Combinatory Formulations of Concurrent Languages

N. RAJA and R.K. SHYAMASUNDAR

Tata Institute of Fundamental Research

We design a system with six Basic Combinators and prove that it is powerful enough to embed
the full asynchronous 7-calculus, including replication. Our theory for constructing Combinatory
Versions of concurrent languages is based on a method, used by Quine and Bernays, for the general
elimination of variables in linguistic formalisms. Our combinators are designed to eliminate the
requirement of names that are bound by an input prefic. They also eliminate the need for input
prefix, output prefix, and the accompanying mechanism of substitution. We define a notion of
bisimulation for the combinatory version and show that the combinatory version preserves the
semantics of the original calculus. One of the distinctive features of the approach is that it can
be used to rework several process algebras in order to derive equivalent combinatory versions.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—Lambda calculus and related systems; 1.1.3 [Algebraic Manipulation]:
Languages and Systems—substitution mechanisms; F.1.2 [Computation by Abstract De-
vices]: Modes of Computation—parallelism and concurrency

General Terms: Theory, Languages

Additional Key Words and Phrases: Functional completeness, Quine-Bernays combinators

1. INTRODUCTION

The discipline of combinatory logic [Curry 1930; Schénfinkel 1924] began in the
study of foundations of mathematics. It was proposed as an approach which could
overcome the drawbacks of complex primitives, such as substitution, in formulations
of mathematical logic [Russell and Whitehead 1912]. Much later, computer science
provided impetus to research on combinators [Turner 1979a; 1979b]. The study
of combinators has led to deep insights in the theory of sequential programming
[Hindley and Seldin 1986] and has had a great influence in the implementation of
functional programming languages [Peyton Jones 1987].

In the field of concurrency there has been very little research in the pursuit of
combinators. A major reason for this could be the fact that during the initial period
of research on foundational models of concurrency [Hoare 1985; Milner 1989], little
attention was paid to the communication of data between processes. Value passing
was modeled in an indirect way, by encoding data values in the names of ports and

A preliminary version of this paper appeared in Proceedings of the Asian Computing Science
Conference, 1995.

Authors’ address: Computer Science Group, Tata Institute of Fundamental Research, Mumbai
400 005, India; email: rajaQtifrvax.tifr.res.in; shyam@tcs.tifr.res.in.

Permission to make digital/hard copy of all or part of this material without fee is granted
provided that the copies are not made or distributed for profit or commercial advantage, the
ACM copyright/server notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery, Inc. (ACM). To copy
otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.

© 1997 ACM 0164—0925/97/0900—0111 $03.50

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997, Pages 899-915.

900 . N. Raja and R. K. Shyamasundar

then by using infinite disjunctions of pure synchronization. The next generation of
process algebras started focusing on the exchange of values. In the last decade many
new process algebras that employ similar mechanisms for communication of data
have been designed [Boudol 1989; Milner et al. 1992; Thomsen 1990]. Influenced
by Milner’s ideas [Milner 1989], in these process algebras, communication consists
in sending and receiving a value synchronously through a shared port. Consider
the following parallel (“]”) composition in the m-calculus [Milner et al. 1992]:

z(y).P|7T2.Q — Py« =z} |Q

In this expression z(y).P and Tz.Q) are processes which communicate through the
common port z. Process Tz.() sends the value z on port z and then activates
Q. Process z(y).P receives the value z on port z, substitutes z for y in P, and
then triggers P. The expression z(y) is called an input prefiz, and it denotes
“name z binds name y.” Thus, once again we encounter the complex mechanism
of substitution, with its attendant paraphernalia of binding mechanisms and bound
entities.

At first sight, the problem of eliminating substitution in process algebras appears
to be simple. In w-calculus, the values we substitute are always names, rather than
processes (however it is vice versa for certain other process algebras like CHOCS
[Thomsen 1990]). So, eliminating bound names seems to be easy. However, in
comparison with A-calculus [Barendregt 1984], the problem of eliminating substi-
tution i1s much more difficult in the setting of concurrent processes. Let us look
at some of the reasons for these difficulties. The process calculi for concurrency
are syntactically very different from the A-calculus. Most such calculi do not pos-
sess the operator-to-operand kind of applicative structure found in the A-calculus.
Hence, the flow of information is not just confined to syntactically adjacent terms.
A-calculus is a single-sorted theory (everything is a term), but most concurrent cal-
culi are inherently two-sorted, the two sorts being processes and channels. There is
only one “abstractor” (A) in A-calculus, while there are innumerable distinct “ab-
stractors” (infinitely many distinct names) in process algebras. Each of the names
is distinct as an “abstractor” because the identity of an “abstractor” in a term
should be accessible even after eliminating the corresponding bound name. This
information is crucial in determining the subsequent reductions of the term under
consideration. Apart from the mechanism of abstraction, there i1s only one other
“operation” in A-calculus (namely application), while in process algebras there is
a rich set of other “operations” (viz., |, 4+, v, and ! in the m-calculus). Further,
there is a plethora of process algebras (which handle value passing), each of them
as useful and powerful as the other.

The aim of this article is to design a system of combinators, which completely
eliminates the need for substitution in process algebras. The combinators should
explicitly handle all the operational details of the flow of data across processes,
without relying on a metalevel operation such as substitution. Such a combina-
tory reformulation of any process algebra, would not only provide an alternative
semantics in terms of combinators, but would also prove to be a valuable tool in
the implementation of the process algebra.

In this article, we shall work in the setting of the asynchronous 7-calculus [Boudol
1992; Honda and Tokoro 1991] with replication. The combinators we design arise

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

Combinatory Formulations of Concurrent Languages : 901

from a technique that was formulated independently by Bernays [1959] and Quine
[1959] for the general elimination of variables in linguistic formalisms. We design
a system of six Basic Combinators and prove that it is powerful enough to embed
the asynchronous m-calculus (including process replication). We define a notion of
bisimulation for the combinatory version and show that the combinatory version
preserves the semantics of the original calculus. Further, the same approach can
be used to rework several process algebras [Boudol 1989; Milner 1991; Milner et al.
1992; Thomsen 1990] in order to derive equivalent combinatory versions.

