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Abstract: We present various proofs of Cantor’s theorem in set theory:
namely that the cardinality of the power set of a set X exceeds the cardinality
of X, and in particular the continuum is uncountable. One of the proofs we
present is inspired by Yablo’s non-self-referential Liar’s paradox, and it seems
to bear a dual relationship to yet another proof.
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1 Introduction

Cantor’s theorem – that for no set there is a function mapping its members
onto all its subsets – is one of the most fundamental theorems in set theory
and in the foundations of mathematics. It is interesting to explore different
ways of proving such a basic theorem, possibly using a minimal or non-
standard repertoire of basic constructs or reasoning mechanisms.

We begin by recalling Cantor’s diagonalization proof, and note that it
exhibits a subset which is left-over by any onto mapping from any set to
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its powerset. The traditional diagonalization proof constructs such a subset
using the negation operator.

We introduce Yablo’s non-self-referential Liar’s paradox, and present a
different proof of Cantor’s theorem inspired by Yablo’s paradox. This proof
constructs another left-over subset which does not require invoking the nega-
tion operation for its definition.

We then discuss various aspects of the proof, and indicate similarities
with two other paradoxes. We outline other proofs provided by Cantor; and
finally show yet another proof which may in some sense be considered dual
to the negation-free proof.

2 Cantor’s Diagonalization Proof

We recall Cantor’s diagonalization proof of his eponymous theorem.

Theorem 2.1 Cantor’s Theorem: For any set, there is no function map-
ping its members onto all its subsets.

Proof [2, 3]: For any set X, let P (X) denote the power set of X, i.e.
P (X) = {T |T ⊆ X}. Suppose that the cardinality of X is equal to the
cardinality of P (X). This means that a one-to-one correspondence can be
established between X and P (X). For any x ∈ X and Tx ∈ P (X), let (x, Tx)
denote pairs of elements established by the one-to-one correspondence. Now
consider the set D = {y|y 6∈ Ty}. Clearly D ∈ P (X), and D differs from every
set Ty with respect to the element y. Thus any one-to-one correspondence
omits the set D. Q.E.D.

Notice that the construction of the set D, which is left-over by any one-
to-one mapping, involves the use of negation in stating y 6∈ Ty.

3 Paradox without Circularity

Yablo’s paradox [13, 14, 15] is a non-self-referential Liar’s paradox. Before
the formulation of Yablo’s paradox, all known paradoxes in logic seemed to
require circularity in an unavoidable way. Each of them used either direct
self-reference, or indirect loop-like self-reference. So, it appeared as though
self-reference was a necessary condition for the construction of paradoxical
sentences. Yablo’s paradox demonstrated that this was not the case. We
provide a brief outline of it in this section.
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Consider the following infinite sequence of sentences Si where the indices
‘i, j, k’ range over natural numbers:

(Si) : For all j > i, Sj is untrue

Note that, in the above sequence of statements, each statement quantifies
only over statements which occur later in the sequence.

Suppose Sk is true for some k. Then Sk+1 is false, and so are all subsequent
statements. As all subsequent statements are false, Sk+1 is true, which is a
contradiction. So Sk is false for all k. Looking at any particular i, this in
turn means that Si in fact holds, which is a contradiction. Thus Yablo’s
paradox provides a sequence of statements such that none of them ever refer
to themselves even in an indirect way, yet they are all both true and false.

4 Another Proof of Cantor’s Theorem

Theorem 4.1 (Cantor’s Theorem) The cardinality of the power set of
a set X exceeds the cardinality of X, and in particular the continuum is
uncountable.

Proof [9]: Let X be any set, and P (X) denote the power set of X. Assume
that it is possible to define a one-to-one mapping M : X ↔ P (X)

Define s0, s1, s2, ... to be a trace, where the first element of the trace is
any arbitrary s0 ∈ X, and all further elements sj where j > 0, of the trace
are such that sj ∈ M(sj−1)

Define t ∈ X to be a simple element, if all possible traces beginning with
t terminate. Note that a trace s0, s1, s2, ..., sf terminates at sf if M(sf ) is
the empty set.

Define N = {t ∈ X|t is a simple element}
The set N , which is a subset of X, cannot lie in the range of M . Suppose

there exists an n ∈ X such that M(n) = N , then n should be a simple element
since all traces beginning with element n also terminate. Thus n ∈ N , but
then n is no longer a simple element, since not all traces beginning with n
are terminating traces (e.g. “n, n, n, ...” is one such non-terminating trace).

Thus the set N is out of the range of mapping M . Q.E.D.

