they interact with each too. The combinator Act helps
in interaction, while the other four Combinators — Ref, inv, Inv, Prj — help in
independent evolution.

4. Functional Completeness and Mutual Translations

In this section, we prove Functional Completeness for QBC, and provide trans-
lations from the A-calculus to QBC and vice versa.

The Quine-Bernays Combinatory Calculus 425

4.1. Punctional Completeness

In classical combinatory logic, it is known that, any A-expression can be trans-
lated to an equivalent combinatory expression. This property is known as Functional
Completeness of combinators. This result forms the basis for compiling functional
languages into combinators, which are then executed using combinatory abstract
machines.'"* We now show that such a property holds for QBC.

Theorem 1 (Functional Completeness of QBC) For any QBC-term ¢, and
any variable z, there exists a QBC term v, such that vz =, ¢, and x does not occur
in the term .

Proof. The quickest way to prove functional completeness, is to find QBC-terms
K and S such that

Vo Yy Key =, x and Yo Yy Vz Szyz =, zz(yz),
where z,y, z are arbitrary QBC-terms. We have:
K = (Act Act Prj)
S = (Aet Inv Inv Inv Act Inv Inv Act Ref Inv inv Inv inv Inv inv Inv o o o).
a

4.2. Minimality of the Set of Combinators

It is easy to see of the combinators — Act, Re f, Inv,inv, and Prj — that none
can be defined solely using the rest. Act is the only combinator which provides
a way to accept new arguments; Existing arguments can be discarded using Prj
only; Copies of arguments can be done only using Ref; and both Inv and inv are
necessary and sufficient to permute an arbitrary element to a desired position. Thus,
if any of the combinators are dropped then the property of functional completeness
is invalidated. Hence, these combinators form a minimal set of combinators.

4.3. Mutual Translations

Before we provide translations across A-calculus and QBC, we first define a
deriwed Combinator “Fus”, and the corresponding “Fusion” transformation rule.
This derived Combinator will help in considerably simplifying the translation from

A-calculus to QBC.
FusioN (Fus C ty tytstytsttr) =, (Ctytytsts tstyts) .

It is easy to see that Flus is a derived combinator in the sense that, its effect can be
achieved by using combinations of combinators Inv and inv.

In order to be able to translate the A-calculus to QBC, we need a way to simulate
variable abstraction over QBC-terms. We provide such an abstraction mechanism
below.

426 N. Raja & R. K. Shyamasundar

Transformation Rules 3 (Variable Abstraction over QBC-terms) If =
does not occur in the term ¢, then Xx.¢ is (Act Prj ¢); if ¢ = x, then Xz.x is
(Aet); if ¢ is of the form (é {), then /*I.(é f) is Nz, (Act(™) C_") where Act™)
denotes the concatenation of n instances of the combinator Act, where n = |C_"|,
In the remaining case ¢ is necessarily of the form ¢'¢" and by induction we may
assume that X*x.¢' = ' and X x.¢" =", so X*x.¢ is (Act Ref Fus o o9/ ¢ o).

The following rules use the abstraction mechanism defined above, to provide a
translation form A-calculus to QBC.

Transformation Rules 4 (From A-calculus to QBC) The general rules for
translating a QBC-term to a A-term are:

1 (z)c — x;
2. (" t")e — o (e (e
3. ()\lt)c =)*I.(t C

Lemma 1 For every QBC-term t, the QBC-term (A*xz.t) does not contain the
variable x, and (X w.t)e =, t.

Proof. It is obvious from the definition of A* that « does not occur in (A*x.t).
The second part of the lemma can be proved by induction on the QBC-term ¢. O

Lemma 2 For every QBC-termt, (M z.t) =, (A*z.(A*x.1))x.

Proof. Follows from the previous lemma. O

In classical combinatory logic, for a long period of time, the existing translations
from A-terms to combinators 7 were not suitable for implementation purposes. The
transformation of Combinators from theoretical pearls to practical tools occurred
following the discovery of efficient translation schemes.'’ In a similar vein, the
translation from A-calculus to QBC given above, is not the most efficient one; for it
leads to a much more complicated QBC-term than necessary. Surely, more efficient
translation schemes must be possible.

Next, we examine the translation from QBC to A-calculus. There may not
exist a A-term corresponding to every QBC-term. However, if a corresponding A-
term exists, then it is unique, up to a-renaming. A similar relation holds between
Classical Combinatory Logic and A-calculus.

Transformation Rules 5 (From QBC to A-calculus) The general rules for
translating a QBC-term to a A-term are:

L [z]n = z;

2' [O t/ t//l)\ — ([t/])\[t//])_)”.

3. [(Act C’_’t_)]x — Az.[(C fmZ]A (where z is a new variable);
4. [(Ref Cty... ty)la — [(Cty... 1y to)]a;

The Quine-Bernays Combinatory Calculus 427

5. [(Inv Cta . ty_ata)]y = [(Ctaty b))y

6. [(mv C_’tl ...tn_gtn_ltn)])\ b—>_‘ (C tl ...tn_gtntn_l)])\;
7. [(Prj C oty tu_it))]a — [(Ct1.. ta_1)]a;

8. [t — [t'Alt"]x.

