Informatica 28 (2004) 103-113 103

Type Systems for Concurrent Programming Calculi

N. Raja and R.K. Shyamasundar

School of Technology & Computer Science
Tata Institute of Fundamental Research
Mumbai 400 005, INDIA

Email: {raja, shyam }@tifr.res.in

Keywords: Type theory, concurrency, process calculi

Received: March 12, 2003

We explore the role of types in models of concurrent computation, particularly in the

concrete setting of the asynchronous w-calculus.

The major theme of this work may

be summarized by the slogan — “Wherever you see structure, think of types”. We pro-
pose type annotations not merely to channels, but also to the highly structured set of
processes. ‘The type system guarantees that well typed expressions cannot go wrong.

Polymorphic process types formalize extant informal ideas regarding the channel passing

and process passing approaches to process mobility. Further, subtyping relation between

process types distinguishes between true concurrency and nondeterministic choice.

1 Introduction

Type systems for sequential programming lan-
guages lead to many advantages [3, 20, 27]. In
programming practice: types help in structuring
programs, they assist in compile-time error detec-
tion, and they are useful in optimizing the target
code during the compiling process. In the theo-
retical study of programming language concepts:
types help in the creation of succinct metalan-
guages that act as models for the study of real-life
programming languages, and they serve as inter-
mediate code in the task of providing mathemat-
ical semantics for programming languages. All
this has naturally led to investigations regarding
the role of types in theories of concurrency.

The goal of this paper is to examine whether
there are any benefits to be gained by introduc-
ing types in models for concurrent computation.
In this paper, we illustrate the role of typesin the
concrete setting of the asynchronous rw-calculus
(ap1) [17, 6]. We choose API as it is one of the
most prominent calculi for concurrency and com-
munication. API has two kinds of entities — names
(also called channels) and processes (also called
agents). Names do not possess any structure,
whereas a good amount of structure is needed
to build processes. The type system we pro-
pose, assigns types to both processes and chan-

nels. The type assigned to channels, characterizes
the length and the nature of the elements that the
channel may carry in a communication. The type
assigned to processes, characterizes the set of ac-
tions that the process is committed to. This re-
sults in a rich notion of types which is very useful
in the monadic as well as the polyadic versions of
API. The type system proposed shows that there
are substantial benefits to be reaped by exploring
the idea of typing processes. The usage of our
type system entails the following advantages:

— It provides a scaffolding for the structured
use of the m-calculus, by which we can abol-
ish certain undesirable features — like infinite
concurrent activity — right at the early stage
of building process terms, rather than at the
stage of the reduction system.

— Guarantees safety, that well typed expres-
sions will not go wrong.

— Does not constrain the expressive power of
the m-calculus.

— Qur type system, with minor changes, can
be applied to all process algebra formalisms
of concurrency. Thus, it provides a uniform
basis for the relative assessment of various
formalisms. For example, polymorphism in



104 Informatica 28 (2004) 103-113

process types brings out potential impred-
icativity in the semantics of some of these
formalisms.

— Subtyping relation among process types
helps in distinguishing true concurrency from
nondeterministic choice.

The rest of this paper is organized as follows:
Section 2 gives a brief review of the asynchronous
m-calculus (AP1); Section 3 presents the type sys-
tem; Section 4 shows that the type system pre-
serves the semantics of AP1; Section 5 examines
the type system with regard to those properties
which are normally of interest in sequential lan-
guages; Section 6 explores further extensions to
the type system — polymorphism and subtyping —
by analogy with traditional type theory; Section 7
describes related work on concurrency and types.
The conclusions and future research directions are
presented in Section 8.

2 The Asynchronous m-Calculus

In this section, we include a brief review of the
asynchronous w-calculus (API) [17, 6] notions that
are required for this paper.

Following Milner’s idea, a number of calculi
for concurrent computation have been proposed,
where the communication mechanisms are sim-
Communication consists in synchronously
sending and receiving through a shared labeled

ilar.

channel.

API [17, 6, 22, 25, 23, 35] is a model of con-
current computation that supports process mo-
bility by naming and passing channels. It con-
sciously forbids the transmission of processes as
messages. One of its goals is to demonstrate that
in some sense it is sufficiently powerful to allow
only names to be the content of communications.
API has two kinds of entities — names (channels),
and processes (agents).

Names (z,y,... € X), have no structure.

Processes (P, Q,... € P) possess a well defined
structure given by
Pu=0]|zy|2(y).P| PlQ]| 'P|(vz)P| ERROR
The construct Ty outputs the name y along z,
and does not bind y. The construct z(y) inputs
a name, say y, along z, and binds y in the pre-
fixed process. The word ‘asynchrony’ in this cal-
culus means that message output is non-blocking.

N. Raja et al.

This is ensured by restricting the formation of a
term Zy.P in the m-calculus to the case where P
is an inactive process. API is powerful enough
to encode the synchronous message passing disci-
pline of the w-calculus [36, 30]. The term 0 repre-
sents an inactive process. We have extended the
m-calculus by including a constant process called
ERROR, to represent the kind of type mismatches
that we wish to avoid at run-time. The form P|Q
means that P and ¢ are concurrently active, are
independent, and can also communicate. The op-
erator “!” is called replication, and !'P means
P|P|...; as many copies as you wish. Finally,
(vz) P restricts the use of name z to P. Apart
from input prefix, “v” is another mechanism for
binding names within a process term in API. The
operator “v” may also be thought of as creating
new channels.