There is no explicit negation involved in the definition of the set N .
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5 Generalizing Cantor’s Agument

In this section we shall first see how the basic idea of Cantor’s argument
in the construction of the set D can be generalized in analogy with Yablo’s
non-self-referential liar’s paradox. Such a generalization would give rise to
the set N in the negation-free proof.

Extend the definition of a simple element to the notion of a k-simple
element as follows.

Define t ∈ X to be a k-simple element when for k > 0, there is no sequence
s1, . . . , sk such that s1 ∈ M(t), . . . , sk ∈ M(sk−1) and t ∈ M(sk).

Let Nk be the set of all k-simple elements of X. Then an easy argument
shows that there can be no n ∈ X such that Nk = M(n).

Cantor’s argument has N0, where t is 0-simple when t 6∈ M(t). In the
negation-free proof, the sets Nk are intermediaries, before leading up to the
set N . We have replaced the circles mentioned in Nk by ‘omega’, i.e. in
analogy with Yablo’s paradox, we have opened these circles, to construct N .

Does the set N use negation? It is perhaps not immediately obvious that
the set N does not use negation. It is defined as:

N = {t ∈ X| t is a simple element}

By definition, t ∈ X is a simple element when all possible traces beginning
with t terminate. Is the statement “all possible traces beginning with t termi-
nate” negation-free? To settle this question we would have to rewrite it as a
first-order formula. An obvious rewriting, which comes out of the definition
of k-simple above, would correspond to: “there is no non-terminating se-
quence s1, s2, . . . such that s1 ∈ M(t), . . . , sk ∈ M(sk−1), . . .” Negation seems
to occur explicitly in the above formula. But there is also another negation
implicit in the notion of a non-terminating sequence above.

That the set N is negation-free can be shown as follows. We can also
rewrite the statement “all possible traces beginning with s0 terminate” as a
first-order formula in another way. For k ≥ 0, let an element s0 in X be called
simple when for each possible sequence (beginning with s0): s0, s1, . . . , sk

(∀i si+1 ∈ M(si)) there exists a j such that M(sj) = φ. This characterization
is negation-free.
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6 Hypergames and Grounded Classes

The reasoning involved in the negation-free proof also resembles the reason-
ing involved in establishing two well known paradoxes, viz., the Hypergame
paradox and the Mirimanoff’s paradox. The following sub-sections contain
an outline of these paradoxes.

6.1 Hypergame Paradox

The Hypergame Paradox, also known as Zwicker’s Paradox, was formulated
by William Zwicker [5, 11, 17] in game theory.

Definition 6.1 (Two Player Finite Game): A two-player game is de-
fined to be finite if it satisfies the following conditions:

1. Two players, A and B, move alternately, A going first. Each has com-
plete knowledge of the other’s moves.

2. There is no chance involved.

3. There are no ties, i.e. when a play of the game is complete, there is
one winner.

4. Every play ends after finitely many moves.

Definition 6.2 (Hypergame): The game Hypergame is a two-player game
with the following rules:

1. On the first move, player A names any finite game F (called the sub-
game).

2. The players then proceed to play F, with B playing the role of A while
F is being played.

3. The winner of the play of the subgame is declared to be the winner of
the play of Hypergame.

The Hypergame paradox is brought out by the question: Is Hypergame
finite? As Hypergame satisfies the four conditions required for finite games,
it is finite. If Hypergame is finite then player A can choose Hypergame as
the finite game F of the first move. Now player B can name Hypergame
as the first move. This process can lead to an infinite play, contrary to the
assumption that Hypergame is finite.
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6.2 Mirimanoff’s Paradox

Mirimanoff’s Paradox, also known as the Paradox of the Class of All Grounded
Classes, was formulated by Dmitri Mirimanoff [6, 7, 8, 16], in set theory.

Definition 6.3 (Grounded Class): A class X is said to be a grounded
class when there is no infinite progression of classes X1, X2, . . . (not neces-
sarily all distinct) such that . . . ∈ X2 ∈ X1 ∈ X.

Definition 6.4 (Class of all Grounded Classes): Let Y be the class of
all grounded classes.

Mirimanoff’s Paradox is brought out by the question: Is Y , the class
of all grounded classes, itself grounded? Let us assume that Y itself is a
grounded class. Hence Y ∈ Y and so we have . . . Y ∈ Y ∈ Y ∈ Y contrary
to groundedness of Y. Therefore Y is not a grounded class. If on the other
hand Y is not grounded, then there is an infinite progression of classes X1,
X2, . . . such that, . . . ∈ X2 ∈ X1 ∈ Y . Since X1 ∈ Y , X1 is a grounded class.
But then . . . ∈ X2 ∈ X1, which means X1 in turn is not grounded, which is
impossible since X1 ∈ Y .