The organization of this article is as follows: Section 2 briefly reviews some back-
ground material; Section 3 motivates and introduces the combinatory version of the
asynchronous m-calculus; Section 4 presents a formal definition of the combinatory
version; Section 5 provides a formal embedding of the asynchronous m-calculus into
the combinators and shows that the combinatory version preserves the semantics
of the original calculus; Section 6 examines related work; and finally Section 7
concludes the article with directions for further research.

2. BACKGROUND
2.1 Quine's Technique in Logic

As mentioned earlier, the combinators that we design arise from a technique that
was formulated independently by Bernays [1959] and Quine [1959]. However, there
are slight differences in the methods proposed by each of them. We now give a brief
introduction to the method advocated by Quine [1960].

Consider a first-order predicate logic, with the following:

Alphabet: z, y, z... variables
P predicate symbol of arity n
A quantifier.
Terms and Formulas: The usual standard definitions.

In order to eliminate variables and quantifiers from every formula of the above
theory, Quine introduced the combinators inv (Minor Inversion), Inv (Major In-
version), Ref (Reflection), and Der (Derelativization). These combinators operate
iteratively on the predicate P, to yield new predicates which are in turn defined
over the original universe only. The combinators are defined as

(tnv P) 21 ... Tpog Tpoq 2 Mff P2y 0. Zpoo Ty Tpoq;

(Inv P) 21 ... zn_1 2z iff Pap 2 ... 2p_q;

(Ref P)z1 ... 1 iff P2y ... Zp_q1 Zp_1; and

(Der P)zy ... zp_q iff Az, Py ... £o_1 &, Where 2, is a new variable.

For illustration, consider the formula Az Pryxz with arity(P) = 4. In order to
rid quantifier A and the bound variable x from this formula, we have to use the
combinators. The formula Az Pzyzz can be transformed to Az (inv P) zyzz.
The formula obtained can be further transformed into Az (Ref Inv inv P) yzz.
Another transformation leads to (Der Ref Inv inv P) yz, which has neither a
quantifier, nor a bound variable.

The work reported in Raja and Shyamasundar [1995b] extends the above tech-
nique to the setting of higher-order languages such as A-calculus.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

902 . N. Raja and R. K. Shyamasundar

2.2 A Brief Review of the Asynchronous m-Calculus

The presentation in this section closely follows that of Boudol [1992] and Milner
[1991]. Asynchronous m-Calculus (APT) [Boudol 1992; Honda and Tokoro 1991] is
a model of concurrent computation that supports process mobility by naming and
passing channels. It consciously forbids the transmission of processes as messages.
API is a two-sorted theory consisting of the sorts names (channels, ports) and
processes (agents).

Definition 2.2.1 (Names and Processes). Names (z,y, z,... € N) are atomic en-
tities while Processes (P, @, ... € P) have the following structure:

Pu=0 % | 2(y).P | (PIQ) | P | (va)P

The term 0 represents an inactive process, which cannot perform any action.
(We shall omit the trailing “.0” from process terms.) The construct z(y) (called an
input prefir) represents an atomic action, where name z binds name y. The process
term z(y).P waits for a name to be transmitted along channel z, substitutes the
recetved name for all free occurrences of y in P, and then triggers P. The construct
Ty (representing an atomic action) outputs the name y along z, but does not bind
name y. The form P|@Q denotes that P and @ are concurrently active, independent,
and can communicate. Operator “I” is called replication, and 'P denotes P|!P.
Finally, (vz)P restricts the use of name z to P. Apart from input prefix, “v” is
another mechanism for binding names within a process term in API. Operator “v”
may also be thought of as creating new channels.

We define the operational semantics of APT using the chemical abstract machine
formalism (CHAM) [Berry and Boudol 1992]. The CHAM formulation greatly
simplifies the reduction rules for systems dealing with concurrently active entities
[Milner 1992b].

A CHAM is specified by defining its molecules (terms of algebras, with specific
operations), solutions (finite multisets of molecules, which represent the state of
the system), and transformation rules (which dictate the evolution of solutions).

Notation 2.2.2. mi,my, ... range over molecules; {|.[} is a membrane operator
where {m1, ..., mg[} represents a finite multiset of molecules; S, S, ... range over
solutions (finite multisets of molecules); S1 W Sy denotes the union of two multisets;
S1 = Sy denotes the transformation of solutions; the context notation m[S] denotes
a molecule containing a submolecule S which is a solution.

Definition 2.2.3 (Molecules and Solutions for API).
(1) Any process term P of the calculus is a molecule
(2) Any solution & = {{mq, ..., mg|} is a molecule
(3) Tf m is a molecule and z is a name, then (vz)m is a molecule.
The behavior of a CHAM consists in state changes, described by transformations

of solutions. The transformation rules are divided into two categories — general
rules applicable to all CHAMs and specific rules that define the given CHAM.

Definition 2.2.4 (General Transformation Laws).

S1 = 5,
SiwS =S ws

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

(Chemical Law)

Combinatory Formulations of Concurrent Languages : 903

S1 = S,
{Im[Si][} = {lm[S:][}
The specific transformation rules of the CHAM for API may be classified into
three kinds: heating rules, cooling rules, and reaction rules. The heating and cool-
ing rules perform structural manipulations, while reaction rules really change the
information in the solution in an irreversible way.

(Membrane Law)

Notation 2.2.5. The heating rules are denoted by —; cooling rules by «—; and
reaction rules by —. The transformation = is the union of these three relations;

*
and = denotes the reflexive and transitive closure of =.