The reason why certain QBC-terms do not have A-translations is because, QBC
allows the symbol “o” (explicitly denoting A-application) to be a valid QBC-term.
However, “o” by itself is not a A-term. While QBC-terms such as (o t' t') have
meaningful translations in the A-calculus; strings such as (¢ o t'), which are also
valid QBC-terms, do not have a corresponding A-translation.

Lemma 3 For any t,u which are QBC-terms, when ty and uy are both defined,
t =; u implies ty =g ux.

Proof. By induction on the QBC-term ¢. O

We now present a proof of correctness of the two translations between A-terms
and QBC-terms up to [-equality.

Theorem 2 (From A-Calculus to QBC and back) For every A-term t, tcy
=g 1.

Proof. The proof is by induction on t. It is obvious in case t is a variable or
t = uv. Suppose that ¢t = Az.u; then t¢ = Ma.uc. Hence (t¢)z = uc (Lemma 1).
Thus, by Lemma 3, we have (tca)r =g uca, and by the induction hypothesis,
ucx =g u. It follows that (tca)z =p u, and hence Az.(tca)z =p Az.u = t. Now
tc = Ma.ug, hence Nz.tcw =¢ t¢ (Lemma 2). As z is a variable which does not
occur free in t¢, we have by Lemma 3, Az.(tcx)z =p tea. It follows finally, that
tex =p /\I.(tc)\)r =p t. |

5. A Comparative Evaluation

In this section, we first briefly summarize the proposals for avoiding substitution,
and then discuss the advantages and disadvantages of the QBC approach developed
in this paper. There have been many distinct proposals to decompose ‘substitution’
into more simple operations. All such proposals can be classified into two major
approaches, based on whether they distribute arguments, or utilize environments.*?

5.1. Distributing Arguments

Classical Combinatory Logic” and Director Strings as Combinators® belong to
this approach. Here, the data of a program is progressively distributed to those
parts of the program which require it.'? For example consider the program Az.PQ.
The body of the program consists of the ‘operator’ P and ‘operand’). When this
program is presented with the data a, we get, (Az.PQ)a — Pz — a]Q[z — a],
where the data a has to be substituted for the variable 2 in both the parts (‘operator’

428 N. Raja & R. K. Shyamasundar

and ‘operand’) of the body of the program. The same effect can be achieved with
the combinator S. Consider S P Q a — (Pa)(Qa). Note that the combinator S
distributes the data a to both the parts of the program without the use of variables
and substitution. The combinator K discards copies of the argument that have
been made by S, from those parts of the program which do not require it.

A close look at S and K, reveals that their structure closely resembles the term
structure of the A-calculus. Hence, they provide condensed representations of the
A-calculus,'® and also provide deep insights regarding the mathematical nature of
models for A-calculus.!

The work on Director Strings as Combinators ® can be considered as an opti-
mization over the above technique. The combinator “~” distributes the argument
to both the <operator> and the <operand>; the combinator “/” distributes it only
to the <operator>; the combinator “\” distributes it only to the <operand>; and
the combinator “~” discards the argument.

5.2. Using Environments

Categorical Combinators,* and Ezxplicit Substitutions,? developed from De Bruijn
indexing,?® belong to this approach. Here, the notion of an environment is used.'?
An environment is a map from variables to terms. In this approach variables are
present, but the operation of substitution is done away with. This is the approach
used in the implementation of programming languages. To achieve the effect of the
reduction (Az.P)a — P[z «— a], the term P is ezecuted in an environment which
binds the term a to the variable . The execution starts with an empty environment.
This environment is distributed from the root of the expression towards its leaves.
When a redex is encountered, the ‘operand’ of the redex is added to the environment,
and this new enwvironment is distributed over the ‘operator’.

For example, consider the execution of term (Az.(Ay.AB)C)D in the empty
environment denoted by [].

< (Az.(Ay.AB)CYD > [].
The execution gives
< (My.AB)C > [z :< D >]
— K AB > [z:< D>; y < (C>]
— (KA> <K D>y <KC>)N(KB>rKD>y:C>]).

Thus, the whole environment is distributed as one single unit. The reduction of
nested redexes proceeds in parallel, but the arguments are distributed throughout
the body of the program, and not just to the places where they are required.

5.83. QBC Approach: Advantages and Disadvantages

The QBC approach belongs to the category of distributing arguments. The im-
portant point to be noted about Classical Combinatory Logic, and Director Strings,

The Quine-Bernays Combinatory Calculus 429

is that they can be used only in such calculi, whose terms have a recursively defined
<operator><operand> structure. However, in such settings, QBC does not com-
pare favorably with Classical Combinatory Logic. For example, if QBC is used to
provide an implementation of A-calculus, then QBC has the advantage that the op-
erations of Inv, and inv, can be implemented by relocating pointers. On the other
hand, the translation defined using QBC is inefficient compared to the known trans-
lations into Classical Combinators.' Also, by closely mirroring the term structure
of the A-calculus, Classical Combinators share a deep relationship with models of
A-calculus.! QBC seems to lack such a connection with the semantics of A-calculus.