7 Cantor’s Other Proofs

In this section, we briefly sketch Cantor’s two other proofs for the uncount-
ability of the continuum [1, 2, 3, 10].

Theorem 7.1 (Uncountability of the Continuum) There cannot be any
one-to-one correspondence between the natural numbers and the real numbers.

Cantor’s Proof by Diagonalization [2, 3]: Consider the real numbers be-
tween zero and one, represented by infinite decimal expansions. Any attempt
to construct a one-to-one correspondence between the the natural numbers
and the reals will fail for the following reason. For any one-to-one correspon-
dence we can construct a real number that is an infinite expansion which is
different from every other real number in the range of the mapping. This
can be done by making the number constructed differ from the first number
of the mapping in the first decimal place; differ from the second number of
the mapping in the second decimal place; and by continuing in this way to
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obtain an infinite decimal which is different from every other real number in
the range of the mapping. Q.E.D.

Of course, one could say that the above diagonal argument is also a
negation-free proof, because the process of swapping digits in the decimal
expansion of a real number need not be thought of as negation.

Cantor’s very first proof of the uncountability of the reals did not use diag-
onalization [1, 10]. It also does not depend on the fact that the real numbers
can be represented by infinite decimal expansions. However it makes use
of the topological properties that follow from the axiomatic characterization
of the real numbers. This proof is not so widely known as the proof by
diagonalization. We provide a brief sketch of it here.

Cantor’s Proof without Diagonalization [1, 10]: Assume that an onto
mapping from natural numbers to the reals gives the sequence a0, a1, a2, a3, . . .
of real numbers. Let C0 be a closed interval that does not contain a0. Let
C1 be a closed subinterval of C0 such that C1 does not contain a1. Continue
this procedure to obtain an infinite nested sequence of closed intervals, C0 ⊇
C1 ⊇ C2 ⊇ . . ., that eventually excludes all the ai’s. Let r be a point that
belongs to the intersection of all the Ci’s. The real number r is different from
all of the ai. Q.E.D.

8 Yet Another Proof

We now exhibit yet another proof of the uncountability of the continuum. It is
interesting to note that the following proof bears a kind of dual relationship to
the negation-free proof. Recall that the negation-free proof uses the bijection
M : X ↔ P (X) in the direction M : X → P (X) in order to construct
nondeterministic traces satisfying certain conditions, and relies on the empty
set (φ ∈ P (X)) in order to characterize their termination. On the other
hand, the following proof uses the mapping M in the reverse direction, viz.,
M : P (X) → X, and begins with the empty set in order to construct chains
satisfying certain conditions. It may be possible to formalize these informal
observations about the relationship between the two proofs in a rigorous way
in a categorical framework [15].

We begin by stating an important property of posets, which will be re-
quired in the proof of the uncountability of the continuum.
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Lemma 8.1 (Kurepa’s Lemma) If P = (P,≤P ) is a poset, and the tree
σP = (σP,≤σP ) is defined as the set of ascending sequences of elements of
P ordered by end-extension, then there is no order preserving, one-to-one
mapping f : σP → P .

Proof [4, 12]: Consult from Kurepa [4]. For a proof of a more gen-
eral version of the above theorem, consult from Todorečević–Väänänen [12].

Q.E.D.

Theorem 8.2 (Uncountability of the Continuum) There cannot be any
one-to-one correspondence between the natural numbers and the real numbers.

Proof: Let X = {a0, a1, . . .} be any set, and P (X) denote the power set of X.
Assume that it is possible to define a one-to-one mapping M : P (X) → X.

Use M to construct chains in P (X) and X such that:

a0 = M(φ)

a1 = M({a0})
a2 = M({a0, a1})

. . .

aω = M({a0, a1, . . .})
aω+1 = M({a0, a1 . . . , aω})

. . .

By Kurepa’s lemma, X has to be a proper class.
This contradicts the assumption that X is a set, hence a one-to-one map-

ping M cannot exist. Q.E.D.

9 Conclusion

Fundamental theorems are fascinating phenomena on their own right. Equally
fascinating are paths which reconstruct their proofs using a minimal or even
a non-standard repertoire of basic constructs and reasoning mechanisms. We
have traversed such a path in this paper, and presented different proofs of
a theorem which marked the beginnings of transfinite set theory. We have
indicated how two of the proofs bear a special relationship to one another,
and that it may be possible to to unify them in a common framework. We are
exploring such a framework, and its further implications such as a possible
mechanism which might automatically generate them from each other.
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[12] Todorčević, S., Väänänen, J., Trees and Ehrenfeucht–Fraissé games, An-
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