Definition 2.2.6 (Specific Transformation Rules for API).

z(y).P, Tz = Ply+ 2] (Reaction)
(PIQ) = PQ (Parallel)

P = PP (Replication)

(vz)P = (va){|P|} (Scoping Membrane)
((v2)P)|Q) = (vz)(P|Q) (x not free in Q) (Scope Migration)
(vz)P = (vy)Plz <« y] (y not freein P) (Name Conversion)
(vz)P = P (z not free in P) (Scope Extinction)
(vz)(vy)P = (vy)(vz)P (Scope Exchange)

Definition 2.2.7 (Reduction Relation for API). We say that

(1) @ and R are structurally congruent whenever @ \L— R

(2) the term @ reduces to R, in notation () — R, whenever @ = Q,Q — R,
and R’ = R.
Following Milner and Sangiorgi [Milner 1991; Milner and Sangiorgi 1992], we define

the notions of bisimulation and congruence for API.

Definition 2.2.8 (Unguarded Process). A process @ occurs unguarded in P if it
has some occurrence in P which is not under a prefix.

Definition 2.2.9 (Observable Action in API). A process P can perform an ob-
servable action, written P |, if for some pair of names z, y either the input construct
z(y).Q or the output construct Ty occurs unguarded in P with 2z unrestricted.

Definition 2.2.10 (Barbed Bisimulation for API). A relation R over processes is
a barbed simulation if P R @ implies
(1) if P— P’ then @ — @' and P’ R @’ and
(2) Pl implies @ |.
Relation R is a barbed bisimulation if R and R™' are barbed simulations. Processes

P and @ are barbed-bisimilar, if P R @ is true for some barbed bisimulation R.

Definition 2.2.11. A process context C[] is a process term with a single hole,
such that placing a process in the hole yields a well-formed process.

Definition 2.2.12 (Barbed Congruence for API). Processes P and @ are said to
be barbed-congruent, written P ~ @, if for each process context C[] it holds that
C[P] is barbed-bisimilar to C[Q].

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

904 . N. Raja and R. K. Shyamasundar

3. COMBINATORY VERSION OF THE ASYNCHRONOUS = CALCULUS

In this section, we introduce a combinatory formulation for the asynchronous -
calculus, through a series of illustrative examples. Section 3.1 shows how the Basic
Combinators and Transformation Rules arise when we try to eliminate input pre-
fix. In Section 3.2 we demonstrate that the same combinators suffice to handle
more complex situations. We shall use acronyms API and CAPI to refer to the
asynchronous m-calculus and its combinatory version respectively.

3.1 A Gentle Initiation

API has two distinct sorts of entities: names (ports, channels) and processes
(agents). In CAPI there is one more distinct sort called combinators. Names
in API are atomic entities devoid of any structure, and there are two forms of
atomic actions that a process can perform: sending or receiving a name. However
processes cannot be sent or received. All these properties continue to hold in CAPI.

Combinator “S.” We introduce the Basic Combinator “S” to represent the action
of sending (this is not the S of classical combinatory logic). Before a send action
can take place, the knowledge of two names is required — on which name to send
and what name to send. The APT process Tz is represented in CAPI as the process
— Szz — which denotes “on the channel z send the name z.” The combinator S
needs to be supplied with two names as arguments in order to construct a process
term from it. Subsequently we need the ability to determine the number of names
that a given combinator needs before it can be turned into a process. Hence we de-
fine a function called “Valency” to represent this information, e.g., Valency(S) = 2.

Combinator “R.” The other basic action in API is that of receiving a name.
The APT process z(y) denotes “receive some name — call it y — on channel 2.”
Here the name y is said to be bound by z. In other words, y is being used as a
dummy name, which will get replaced by the actual name that is received along
z. We introduce the next Basic Combinator “R” to represent the action of receiv-
ing. Analogous to S, combinator R needs two arguments before it can represent a
process, i.e., Valency(R) = 2. Let us supply the arguments one at a time. Thus
Rz denotes “recetve on the channel z.” Next let us examine the interpretation of
Rzy. Since bound names have no place in the combinatory version, an expression
like Rxy where y is free would take on the following meaning: on the channel z
the name y was received. While we want to specify future actions in our calculus,
we seem to be able only to report history. However, combinator “Deg” described
below saves us from this piquant situation.

Combinator “Deg.” We now introduce the third Basic Combinator “Deg”
(Degeneralization) with the requirement that Valency(Deg) = —1. The negative
Valency makes it apparent that Deg cannot directly operate on names. Instead
Deg operates on the combinator R to give a new combinator “Deg R” which in
turn is capable of operating on names. We extend the definition of the Valency
function to include sequences of Basic Combinators in its domain. For example,
Valency((Deg R)) = Valency(Deg) + Valency(R) = —1+42 = 1. Thus the expres-

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

Combinatory Formulations of Concurrent Languages : 905

sion (Deg R z) now represents a process which may receive any name whatsoever
on channel . We shall see in the following subsection that after receiving the name
y the process (Deg R) gets transformed to Rzy, which is a historical record of
a receive action that has already taken place. We hasten to add that though we
give a meaning to the Combinator (Deg R), we shall never assign a meaning to the
combinator (R Deyg), thus ensuring well-foundedness in the interpretation of the
combinators. Further, note that the domain of the newly constructed (Deg R) is
no different from that of R; both work on names only.

4

Transformations “Reaction” and “Cleanup.” The Reaction rule captures the act

of communication.
Deg C gz , Szz — C yxz (Reaction)

where C' is any string of Combinators, and § is any string of names.
The Cleanup rule eliminates inert molecules which precipitate from the solution.

Rxizy — (Cleanup)

Let us compose (DegR) in parallel with Szz and observe the result.