The operational semantics of APTis given in two
stages, as shown in Figure 1. A structural congru-
ence is first defined over the process terms, and
then a reduction relation is defined. Notice that
the rules do not allow reduction under prefix or
replication. Also, as expected there are no reduc-
tion rules for ERROR. For more details about AP1,
the reader is referred to [17, 6].

3 The Type System

We present our type system in three stages — first,
the syntax; second, the typing rules correspond-
ing to API process constructors; and finally, the
typing rules corresponding to the reduction sys-
tem of AP1. The following subsections are devoted
to each of these three stages respectively. Though
we use the monadic asynchronous 7-calculus to il-
lustrate our typing system, our results can be ex-
tended to the polyadic case in a straightforward
manner.

3.1 Syntax for Types

We shall call the type information assigned to
names as sort (ranged over by the metavariable
s), and shall use the term type (ranged over by
the metavariable ¢) to designate the type infor-
mation assigned to processes. Qur typing scheme
is an implicit one (Curry-style typing), because
we want to illustrate our work in the setting of a
familiar calculus, without any syntactic modifica-



TYPE SYSTEMS FOR CONCURRENT... Informatica 28 (2004) 103-113 105

Definition 2.1 (Structural Congruence over Process Terms)
= is the smallest congruence relation over process terms such that the following laws hold:

—~

. Processes are identified if they only differ by a change of bound names
2. (P/=,],0) is a symmetric monoid

3. \P=P|'P

4. (vz)0 =0, (va)(vy)P = (vy)(vz)P

5. If x & freeNames(P) then (vz)(P|Q) = P|(va)Q

6

. P[ERROR = !ERROR = (rvz )ERROR = ERROR

Definition 2.2 (Reduction Relation)
The reduction relation — over processes is the smallest relation satisfying the following rules:

Comm (...4+2(y).P)|(...+7[2].0) - P{y+<=z}]|0

P— P!
Par om0
Q=P PP P=Q
Struct 050
P—P!
Res — woypwap

Figure 1: Operational Semantics of API

Sorts s u= BasicSort | ()] (s)°

Type — Variables T |U |V

Pre — Types o = ¢|¢|T|Name(Name: s)F|Name(Name : 5)|c — olo N o|uT.o
Pre — Types 0| Cext | Oint
Types t =< Oepty Oint >

TypeEnvironments T u={} |z :s|T,P:t

Figure 2: Syntax of the Type System



106 Informatica 28 (2004) 103-113

tions to the term structure of the calculus.

The sort ‘s’ denotes the length and nature of
names which a given channel may carry in a com-
munication. The superscripts R, S, indicate that
the channel usage as “receive mode” and “send
mode” respectively.

In API, processes may be viewed as programs
which manipulate names (which in turn can be
considered as data). As mentioned earlier the
data manipulated by API programs are unstruc-
tured entities. The data develops some structure
only in the polyadic extension of apr. In the
monadic case, the data are atomic entities while
in the polyadic case they are n-tuples. Thus the
notion of sorts starts making sense only in the
polyadic case.

On the other hand, processes have a well-
formed structure even in the monadic case; hence
types are of significance in both versions of aPpr.
The type ‘¢’ denotes a process type; it comes in
various forms as depicted in Figure 2. The arrow
type arises due to the prefiz constructor; the inter-
section type arises due to par; and the recursive
type arises due to Bang; the internal and exter-
nal types arise due to the hiding operator. The
API expressions leading to the above types will be-
come clear as we look at each of the typing rules
given in the following subsections.

3.2 Types for Processes

An API process a.A can be regarded as an action «
and a continuation A. «.A is called a commitment
— it is a process committed to act at a [22]. This is
precisely the information that the type associated
with a process embodies.

Proposition 3.1 (Process-types and Com-
mitment) A process type describes the sequence
of actions that a process is committed to.

This will become clear from the following subsec-
tions.

API is based on the object model of comput-
ing [26]. Objects have an independent identity
and they have a persistent state which may not
be entirely visible to the other agents. Thus the
type associated with a process has two facets —
one which specifies its interface on the outside
and the other which determines its internal tran-
sitions. Qur type system brings out this aspect of
API explicitly by making the type associated with

N. Raja et al.

a process to be a tuple comprising its external and
internal types respectively.

The typing rules corresponding to each of the
process constructors that ap1 allows, are listed
in Figure 3. Among all the typing rules listed
in Figure 3, the internal and external types turn
out to be distinct only when the ‘hiding opera-
tor’ occurs in the process term. Hence, only the
New-Channel typing rule shows both components
of the type associated with a process term. The
types are to be viewed as being implicitly univer-
sally quantified on name sorts. The typing rules
are given in a syntax directed way, and can be
checked for well-formedness by structural induc-
tion over the API syntax.

Arrow types

Arrow types are familiar from type systems for
sequential programming. The typing rule Prefiz-
R states in its premises that if z,y are names, y
has sort s, and z has sort (s)F — which means that
the channel x may be used for receiving a name of
sort s — and the process P has type t; then the AP1
term z(y).P is assigned the type z(y : s)® — t.
The type indicates that process z(y).P can use
channel z for receiving only, indicated by the su-
perscript R. Further, after such a communication
occurs (and only after), it may proceed to behave
like a process having type ¢t. This strict sequen-
tiality imposed by the prefix constructor of API is
made explicit by the —. The rule Prefiz-Sis very
similar except that it shows that the name x may
be used only for sending (the superscript S) by
the newly constructed process.