On the other hand, QBC is not limited by the term structure of the domain.
The QBC approach is universal in the sense that it can be very easily extended
to eliminate variables and substitution from calculi which have an entirely different
term structure. One area where QBC looks very promising is in the setting of calculi
for concurrency. For instance, consider the various calculi that have been developed
to model the behavior of concurrent computing systems. An example of such a
calculus is the m-calculus.?®12 These concurrent calculi are, at least syntactically,
very different from the A-calculus. For the present purposes, it suffices to know that
most such calculi do not possess the <operator><operand> kind of applicative
structure found in the A-calculus; and secondly, most such calculi are inherently
two sorted, the two sorts are, namely, processes and channels. Further, such calculi
have an infinite number of distinct ‘abstractors’, and also a rich set of operators.
The work reported in Ref. 15 uses the QBC approach to derive a combinatory
formulation of the w-calculus with replication. The inherently two-sorted theory of
the w-calculus provides a very natural setting for the QBC approach.

6. Conclusions

Inspired by an unexplored technique of Quine and Bernays in logic, we gen-
eralized a combinatorial definition of set-comprehension terms, to design a novel
combinator calculus for functions and substitution, and related these combinators
to the untyped A-calculus. We designed a system of five combinators which could
‘capture’ the A-calculus (a unisorted theory), without limiting its expressive power
and without lapsing into inconsistencies. We proved that the combinatory formu-
lation is functionally complete, and we also provided algorithmic translations from
the A-calculus to the Combinatory System, and vice-versa.

Even though the gain of QBC with respect to more well known variable elimina-
tion methods in sequential systems is still not completely clear, the results obtained
are very interesting and encouraging,'® and the value of (extensions of) QBC ought
to be assessed, like this work starts to do. In spite of their simplicity and tractability,
the combinators of Quine and Bernays have remained unnoticed and have thereby
not received due attention. However, we strongly believe that the further study
of these combinators will lead to fruitful insights into the theory and practice of
programming and logic.

430 N. Raja & R. K. Shyamasundar

Acknowledgments

Our thanks to an anonymous referee for invaluable comments. Thanks go to

Ms. Margaret D’Souza for typing and typesetting this paper.

References

10.

11.

12.

13.

14.

15.

. H. Barendregt, “The Lambda calculus”, Studies in Logic 103 (North-Holland,

Amsterdam, 1981).

M. Abadi, L. Cardelli, P. L. Curien and J. J. Levy, “Explicit substitutions”, Proc.
17th ACM Annual Symposium on Principles of Programming Languages, Jan. 1990,
pp- 31-46.

N. De Bruijn, “Lambda-calculus notation with nameless dummies, A Tool for
Automatic Formula Manipulation”, Indag. Math. 34 (1972) 381-392.

. P-L. Curien, Categorical Combinators, Sequential Algorithms and Functional

Programming (Pitman, 1986).

R. Kennaway and R. Sleep, “Director strings as combinators”, ACM Transactions on
Programming Languages and Systems, 10, 4 (Oct. 1988) 602-626.

M. Schonfinkel, “Uber die Bausteine der mathematischen Logik”, Math. Annalen 92
(1924) 305-316. English trans. with an introduction by W. V. Quine in From Frege to
Gédel, ed. J. van Heijenoort (Harvard Univ. Press, 1967) pp. 355-366.

H. B. Curry and R. Feys, Combinatory Logic, Vol. 1 (North Holland, 1958).

W. V. Quine, “Eliminating variables without applying functions to functions”, Journal
of Symbolic Logic 24, 4 (Dec. 1959) 324-325.

. P. Bernays, “Uber eine natiirliche Erweiterung des Relationenkalkuls”, in Construc-

tivity in Mathematics, ed. A. Heyting (North-Holland, Amsterdam, 1959).

W. V. Quine, “Variables explained away”, Proc. American Philosophical Society, April
1960.

D. A. Turner, “A new implementation technique for applicative languages”, Software
Practice and Ezperience 9 (1979) 31-49.

R. Milner, “Functions as processes”, Research Report 1154 INRIA Sophia Antipolis,
Feb. 1990.

D. A. Turner, “Another algorithm for bracket abstraction”, Journal of Symbolic Logic
44, 2 (1979) 267-270.

R. Milner, J. Parrow and D. Walker, “A calculus of mobile processes, (Parts I and
IT1)?, Information and Computation 100 (1992) 1-77.

N. Raja and R. K. Shyamasundar, “Combinatory formulations of concurrent
languages”, Proc. Asian Computing Science Conference, (to appear) Dec. 1995.