(DegR z) | Szz = (DegR z),Szz (Parallel)
(DegR z),Szz — Rzz (Reaction)
Rzz — (Cleanup)

The molecule (Deg R z) can accept a message on z, while the molecule Szz can
send the message z on xz. Hence, Reaction occurs. The Reaction rule does not
involve bound names or binding mechanisms or any substitution. The Cleanup rule
eliminates the Precipitate Rxy, as it cannot perform any more actions.

Discussion. The above example may be dismissed as a trivial case, wherein we
could get away without using bound variables because we never needed to refer to
them anyway. Before we go on to consider more complicated instances, there are
certain features of the Combinatory Version that we wish to point out. First, we
chose to introduce a new combinator Deg instead of redefining Valency(R) = 1, be-
cause the new combinator Deg helps us to uniformly tackle similar situations which
will crop up later. Second, observe that the structure of the process terms we have
considered so far have the form <Sequence of Combinators><String of Names>.
The combinators and the names that constitute a process term are clearly sepa-
rated as distinct strings. Third, Valency(<Sequence of Combinators>) = Length
(<String of Names>) where the Valency of a sequence of Combinators is the sum of
the Valencies of the individual Combinators that constitute the sequence. For exam-
ple in the process term (Deg R), Valency(Deg R) = Valency(Deg) + Valency(R)
=—14+2=1= |I|

Transformation “p-Bonding.”
(C1 @ Cry) = (Ci|Cy) 7y (p — Bonding)
where Valency(C1) = |Z| and Valency(C32) = ||

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

906 . N. Raja and R. K. Shyamasundar

Consider the APIT composition Tz | u(y), which in CAPI is Szz | (DegRu).
Reaction cannot occur because the channels used for sending and receiving are
different in the two processes. However, the two process terms may evolve reversibly
as

Szz | (DegR u) = (S|(DegR)) zzu

to form a molecular bond. Valency information is required when the process molecules
have to split the molecular bond, so as to take part in future reactions. At the time
of splitting the molecular bond, the combined argument string of names has to be
separated at the appropriate position:

(S|(DegR)) zzu = Szz | (DegR u)

where Valency (S) = 2 = |zz|, and Valency(DegR) = —1+2 = |u|. The p-Bonding
transformation is not a superfluous rule that we can do away with. It will turn out
to be crucial when we want to encode API terms which have nested parallelism in
their structure.

Discussion. In A-calculus there is only one “abstractor,” namely A. The sym-
bol A by itself has no meaning. On the other hand in API there are innumerably
many “abstractors,” since each of the infinitely many names can be used as an ab-
straction operator. Thus even after eliminating a bound name, the identity of the
“corresponding abstractor” (binding name) should be retrievable. The best way to
retain such information is to encode 1t in the structure of the term itself. Therefore
we shall require immediately after the elimination of a bound name from a process
term that the corresponding binding name should be the last element in the string
of names. In other words, just before the final step of eliminating a bound name
from a process term, the corresponding binding name should figure as the penulti-
mate element in the string of names.

Combinator “Ref.” Consider the API process z(y).yy. Here the dummy name
y seems to be unavoidable, since the specification of future actions seems to be
affected crucially by the name which will be received. However, for a moment, let
us assume that y 1s a free name that has already been received on the channel z. The
situation prevailing in such a case can be represented in CAPI as Rzy, Syy where
Rzy is arecord of the past action. We now introduce the “History” Transformation
Rule which precipitates records of past actions.

(RC) zyzoz3...2y — Ruzi22, Cx3...2, (History)

Note that we obtain (Rzy, Syy) from (RS zyyy) by the History transformation
rule. Now we introduce the fourth Basic Combinator “Ref” with Valency(Ref) = —1
and the “Reflection” Transformation Rule.

RefCxy...2, — Coxi...20n2n (Reflection)

The above rule helps in getting the required CAPI term (DegRef Ref RS z), with
the “abstractor” z in the appropriate position.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

Combinatory Formulations of Concurrent Languages : 907

Combinators “Inv” and “inv.” The Basic Combinators, “Inv” and “inv,” follow

the “Major Inversion” and “Minor Inversion” transformation rules respectively.

InvCzi...2p_12p, = Cxpx1...Tp_1 (Major Inversion)
inv Cx1... 80 2Zn_12n — C 21...2p_22,2,-1 (Minor Inversion)

Between themselves, these two combinators can permute any element of the argu-
ment string to an arbitrary position in the string.

3.2 Representing More Complex Terms

Processes with “Par(|).” In order to encode the API term u(z).(Tv | Tw), we
begin by encoding the subterm containing “|”. The subterm can be mapped to
Szv | Szw. At this stage the “p-Bonding” transformation rule is essential to derive

(S]S) zvew = Szv | Szw.

We then proceed as in earlier examples and eliminate the bound name z to obtain
the final encoding as (Deg Ref Ref Inv Inv inv Inv inv R (S | S) vwu). From
this encoding we notice that process constructors of API may occur along with the
basic combinators in CAPI. But, the separation between combinators and names
still persists. We extend Valency function to include the process constructors in its
domain by defining Valency(|) = 0.

Input Prefiz versus Restriction. There are two distinct binding mechanisms in
APT: input prefir (denoted by “.”) and restriction (denoted by “v”). The similarity
ends in the fact that both mechanisms bind names in process terms. However, there
are many substantial differences between the two bindings [Milner 1991; Milner
et al. 1992]. We indicate these differences below.

Consider an APT term z(y).P, where the input prefix z(y) binds name y in
process P. Name y is said to be bound because y can as well be replaced by any
other name z (which is not free in P), without affecting the meaning of the process
term. This fact is expressed by saying that z(y).P is structurally congruent to the
term z(z).P{z + z}, where z is not free in P. The binding of names due to an
input prefix is similar to the binding of variables by A in the A-calculus. During an
interaction, the bound name y acts as a placeholder for any name which is received
on channel . The received name replaces the bound name y in the process term P.
The received name, which is going to substitute y, can be any name whatsoever.
In fact it may even already occur free in P. Also note that the replacement for
y 1s obtained explicitly from another process term within the calculus itself. Our
combinators are concerned with this receiving and substitution mechanism.