We shall discuss the prefix rule again when
we consider higher-order models for concurrency.
The Prefixz type rules will reveal any impredicativ-
ity which could be lurking in the semantics of the
calculus being typed. More about impredicativity
will be discussed in Section 7.

Intersection types

The rule Par-Isays that the intersection type ‘0’
arises when a process is built by the parallel com-
position of two other process terms. The parallel
composition operator ‘|” allows the components to
make transitions independently (i.e., disjoint par-
allelism). Thus, the set of actions that a process
belonging to an intersection type can indulge in,



TYPE SYSTEMS FOR CONCURRENT...

Informatica 28 (2004) 103-113 107

€10

Prefix — R

Prefix — S

Par — 1

Bang

New — Channel

TFO:¢

Fl—x:(s)R, y:is TP

TF z(y).P : x(y:s)t—t

Fl—:v:(s)s, y:s
'k Z(y) : x(y:s)s

'P:ty T'F Q:ly
' P|Q : 11Nty

IFP:(t1—t9)

I'F 1P uTt1—(taNT)

I'tP:t Thzx:s

[' F (va)P:<tze¢], 1>

Figure 3: Typing Rules for Process Constructors

is given by the conjunction of the set of possi-
ble actions of its component processes. Intersec-
tion types are also called ‘conjunctive types’ in
the parlance of type theory.

There is a notable difference between the con-
ventional usage of intersection types [3], and the
way they are used in this work. In this work,
the intersection type corresponds to a process
constructor (par, ‘). Traditionally, intersection
types are used for typing a term which belongs
to various structurally unrelated types. For ex-
ample, the symbol ‘+’ is used to represent integer
addition, and real addition. The type assigned to
such a function is ((int — int — int) N (real —
real — real)). In other words, conventional inter-
section types are used to represent ‘overloading’.
Notably also absent from our type system, is the
universal type w (such that P : w for all terms P),
which accompanies intersection types normally.

The parallel composition operator ‘|’ also al-
lows the components to communicate.
we shall encounter the intersection type ‘N’ once
again in the typing rule describing communication

Hence

between the two component processes.

Recursive Types

The Bang typing rule is another instance where
the relevance of types in concurrency is very
clearly brought out. The operator “!”
replication and !'P — “bang P”— means P|P .. .; as
many copies as you wish. In ap1 the “!” operator

is called

can be applied to any process term P to form the
process !P (where P has been constructed using
any rule for building processes). The important
point to be noted is that API does not enforce any
restrictions on P before the “!” operator may be
applied to it.

However the typing rule Bang states in its
premise that the type of P should be an “arrow
type” such as (t; — t2) before we can apply “!”
to P to get ! P. This makes it mandatory that the
outermost constructor of process P be a prefix,
before the “!” may be applied to it. Thus the
replication operator can be used on guarded pro-
cesses only. !m.P is a common instance of repli-
cation — it indicates a resource P which can be
replicated only when a requester communicates
via m. This shows that the premise in the typ-
ing rule Bang is meaningful. The next question
which arises is whether the typing rule Bang is
being too restrictive by imposing such a condi-



108 Informatica 28 (2004) 103-113

tion. Before we answer this query, let us examine
the meaning of a term such as !P when it is not
required of P that its outermost constructor be a
prefix. Such a term, “!P”, means a resource which
replicates asynchronously — replicates without de-
mand, without requirement. !P appears to be act-
ing on its own free will, so to say. In other words it
represents infinite concurrent activity. Now this
is certainly not a meaningful construct, and we
would rather not have such a term in our calcu-
lus. Hence the typing rule Bang does not strip AP1
off any expressive power; in fact it rules out an
entire class of meaningless terms from being con-
structed. API abolishes such behaviour by taking
recourse to its reduction rules. However we have
done better in our type system, in that, we even
forbid the occurrence of such terms right at the
level of syntax, by enforcing a discipline in the
structured construction of API programs.

After having looked at the premise, let us now
examine the conclusion of the Bang rule. 1t infers
that the process term !P has the type (uT.t; —
(tanT)). p represents recursion and the type
variable T is the parameter of the recursion. The
recursive type makes the recursive behavior of “!”
operator explicit. The intuition provided by the
recursive type is well supported when we turn to
API and find that all parametric recursive process
definitions can be encoded by replication. Let us
come back to the Bang typing rule: When P has
the type (t; — t2), it means that P behaves as
dictated by the type t; and then (sequentially)
behaves as dictated by 2. The recursive type as-
signed to !P says that ! P behaves as required by
t; and then as required by (t; N7"). The inter-
section type mirrors the fact that an independent
process of type t5 has been spawned, which exe-
cutes in parallel with the resource of type T. But
T is the parameter of recursion, and we eliminate
it by recursive unfolding, that is we replace 1" by
(uT.ty — (t2NT)) and proceed further as before.

The Recursive type in this setting is very simi-
lar to that used in sequential programming. The
type p1'.t, stands for the least fixed point solu-
tion of the type equation 1" = ¢,,. The solutions of
such equations will be infinite types, which can be
represented by infinite labeled binary trees. The
definition of such trees is provided in Figure 4.
The same Figure also gives a congruence relation
on types with the help of such trees [9, 10].