Now consider an API process term, (vy) (), where name y is bound by the re-
striction operator. The restriction mechanism combines two distinct roles in one
operator. First, it hides all interactions on the name y within @), thus preventing
external processes from interfering on communications along channel y. In effect,
it declares a local name y, for use exclusively within). In this sense it is simi-
lar to the let construct used in functional languages and similar to new variable
declarations in block-structured languages (e.g., Pascal). Thus name y can be re-
placed by any other name which is not free in the). This is expressed by saying
that the term (vy) @ is structurally congruent to (vz) Q{y « z}, where z is not

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

908 . N. Raja and R. K. Shyamasundar

free in). Second, the restriction operator has closer connections with references
(mutable storage cells) of ML [Fiore et al. 1996; Stark 1996]. This can be seen
from the fact that the restriction operator ensures that name y is distinct from
all external names too [Milner 1991; Milner et al. 1992]. This is required because
APIT allows local names to be communicated to external processes. A term of the
form (vy)(ZTy.Q) can be viewed as simultaneously creating and transmitting a new
name. Name y 1s at first local to @@ and becomes active after the transmission.
Thus, the operator ¥ may be thought of as a mechanism which creates globally
unique channel names. In this role it also has an analog the Actor model of com-
putation [Hewitt et al. 1973], which uses a purely local mechanism for generating
globally unique Actor addresses. There is another important aspect to be noted.
Though the bound name y in (vy) @ may be replaced by any other globally unique
name z without affecting the meaning of (vy) @, such globally unique names are
not received from other process terms within the calculus. Unlike the input prefix,
there is no mechanism to receive such names on a particular channel, and hence
there 1s no accompanying mechanism of dynamic substitution.

Retaining “Restricted” Names. In this subsection and the next, we illustrate
the translation of API process terms containing the restriction operator. In this
subsection, we do not eliminate names bound by the v operator, i.e., we retain
the implicit capability of the v operator, to generate globally unique names in
situ. Consider the APT term (vz)(ZTy | z(u).uv). We first encode Ty | z(u).uv as
(S | (Deg Ref Inv Inv Inv R S')) zyve. The next step in the encoding process is
obtained by the v-Bonding Transformation Rule.

va)C1Z|Cg) = (v (C1|Cq)) xiy (v — Bonding)

The above rule finally yields (v (S | (Deg Ref Inv Inv Inv R S)) zeyvz). We also
extend the definition of Valency to define Valency(v) = 1.

Eliminating “Restricted” Names. In this subsection, we do not require the im-
plicit capability of “v” to generate globally unique names. Instead we introduce a
globally accessible parametric process U(z), which captures the metalevel capabil-
ity of generating unique channel names and internalizes 1t as a process term within
the calculus itself. We regard the symbol v as a special, globally accessible channel
over which U(z) transmits globally unique names. Any other process may use the
channel v only for receiving globally unique names. U(z) = vz.U(z'), and it evolves
as vz.vz'.vz"” Tt is composed in parallel with the entire system of processes. To
encode the APT term (vz)(z(u)|Ty), we first rewrite it as v(z).(z(u)|Zy). Note the
change in notation — (vz) has been rewritten as v(z). The transformed notation
clearly indicates that the binding due to the restriction operator can be regarded
similar to the binding caused by an input prefix, under the conditions formulated
above. Thus, an additional reduction step has been introduced. The transformed
term, v(z).(z(u)|Zy), is simply an API process term with multiple input prefixes,
and its CAPI translation is (Deg Ref Inmv Inv Inv R ((DegR) | S)) yv. Thus,
there is no need for any additional combinators to be defined. Instead of using
a global name generator, it i1s possible to specify a distributed name generator.
Such a specification is presented in Bodei et al. [1996] which also gives an algebraic

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

Combinatory Formulations of Concurrent Languages : 909

characterization of the resulting scenario. The results of this subsection are not
included in the formal definition of API that we present later in this article. This
is in keeping with the aim of this article, which is to model the operational details
of the flow of names across API processes, without making major changes to API
otherwise.

Processes with Dynamic Replication. The efficacy of our combinators becomes
apparent when we demonstrate that they can encode infinite behavior too. No
additional combinators are required in order to get the combinatory representation
of API processes with the ! operator. Consider the APT process lz(u).uv. Begin by
encoding z(u).uv to get (Deg Ref Inv Inv Inv R S vz). The CAPT translation of
lz(u). v is given by !(Deg Ref Inv Inv Inv R S vz). The definition of Valency is
extended by defining Valency(!) = 0.

4. FORMAL DEFINITION OF THE COMBINATORY CALCULUS
Definition 4.1 (Basic Combinators).
Basic Combinators = {S, R, Deg, Ref, Inv,inv}

Definition 4.2 (Combinators). The set of Combinators, C, consists of all finite
strings of the elements of the set {S, R, Deg, Ref, Inv,inv,|,v,!}. We shall use
C,C',C",Cq1,Cy, ... torange over C.

Definition 4.3 (Valency Function). Valency: C — Z is given by

(1) Valency(A) = 0 (where A denotes an empty string)
(2) Valency(S) = Valency(R) = 2

(3) Valency(Deg) = Valency(Ref) = —1

(4) Valency(Inv) = Valency(inv) = 0

(5) Valency(v) = 1

(6) Valency(]) = Valency(l) = 0

(7) Valency(C1C2) = Valency(Chr)+ Valency(Cy).

Definition 4.4 (Names and Processes). Names (z,y,z,u,v,w... € N) are atomic
entities; processes have the following structure:

P :=CZ | (PIP)|'P | (vz)P
where ¥ is any string of names, and Valency(C') = |¥| (= Length(¥)).