N. Raja et al.

Internal and External Types

In all the typing rules that we have considered
so far, the external and internal types are identi-
cal. However, the operator v used as (vz) P local-
izes (restricts) the use of the channel z within P.
The channel name z is guaranteed to be different
from any other channel name which finds an oc-
currence outside P. Hence communications can
be sent and received on z only internally within
process P. This brings us to the next typing rule,
New-Channel, which gives the external and inter-
nal type of a process term which has been built
using the operator v. The notion of distinguish-
ing between the external and internal type of a
process is derived from the notion of existential
types and explicit witnesses [28], and the notion
of partially abstract types [8]. The exzternal type-
component states that if the process P has type
t and the channel = has sort s, then the exter-
nal type of the process term (va)P is t[z < €]
which means that in the type ¢ all occurrences of
x are replaced by ¢, thereby making the channel
x unavailable for communication with the outside
world. The internal type-component states that
as far as the internal type of (vz)P is concerned,
there is no change, the type continues to be .

That explains all the typing rules that have
arisen because of the process constructors that
are allowed in API.

3.3 Reduction rules and Types

The typing rules shown in Figure 4 correspond
to the congruence relation over types. They spell
out when two types may be considered to be con-
gruent.

The remaining typing rules, shown in Figure 5,
correspond to the reduction system of Ap1. The
typing rules Inter-E, Comm, Par-R, Res, and
Struct tell us how to consistently infer the type
of the term which results from a reduction.

The rule Comm mentions the types required
of each term so that the communication between
the two processes will result in a proper reduction
(one which does not result in ERROR), and gives
the type of the resultant process. The rule Par-I
mentioned earlier as giving rise to the intersection
type ‘N’, can be considered to be a special case of
this rule. If there is no communication possibility
allowed by the types of the interacting processes



TYPE SYSTEMS FOR CONCURRENT... Informatica 28 (2004) 103-113

Definition 3.2
The tree corresponding to the process type t, written as 7'(¢), is defined as follows:

T(9) = ¢,

Tty = b)) = (=, T(h), T(t2));
Tt Nty = (N, T(t), T(ta));
T(l.t) = TET « pl. t]).

Definition 3.3
~y; is the smallest congruence relation over types, such that, the following laws hold:

CR-1 Process types are identified if they only differ by a change of bound names;
CR-2 tﬂqut ¢ﬂtmt t,

CR-3 11 R~ tQ,if 11(t1) = Cl](tg)

Figure 4: Congruence Relation for Types

_ I'F Py N iy
Inter — E P, T F Piy
Comm z(y).P : (J:(y:s)R—pr), 7(z) : (.7:(2:3)5)
z(y).P | T(z) = P{y<=z} : tp{ye=z}
Pip — Pty
Par — R E £
(P|Q) : tpNtg — (P1Q) : LpiNig
Res P:<tpitp> — P’:<tP/,tP/>
(va)P:<tplré=e|tp> — (va)P:<tplzee],t pr>
St t tQ =¢ tp P:tp — PlltP/ tP/ =¢ tQ/
rue Q:tQ — QI:tQ/

Figure 5: Reduction Rules and Types

109



110 Informatica 28 (2004) 103-113

(disjoint parallelism), then the resulting type of
the compound term is given by the Par-I typing
rule. It is worth noting that the typing rules cor-
responding to process constructors and the typing
rules corresponding to the reduction system, can-
not be kept separated in the type system for API.
This is because the operator par ‘|’ is overloaded —
it represents both concurrency (a process building
operation), as well as communication (an opera-
tion which is a part of the reduction rules). How-
ever, such a clear separation can be achieved in
the case of a type system constructed along simi-
lar lines for Boudol’s concurrent A-calculus [5].

Once again we mention that in all these rules,
except Res the inference is valid for both com-
ponents of the process type — external as well as
internal. The Res typing rule explicitly indicates
the process type as a tuple and gives the corre-
sponding new components of the type after reduc-
tion.

4 Soundness and Type Safety

In this section, we examine the effect of the type-
system on the semantics of ApI. First, we show
that our type system preserves the semantics of
API, and prove that well typed expressions never
reduce to ERROR — which means process types
guarantee the safety property.

The operational semantics of Ap1 was defined in
two stages [22, 26] as shown in Section 2. A struc-
tural equivalence on process terms was given first,
and then a reduction relation was given which de-
scribes the act of communication. We prove below
that our notion of type is consistent with each of
these two stages.

Theorem 4.1 Types preserve the structural con-
gruence rules on process terms.

Proof: We prove this theorem by examining the
structure of the definition of structural congru-
ence on process terms.

1. Types respect a-conversion (typing rule CR-
1), hence agents are identified if they only
differ by a change of bound names.

2. Using the typing scheme presented in this pa-
per, we show that types preserve the fact that
(P/=,],0) is a symmetric monoid.

0:¢ (Zero)

N. Raja et al.

Pl0:tn¢ (Par—1)

tNomyt (CR-2)
Similarly,

0lP:9oNt (Par—1)

oNtayt (CR-2)

By steps 3 and 5, it follows that types pre-
serve the monoidal structure of P/ =, where
‘| is the associative operator of the monoid,
and 0 forms the identity w.r.t ‘|".

3. The typing rule Bang has been explained in
sufficient detail in Section 3. It clearly follows
from the illustration given there that types
guarantee !P = P|!P.

4. The inactive process 0 has the type ¢ as

both its external and internal type. The re-
stricted process (vz)0 continues to have the
same type. Hence (vz)0 = 0.
If the process P has the process type <
FEp,Ip > then the process term (vz)(vy)P
has the type < Ep[z « €,y « ¢,Ip >
which is equivalent to the type < FEply +
€, €], Ip > associated with the process
term (vy)(vz)P.

5. From the typing rules Par-I, and New-
Channel it immediately follows that if z is

not free in P then (vz)(P|Q) = P|(vz)Q.

Thus types preserve the structural congruence on
process terms. a

Theorem 4.2 Well typed expressions can never
reduce to KERROR.

Proof: In the absence of types, the reduction
rule which allows communication between process
terms states that z(y).P | Tz — P{y « z}. The
typing scheme assigns to each of the two concur-
rent process terms the following types —

z(y).P:z(y:s)F —tp,and T(2) s 2(2: s
Further the type scheme allows a reduction to
take place by the typing rule Comm only when
the two types are complementary and the sorts
of the channels being used for communication are
consistent with each other. These are exactly the
conditions required to ensure a meaningful reduc-
tion in the m-calculus. The term resulting from
the communication is P{y ¢« z} and its corre-
sponding type is tp[y < z]. Then well typed pro-
cess terms never reduce to KRROR. a

)S



TYPE SYSTEMS FOR CONCURRENT...

Theorem 4.3 The type system preserves the se-
mantics of API.

Proof: Follows as a direct consequence of Theo-
rem 4.1 and Theorem 4.2. a

5 Basic Syntactic Properties

The type system proposed in this work is meant
for concurrent calculi, and as is well known, the
requirements of concurrent systems are quite dif-
ferent from those of sequential systems. However,
there are a number of syntactic properties which
have been of interest in traditional type systems
for sequential programming [3]. For the sake of
completeness we briefly examine such properties
in our type system.

1. Implicit Typing: The typing scheme we
have proposed is an implicit one (Curry-style
typing). We chose Curry-style typing be-
cause we wanted to illustrate our work in the
setting of a familiar calculus without requir-
ing major syntactic modifications to the term
structure of the calculus.

2. Church-Rosser Property (CR): This is
more a property of the underlying calculus
being typed, rather than the type system it-
self. In our case, API does not satisfy the
Church-Rosser property, since functions such
as ‘parallel-or’ can be represented in it.

3. Subject Reduction (SR): If process term
P has the type tp, and if P reduces to the
term P’; then the subject reduction property
states that the type of P’ is also tp. Such
a property does not hold in our type sys-
tem because process reduction in API is non-
deterministic, and also due to name passing,
the interface of a process may change with
reduction.

4. Strong Normalization (SN): This prop-
erty states that all reduction sequences ter-
minate eventually. This means that not ev-
ery computable function is definable in the
system. However this property does not hold
in our type system because of the presence
of recursive process types. With the help of
recursive process types we are able to type
the “” operator of Ap1 without restricting
its expressive power.

Informatica 28 (2004) 103-113 111

5. Type Checking: This property states
whether, given a typing environment I', a
process term P, and a type t, is the judgment
'+ P :t decidable or not. Type checking is
decidable for our type system.

6. Type Inference: This requires that given
I' and P, it should be possible to compute a
t such that I' = P : t is valid. Type inference
is possible for process types.

The above properties gained prominence because
of their importance in the traditional application
areas of types, such as in proof theory and in se-
quential programming. In the domain of concur-
rency, many of the above properties such as CR,
SR, and SN are no longer relevant. Instead, prop-
erties such as safety and liveness become impor-
tant.

6 Further Extensions to the
Type System

There are a number of concepts which have played
a significant role in the success of type disciplines
for sequential systems. 'T'wo such concepts are
Polymorphism and Subtyping. In this section we
examine whether these concepts shed any light on
concurrent calculi. We informally extend our type
discipline in two directions — to incorporate poly-
morphism and subtyping. The results are indeed
very promising as we demonstrate in the following
subsections. Further research along these lives is
sure to lead to insights into concurrent calculi.

6.1 Channel passing versus Process

passing

Many distinct formalisms [25, 29, 37, 1, 18, 2, 5]
have been invented to describe systems which do
not have fixed interconnection topology between
processes. All such formulations may be classified
into two groups by examining the way in which
they achieve mobility. One group achieves mo-
bility by allowing channel names to be communi-
cated [25, 1, 18] — the 7-calculus belongs to this
group. The other group achieves mobility by sup-
porting the transmission of processes as messages
[37, 2, 29, 5] — let us take a particular example
from this group, say CHOCS [37].



112 Informatica 28 (2004) 103-113

The name passing approaches to concurrency
allow names, but not processes, to be transmitted
in communications. On the other hand, the pro-
cess passing approaches allow processes, but not
names, to be transmitted as messages. There are
relevant reasons why each of these two approaches
allows only either names or processes but not both
to be the content of communications.
ther of the two approaches can be said to have
achieved “uniformity” in dealing with their prim-

Thus nei-

itive entities. Further it has been demonstrated
[37, 22, 36] that both the paradigms are equally
powerful as far as their expressive power is con-
cerned.

The question that we ask now is whether our
type system can provide any relevant criteria that
favours the choice of one paradigm over the other?
The answer is in the affirmative — the type system
does provide a measure which helps in discrimi-
nating the two paradigms.

In order to see how, let us examine the type
that our system assigns to the process constructor
which allows abstraction of names and processes
in the paradigms of name-passing and process-
passing calculi respectively. In this section, let
x,y range over Names; P, () range over Processes;
N range over Name Sorts; Py and t, range over
Process Types.