Once again, we define the operational semantics of CAPI using a CHAM [Berry
and Boudol 1992]. Section 2.2 presents a CHAM for API. The Reaction rule (Section
2.2) gets replaced by a new rule of the same name, as given below. Further, there
are a few additional rules which specify the transition rules for the combinators.
All the other rules remain the same.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

910 . N. Raja and R. K. Shyamasundar

Definition 4.5 (Transformation Rules for CAPI).

Deg Cyzx, Szz — C yzz (Reaction)
InvCzi...2p12, = C xpx1...Tp_1 (Major Inversion)

inv Cxy...8n_2Zn_12n — C 21...2p_22,2,_1 (Minor Inversion)
Ref Czy...2p = Cox...20%, (Reflection)

RC zixoz3...2, — Rz1x9, CT3...7T, (History)

R zix9 — (Cleanup)

ve)(Ch Z]|Cry) = (v (C1]Cy)) 2Zy (v — Bonding)
(CLE[Cry) = (Ci]Cy) Ty (p — Bonding)

where Valency(C1) = |#| and Valency(C2) = |¥].
With the above rules on hand, we define < : CAPI — CAPI below:
Definition 4.6 (Reduction relation for CAPI). We say that

(1) @ and R are structurally equivalent whenever Q =R

(2) the term @ reduces to R, in notation @ < R, whenever Q = Q' Q — R, and
R & R.
Following Milner and Sangiorgi [Milner 1991; Milner and Sangiorgi 1992], we de-

fine the notions of observable actions, barbed bisimulation, and barbed congruence

for CAPI.

Definition 4.7 (Observable Action in CAPI). A process P can perform an ob-
servable action, P |, if

(1) P (or a p-Bond subcomponent of P) is structurally congruent to some process
term C}, 7z, where the leading basic combinator of C}, is Deg, and the trailing
name of 7, is some z, such that there is no v-Bond subcomponent of the form
(v &) in P or

(2) P (or a p-Bond subcomponent of P) is structurally congruent to some process
term S zy, where for some pair of names z,y the name z does not occur in a
v-Bond subcomponent of the form (v) in P.

Definition 4.8 (Barbed Bisimulation for CAPI). A relation R, over processes is
a barbed simulation if P R, () implies

(1) if P P’ then @ — @' and P’ R. @' and
(2) Pl implies @ |.

Relation R, is a barbed bisimulation if R, and Rc_1 are barbed simulations. Processes
P and @ are barbed-bisimilar, if P R, @ is true for some barbed bisimulation R..

Definition 4.9. A process context C[] is a process term with a single hole, such
that placing a process in the hole yields a well-formed process.

Definition 4.10 (Barbed Congruence for CAPI). Processes P and @ are barbed-
congruent, written P ~. @, if for each process context C[] it holds that C[P] is
barbed-bisimilar to C[@)].

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

Combinatory Formulations of Concurrent Languages : 911

5. EMBEDDING API INTO CAPI

In this section, we shall present a technique to translate any given API process
term to an equivalent CAPT process term.

Definition 5.1. If 7 is a sequence of names, and y is any name, then let 2@ y
denote the resultant of extracting all occurrences of y to the trailing position of Z;
and let 2’© y denote the resultant of taking away all occurrences of y from Zz.

The following lemma essentially says that if we can arbitrarily permute a list of
names, then we can permute all occurrences of the bound name to the end of the
list and then combine them using the combinator Ref.

LEMMA 5.2. For any CAPI process term C' Z' and any name y we can construct
Cy Cy C 7 such that Cy Cy C (70 y)y = C 7 where C; € {Ref}* and Cy €

{Inv,inv}*.
ProoF. This is proved from the definition of Inv, inv, and Ref. O
We now introduce a pseudo name-abstraction operator z*(y) on CAPT terms.

THEOREM 5.3. Given any CAPI term C Z and names x,y we can construct an
agent z*(y).C' Z with the property

*(y).CZ | 7w = C7Zy+ w.
Proovr. It follows from the properties of the Basic Combinators and the above

lemma that z*(y).C' Z' is given by Deg C1C3R C Z, x where Cy; € {Ref}* and
Cy € {Inv,inv}* and where Z, denotes 70 y. O

Now, we present the formal translation from API to CAPI.

Definition 5.4 (Transformation from API to CAPI). Let P and @ denote API
process terms. Let [P] and [Q] denote their translations in CAPI respectively. The
general rules for translating P to [P] are

(1) [0] = A (where A denotes an empty string),

(2) [zy] = Sz,

(3) [=z(y)] = (Deg R z) (this step is a special case of the following one and is
included only for clarity),

(4) [=(y).P] = =*(y).[P],
(5) if [P] = Cp % and [Q] = Cy 25 then [P | Q] = (C; | Cy) 72,
(6) if [P] = C, 7z then ['P] = (1 C, 7p),
(7) if [P] = C, Z, then [(v2)P] = (v Cp) z7,.
Note that the combinators really deal with sending and receiving names; the
parallel, restriction, and replication operators are used as in the m-calculus. Hence

it 1s easy to show that the combinatory version preserves the semantics of the
original calculus.

THEOREM 5.5 (SEMANTIC CORRESPONDENCE). Given any two process terms
P, @ in API and the corresponding translated process terms [P], [Q] in CAPI we
have the following:

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

912 . N. Raja and R. K. Shyamasundar

(1) There exists a bisimulation R in API such that P R @ if and only if there
erists a bisimulation relation R. in CAPI such that [P] R. [Q].

(2) P and Q are barbed-congruent in API (P ~ Q) if and only if [P] and [Q]
are barbed-congruent in CAPI ([P] ~. [Q]).