Consider the following 7-calculus term, and its
corresponding type — z(y).Q : VN .z(y : Ny —
ty. The type expression states that the process
term z(y).Q) behaves like a program which expects
any name y as input (y is a dummy parameter),
and then behaves like the process (). However
there is no restriction on what sort of name it
can accept as input, as shown by the universal
quantifier which ranges over N;. The important
point to be observed is that the entity “VNs.z(y :
NS)R — 14" is itself a process type and does not
lie in the range of the universal quantifier (which
ranges only over name sorts in this case).

Now consider the following CHOCS term, and
its corresponding type — z?(P).Q : VFP.x(P :
P;)® — tg. In this case the type expression states
that the process term 27(P).() behaves like a pro-
gram which expects any P process as input (P
is a dummy parameter), and then behaves like
the process ). However the program does not
impose any restrictions on the type of the in-
put process (represented by the universal quan-

N. Raja et al.

tifier ranging over P,. In this case the entity
“WP.x(P : P)f — tg” is itself a process type
and hence the universal quantifier ranges over this
type as well. In other words process types turn
out to be impredicative in CHOCS, while they
remain predicative in the m-calculus.

It is a well known phenomenon in type theory
that the semantics of a predicative formalism is
extremely simple and elegant in comparison with
the semantics required by an impredicative for-
malism [11]. Thus conceptual simplicity and el-
egance in the semantics of the type system asso-
ciated with a formalism favours m-calculus over
CHOCS - or in more general terms, name pass-
ing approaches over process passing approaches
to concurrency.

6.2 True Concurrency versus

Nondeterministic Interleaving

As mentioned in Section 7, the work by Pierce and
Sangiorgi has shown that the subtyping relation
among name sorts leads to an interesting refine-
ment. In this subsection we examine the relevance
of subtyping relation among process types.

In the semantic theories for process algebras
such as CCS [21] and CSP [14], concurrency is
semantically reduced to nondeterminism. kFor ex-
ample the process alb is considered semantically
equivalent to the process (a.b + b.a). It has
been demonstrated by Boudol et al. [7], that in
certain situations it is meaningful to retain con-
currency as a primitive concept without reducing
it to nondeterministic interleaving. We now show
that process types can be used to maintain such
a distinction.

For this purpose we introduce union types, ‘U’,
and a subtyping relation among union types. Con-
sider a process term of the form P+ (). This term
can (nondeterministically) indulge, either in the
actions specified by P or in the actions specified
by @ (exclusive-or of the actions). If the types of
P and @) are given by ¢, and t, respectively, then
we assign to the process P 4 @), the type ¢, Ut,.
Now we define the subtyping relation ‘C’, by the
relations, t, C (t, Ut,) and t, C (t, Ut,). The
subtyping relation is reflexive, antisymmetric, and
transitive. Intuitively in a context which requires
an object of type t, one could as well use an ob-
ject whose type is a subtype of £, but not vice
versa. This intuition is well supported when we



TYPE SYSTEMS FOR CONCURRENT...

examine the process terms themselves. It is im-
portant to note that such a subtyping relationship
does not hold in the case of intersection types i.e.
ty Z (t,Ntq) and t, C (t, Nt,).

Thus we get the type of a|b as (t, N#y) and the
type of ((a.b) + (b.a)) as ((ta — &) U (tp — ta)).
Consider the above processes after they make a
transition on ‘a’. (a.b) + (b.a) reduces to b. The
new process type is a subtype of the original pro-
cess type, i.e. t, C ((ty = t3) U(ty — t,)). On the
other hand the process a|b also reduces to b. But
the distinction lies in the fact that the new pro-
cess type is not a subtype of the original process
type, i.e. ty € (t, Ntp). Thus the type equiva-
lence provided by the subtype relation provides a
key to distinguish true concurrency from nonde-
terministic interleaving.

7 Related Work

In this section we briefly discuss work related to
type systems for mobile processes. As mentioned
earlier, the concurrent calculi that were proposed
following Milner’s CCS, have two basic syntactic
entities — channels and processes. I'his situation
is unlike that in sequential programming, where
the A-calculus (the de-facto standard sequential
language), has only one basic entity — terms. Till
now a major part of the research on type sys-
tems for concurrency has concentrated on assign-
ing type information to the channels only. Such
type information has been called sorts.

The relevant starting point is the notion of
sortsintroduced in the polyadic 7w-calculus by Mil-
ner [22]. We illustrate Milner’s notion of sort-
ing with an example. Consider the process term
Zy.0|z(u).%().0|Z2.0. In this expression, channels
y and z carry only the empty vector if they are
ever used for communication. On the other hand,
channel z always carries another channel name,
which in turn is used in communicating an empty
vector. We can represent these observations as:
{y— 0,z (),z— (())}. Notice that the usage
of z is characterized by a nesting of parentheses.
The above representation is precisely the sorting
as proposed by Milner. Thus the sort associated
with a channel captures the length and nature
of the vector that the name carries in communi-
cations. In the polyadic 7-calculus, names may
carry n-tuples of other names. Hence the notion

Informatica 28 (2004) 103-113 113

of sort information assumes prominence only in
the polyadic setting. There are some more points
to be noted. Firstly, sort information is assigned
to channels only and sort equivalence is by name
matching. Secondly, names occurring in a per-
fectly meaningful w-calculus process term may not
have any sorting at all. This can occur if a term
uses names to communicate different entities at
different times. Thus the lack of a proper sorting
does not render a w-calculus expression meaning-
less. Finally, sorts are implicit i.e., they do not
occur in the term structure of the calculus. Honda
[15] presented similar results, in an independent
work. Gay [12] presents an algorithm (quadratic
in the length of the input process) for automati-
cally inferring such sort information for channels,
from the given m-calculus term. Naturally sorts
are inferred only if they exist. Honda and Vas-
concelos [16] gave an algorithm to the same ef-
fect, though linear in the size of the input pro-
cess. Following Lafont’s work on interaction nets
[19], Honda proposed conditions on channel sorts,
so as to achieve freedom from deadlock in certain
finite and simple situations.

Pierce and Sangiorgi [31] extended the notion of
sorts by distinguishing between the ability to read
from a channel, the ability to write to a channel,
and the ability to do both. This refinement gives
rise to an interesting subtype relation on chan-
nel sorts. Their sort equivalence is by structural
matching. In Pierce’s work, sorts appear explic-
itly in the term structure and further such sort
information is even communicated from one pro-
cess to another. This requires changes in the 7-
calculus model, thus resulting in a different con-
current calculus. In Pierce’s work, the problem
of algorithmic inference of sort information is not
considered at all.

The idea of assigning type information to pro-
cesses has also been used by researchers in other
contexts [29, 13, 34]. In Facile, CML, and the
Typed A-calculus with first class processes, the
notion of process type is present. However the
process types which find usage in these program-
ming languages are predominantly just functional
types. The notion of polymorphism has been in-
cluded in Facile and CML, but once again in the
realm of channel sorts, in order to derive more
flexible sorting mechanisms.

From the above observations it is clear that



114 Informatica 28 (2004) 103-113

the notions of type inference, polymorphism, sub-
typing, and conditions for deadlock freedom have
been explored in the domain of channel sorts.
Such investigations in the domain of process
types, would yield rich dividends [33, 4, 32, 38,
39].

8 Conclusions and Future
Directions

The aim of this work was to establish a bridge
between the disciplines of concurrency and type
theory. We presented a novel operational seman-
tics for the asynchronous m-calculus, by making
reductions sensitive to type. Our type system was
unique, in not confining type information to chan-
nels only; very informative types were assigned to
processes also. T'he universe of process terms with
its rich structure, proved to be a fertile ground for
the application of various type constructors. The
type system did not restrict the expressive power
of the asynchronous w-calculus in any way. Types
guaranteed safety, that well typed expressions
would not go wrong. Further the type system
helped in preventing the construction of mean-
ingless expressions, such as those representing in-
finite concurrent activity, right at the stage of
syntactic formation of process terms. The notion
of polymorphism brought out the latent impred-
icativity in the semantics of the process-passing
approaches to concurrency. The notion of sub-
typing helped in distinguishing true concurrency
from nondeterministic interleaving.

As further work, it would be highly interesting
and relevant to explore how the notion of pro-
cess types could be put to use in reasoning about
liveness properties of concurrent systems, such as
freedom from deadlock.
ful to pursue work towards establishing algebraic
equivalences over process types. Also as discussed
in the last section, exploring the notions of poly-
morphism and subtyping looks promising.

It would also be fruit-

This work is part of an ongoing investigation
into the role of type theoretic concepts in the set-
ting of concurrency. It would also be productive
to carry out such an investigation in a more ab-
stract formalism for concurrency, e.g., like the one
provided by action structures [24].

N. Raja et al.

Acknowledgment

We wish to thank the anonymous referees for con-
structive comments which were of help in improv-
ing the content and presentation of this paper.
Our thanks to Ms. Margaret D’Souza for typing
and typesetting this paper.

References

[1] E. Astesiano, and G. Reggio (1984) Paramet-
ric Channels via Label Expressions in CCS,
Theor. Comp. Science, Vol. 33, pp. 45—64.

[2] E. Astesiano and G. Reggio (1987) SMoLCS-
driven concurrent calculi, Lecture Notes in
Computer Science, Springer-Verlag, Vol. 249,
pp. 169-201.

[3] H. Barendregt, and K. Hemerik (1990) Types
in lambda calculi and programming lan-
guages, Proc. ESOP’90, LNCS 432, pp. 1-36.

[4] M. Berger, K. Honda, and N. Yoshida (2003)
Genericity and the w-Calculus, Proc. FOS-
SACS’03, LNCS, To appear.

[5] G.Boudol (1989) Towards a lambda-calculus
for concurrent and communicating systems,
Proc. TAPSOFT’89, LNCS 351, Springer-
Verlag, pp. 149-161.

[6] G. Boudol (1992) Asynchrony and the =-
calculus, Rapport de Recherche, Number
1702, INRIA Sophia-Antipolis.

[7] G. Boudol, 1. Castellani, M. Hennessy, and
A. Kiehn (1991) Observing Localities, IN-
RIA Report No. 1485.

[8] L. Cardelli, and P. Wegner (1985) Under-
standing Types, Data Abstraction, and Poly-
morphism, ACM Computing Surveys, Vol. 17

(4).

[9] F. Cardone, and M. Coppo (1990) Two
Extensions of Curry’s Type Inference Sys-

tem, Logic and Computer Science, Academic
Press, pp. 19-75.

[10] B. Courcelle (1983) Fundamental Properties
of Infinite Trees, Theoretical Computer Sci-
ence, Vol. 25, pp. 95-169.