Proo¥F. It is easy to see from Definition 5.1 and Theorem 5.3 that the reduction
relations of the two formalisms differ only in the structural transformations, but
have identical reaction transitions. The transformation rules defining structural
transformations are all deterministic and well founded, except the bonding-rules,
which nevertheless do not introduce or take away any reaction transitions. In other
words, the translation preserves reaction transitions. Thus, the two formalisms
have precisely the same reaction transitions, thereby preserving bisimulation and
congruence. []

6. RELATED WORK
6.1 Sequential Systems

The discipline of combinators in sequential programming has become a classic in
our times. Following Schénfinkel [1924] and Curry [1930], there have been various
related proposals to tame substitution in different contexts [Abadi et al. 1991;
de Bruijn 1972; Curien 1993; Kennaway and Sleep 1988]. The combinators of
Bernays [1959] and Quine [1959] were initially proposed to encode systems which
do not employ self-application. The work reported in Raja and Shyamasundar
[1995b] extends it to include self-application and higher-order functions, thereby
encoding the A-calculus.

6.2 Concurrent Systems

Though, there has been a phenomenal amount of work on combinators for se-
quential systems, there has not been much in the concurrency domain. The work
in Cleaveland and Yankelevich [1994] comes close to providing a system of com-
binators. It models CCS with value-passing [Milner 1989] using explicit routing
information between processes. However, unlike our work, it does not deal with
processes which have a dynamic interconnection topology. While the technique of
our article can be easily extended to capture CCS with value-passing, the method
of Cleaveland and Yankelevich [1994] does not generalize to cover process calculi,
which deal with dynamic interconnection topologies between processes.

The work in Honda and Yoshida [1994a; 1994b] constructs a combinatory version
of a variant of APT [Honda and Tokoro 1991]. They show that the concurrent com-
position of a small subset of fixed-form API processes can represent all API terms.
In Honda and Yoshida [1994a] is a system that encodes a finite subset — process
replication excluded — of API. Tn Honda and Yoshida [1994b] is a system that
gives a combinatory encoding of process replication also. The systems propounded
in these papers are geared to work only in the setting of a particular calculus and
cannot be easily modified to suit other calculi as well. However, the framework
of these papers 1s completely different from the one in this article. The notion of
basic combinators and their rewrite rules are different, and the method of term for-
mation is entirely different. One basic feature of Honda-Yoshida’s combinators is
that they are essentially a subset of the original APT terms (indeed, modulo renam-

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

Combinatory Formulations of Concurrent Languages : 913

ing and behavioral equality, they give finite generators of the concerned algebra),
which nevertheless can represent the original calculus. This feature is shared by
Schonfinkel-Curry’s combinators in the setting of A-calculus and is important for its
semantic use. This feature is not shared by the Quine-Bernays technique, though
the Quine-Bernays technique enjoys a much wider applicability within a uniform
and simpler scheme, which is clearly its advantage. Thus one can find here a clear
difference in the orientations of the two approaches. Precisely due to this reason,
the two approaches to “combinators for concurrency” offer complementary insights
into the structure of concurrent calculi. Their technique clarifies the synchroniza-
tion behavior of API processes, while our proposal of combinatory representation
sheds more light on the distribution mechanism of the received value and gives a
technique that can be applied to almost any concurrent calculi.

7. CONCLUSION AND FUTURE DIRECTIONS

Inspired by an unexplored technique of Quine in logic, we devised combinatory
formulations in the setting of concurrent systems. We provided an alternative se-
mantics for the asynchronous m-calculus in terms of combinators, by eliminating the
need for bound names and the metalevel operation of substitution from the calcu-
lus. The combinators explicitly handle all the operational factors that arise in the
communication of values between processes, while preserving the semantics of the
original calculus. The same set of combinators are amenable to alterations to suit
other process algebras operations as well. Process algebras which support process-
passing as a primitive operation, e.g., CHOCS [Thomsen 1990], can be represented
along the lines of the work reported in Raja and Shyamasundar [1995b] which ex-
tends the technique to capture higher-order languages such as the A-calculus. Our
future research goals include proving more refined algebraic equivalences, devel-
oping type-theoretic foundations, and exploring the relation of these combinators
with Interaction Nets [Lafont 1990] and Action Structures [Milner 1992a]. The
whole area of concurrent combinators is in a stage of infancy. Further research in
this area will elucidate the structure of concurrent systems and will give valuable
insights about the semantic structure of concurrency by providing various repre-
sentability results. In analogy with the success of combinators in sequential systems,
combinators for concurrency could have an impact on the theory of concurrency
and the implementation of concurrent systems.

ACKNOWLEDGEMENTS

We wish to thank the anonymous referees for constructive comments which were of
immense help in improving the content and presentation of this article. Our thanks
to Margaret D’Souza for typing and typesetting this article.

REFERENCES
ABaDI, M., CARDELLI, L., CURIEN, P.-L., AND L&vY, J.-J. 1991. Explicit substitutions. J. Funct.
Program. 1, 4 (Oct.), 375-416.

BARENDREGT, H. 1984. The Lambda Calculus: Its Syntar and Semantics. North-Holland, Ams-
terdam.

BERNAYS, P. 1959. Uber eine natiirliche erweiterung des relationenkalkuls. In Constructivity in
Mathematics, A. Heyting, Ed. North-Holland, Amsterdam, 1-14.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

914 . N. Raja and R. K. Shyamasundar

BERRY, G. AND Boupor, G. 1992. The chemical abstract machine. Theor. Comput. Sci. 96,
217-248.

Bobper, C., DEGaNoO, P., AND PriaMmi, C. 1996. Handling locally names of mobile agents. In Pro-
ceedings of the International Colloquium on Automata, Languages, and Programming. Lecture
Notes in Computer Science, vol. 1099. Springer-Verlag, Berlin, 490-501.

BoupoL, G. 1989. Towards a lambda-calculus for concurrent and communicating systems. In
Proceedings of the International Joint Conference on the Theory and Practice of Software
Development. Lecture Notes in Computer Science, vol. 351. Springer-Verlag, Berlin, 149-161.

BoupoL, G. 1992. Asynchrony and the m-calculus. Tech. Rep. 1702, INRIA, Sophia Antipolis,
France.

CLEAVELAND, R. AND YANKELEVICH, D. 1994. An operational framework for value-passing pro-
cesses. In Proceedings of the Annual Symposium on Principles of Programming Languages.
ACM, New York, 326-338.

CURIEN, P.-L. 1993. Categorical Combinators, Sequential Algorithms and Functional Program-
ming. Birkhauser, Boston.

CURRY, H. 1930. Grundalagen der kombinatorischen logik. Math. Annalen. 92, 305-366.

CUrRY, H. aND FEYS, R. 1958. Combinatory Logic. North Holland, Amsterdam.

DE BrRULIN, N. 1972. Lambda-calculus notation with nameless dummies. Indagationes Mathemat-
icae 34, 381-392.

Fiorg, M., Mocai, F., AND SANGIORGI, D. 1996. A fully-abstract model for the m-calculus. In
Proceedings of the Symposium on Logic in Computer Science. IEEE, New York, 43-54.

HewritT, C., BisHOP, P., AND STERGER, R. 1973. A universal modulator actor formalism for artifi-
cial intelligence. In Proceedings of the International Joint Conference on Artificial Intelligence.
Morgan Kaufmann, San Mateo, Calif., 235—-245.

HINDLEY, J. AND SELDIN. 1986. Introduction to Combinators and A-Calculus. Cambridge Univer-
sity Press, Cambridge, Mass.

Hoarg, C. 1985. Communicating Sequential Processes. Prentice-Hall, London, U.K.

Honpa, K. aND Tokoro, M. 1991. An object calculus for asynchronous communication. In
Proceedings of the European Conference on Object-Oriented Programming. Lecture Notes in
Computer Science, vol. 512. Springer-Verlag, Berlin, 133-147.

Honpa, K. AND YOsHIDA, N. 1994a. Combinatory representation of mobile processes. In Proceed-
ings of the Annual Symposium of Programming Languages. ACM, New York, 348-360.

Honpa, K. AND YosHIDA, N. 1994b. Replication in concurrent combinators. In Proceedings of
TACS. Lecture Notes in Computer Science, vol. 789. Springer-Verlag, Berlin, 786—805.

KENNAWAY, R. AND SLEEP, R. 1988. Director strings as combinators. ACM Trans. Program.
Lang. Syst. 10, 4 (Oct.), 602-626.

LAFONT, Y. 1990. Interaction nets. In Proceedings of the Annual Symposium on Principles of
Programming Languages. ACM, New York, 95-108.

MILNER, R. 1989. Communication and Concurrency. Prentice-Hall, London, U.K.

MILNER, R. 1991. The polyadic 7-calculus: A tutorial. Tech. Rep. ECS-LFCS-91-180, LFCS, Univ.
of Edinburgh, Edinburgh, UK. Oct. Also in Logic and Algebra of Specification, F. L. Bauer,
W. Brauer, and H. Schwichtenberg, Eds. Springer-Verlag , 1993.

MILNER, R. 1992a. Action structures. Tech. Rep. ECS-LFCS-92-249, LFCS, Univ. of Edinburgh,
Edinburgh, U.K.

MILNER, R. 1992b. Functions as processes. Math. Struct. Comput. Sci. 2, 2, 119-141.

MILNER, R., PARROW, J., AND WALKER, D. 1992. A calculus of mobile processes. Inf. Comput. 100,
1-77.

MILNER, R. AND SANGIORGI, D. 1992. Barbed bisimulation. In Proceedings of the International
Colloquium on Automata, Languages, and Programming. Lecture Notes in Computer Science,
vol. 623. Springer-Verlag, Berlin.

PrEYyTON JONES, S. L. 1987. The Implementation of Functional Programming Languages. Prentice-
Hall, London, U.K.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

Combinatory Formulations of Concurrent Languages : 915

QUINE, W. 1959. Eliminating variables without applying functions to functions. J. Symbol.
Logic 24, 4, 324-325.

QUINE, W. 1960. Variables explained away. Proc. Am. Philos. Soc. 104, 343-347.

RaJja, N. AND SHYAMASUNDAR, R. 1995a. Combinatory formulations of concurrent languages. In
Proceedings of the Asian Computing Science Conference. Lecture Notes in Computer Science,
vol. 1023. Springer-Verlag, Berlin, 156—-170.

RaJa, N. AND SHYAMASUNDAR, R. 1995b. The quine-bernays combinatory calculus. Int. J. Found.
Comput. Sci. 6, 4 (Dec.), 417-430.

RusseLL, B. AND WHITEHEAD, A. 1912. Principia Mathematica. Cambridge University Press,
Cambridge, U.K.

SCHONFINKEL, M. 1924. Uber die bausteine der mathematische logik. Math. Annalen 92, 305—
316. English translation with an introduction by W. V. Quine in From Frege to Gddel,
J. van Heijenoort, Ed. Harvard University Press, 1967.

STARK, I. 1996. A fully abstract domain model for the m-calculus. In Proceedings of the Symposium
on Logic in Computer Science. IEEE, New York, 36-42.

THOMSEN, B. 1990. Calculi for higher-order communicating systems. Ph.D. thesis, Imperial
College, London Univ., London, U.K.

TURNER, D. 1979a. Another algorithm for bracket abstraction. J. Symbol. Logic 44, 2, 267—270.

TURNER, D. 1979b. A new implementation technique for applicative languages. Softw. Pract.
FEzxper. 9, 31-49.

Received April 1996; March 1997; accepted May 1997

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