TYPE SYSTEMS FOR CONCURRENT...

[11]

[12]

[14]

[15]

[16]

[19]

[20]

[21]

[22]

R.L. Constable (1991) Type Theory as a
Foundation for Computer Science, Proc.
TACS’91, Lecture Notes in Computer Sci-
ence, Vol. 526, Springer-Verlag.

S. Gay (1993) A sort inference algorithm for
the polyadic w-calculus, Proc. ACM Sym-
posium on Principles of Programming Lan-
guages, ACM Press.

A. Giacolone, P. Mishra, and S. Prasad
(1989) Facile: A symmetric integration of
concurrent and functional programming, Int.
JI. of Parallel Prog., Vol. 18, pp. 121-160.

C.A.R. Hoare (1985) Communicating Se-
quential Processes, Prentice-Hall, London.

K. Honda (1993) Types for Dyadic Interac-
tion, Proc. CONCUR’93, Lecture Notes in
Computer Science, Volume 715, Springer-
Verlag.

K. Honda, and V.T. Vasconcelos (1993) Prin-
cipal typing schemes in a polyadic 7-calculus,
Proc. CONCUR’93, LNCS 715, Springer-
Verlag.

K. Honda, and M. Tokoro (1991) An Object
Calculus for Asynchronous Communication,
ECOOP’91, Lecture Notes in Computer Sci-
ence, Volume 512, Springer-Verlag.

S.R. Kennaway and M.R. Sleep (1985) Syn-
tax and informal semantics of DyNe, a paral-
lel language, LNCS 207, Springer-Verlag, pp.
222-230.

Y. Lafont (1990) Interaction Nets, Proc.
POPL’90, ACM Press, pp. 95-108.

B. Mahr (1993) Applications of Type theory,
Proc. TAPSOFT’93, Lecture Notes in Com-
puter Science, Volume 668, Springer-Verlag.

R. Milner (1989) Communication and Con-
currency, International Series in Computer
Science, Prentice Hall.

R. Milner (1991) The polyadic w-calculus: a
tutorial, Logic and Algebra of Specification,
Proceedings of International NATO Summer
School (Marktoberdorf, Germany), Series I,
Vol. 94, Springer.

[23]

[24]

[25]

129]

[33]

Informatica 28 (2004) 103-113 115

R. Milner (1999) Communicating and Mobile
Systems: The Pi Calculus, Cambridge Uni-
versity Press.

R. Milner (1993) Action Structures and the
m-Calculus, Proof and Computation, Pro-
ceedings of International NATO Summer
School (Marktoberdorf, Germany), Series F,
Vol. 139, Springer.

R. Milner, J. Parrow, and D. Walker (1992)
A calculus of mobile processes (Parts I and
1), Information and Computation, Vol. 100,
pp- 1-77.

R. Milner (1992) Functions as processes,
Journal of Mathematical Structures in Com-
puter Science, Vol. 2 (2), pp. 119-141.

J.C. Mitchell (1990) Type Systems for Pro-
gramming Languages, Handbook of Theoreti-
cal Computer Science, Elsevier Science Pub-
lishers.

J.C. Mitchell, and G. Plotkin (1988) Ab-
stract Types have Existential Types, ACM
Transactions on Programming Languages

and Systems, Vol. 10 (3).

F. Nielson (1989) The typed A-calculus with
first class processes, Proc. PARLE’89, Lec-
ture Notes in Computer Science, Volume 366,
Springer-Verlag.

C. Palamidessi (1997) Comparing the ex-
pressive power of the Synchronous and the
Asynchronous pi-calculus, Proc. ACM Sym-
posium on Principles of Programming Lan-
guages, ACM Press, pp. 256-265

B. Pierce, and D. Sangiorgi (1993) Typing
and Subtyping for Mobile Processes, Proc.

IEEE Symposium on Logic in Computer Sci-
ence, IEEE Press.

B. Pierce, and D. Sangiorgi (2000) Behav-
ioral Equivalence in the Polymorphic Pi-
Calculus, Proc. Journal of ACM, Vol. 47 (3)
pp 531-584.

N. Raja, and R.K. Shyamasundar (1994)
Type Systems for Concurrent Calculi, Proc.
of the Tenth Workshop on Abstract Data
Types (ADT’94), Santa Margherita Ligure,
Genoa, Italy.



116

[34]

[37]

Informatica 28 (2004) 103-113

J.H. Reppy (1993) Concurrent ML: De-
sign, Application and Semantics, Funct.
Prog., Concurrency, Simulation and Au-
tomated Reasoning, LNCS 693, Springer-
Verlag.

D. Sangiorgi, and D. Walker (2001) The Pi-
Calculus — A Theory of Mobile Processes,
Cambridge University Press.

D. Sangiorgi (1993) From m-calculus to
Higher-Order m-calculus — and back, Proc.
TAPSOFT ’93, Lecture Notes in Computer
Science, Volume 668, Springer-Verlag.

B. Thomsen (1993) Plain CHOCS. A Second
Generation Calculus for Higher Order Pro-

cesses, Acta Informatica, Vol. 30 (1), pp. 1-
59.

D.N. Turner (1996) The Polymorphic Pi-
Calculus:  Theory and Implementation,
Ph.D. Thesis, University of Edinburgh.

V. Vasconcelos (1994) Typed Concurrent
Objects, Proc. ECOOP’94, LNCS, Springer-
Verlag, pp. 100-117.

N. Raja et al.



