Algebraic Circuit Complexity

Problem Set 1

Due date: September 3rd, 2017

INSTRUCTIONS

- 1. The problem set has **4 questions** with a total score of **80 points**.
- 2. You are expected to work independently.
- 3. Solutions are expected as a LATEX document. You may similar source files from the Algebra & Computation course on megh.
- 4. The deadline is 3rd September 2017. You can also submit answers to some (or all) of the questions **any time after the deadline** (a little before the course ends, of course; they need to be graded) for **half the credit**.

This is to encourage you to solve all the question in these problem sets, even if it is past the deadline.

QUESTIONS

Question 1. Assume that $f(x_1, ..., x_n)$ is computable by an algebraic branching program (ABP) of size *s*.

1. (10 points) Show that f is also computable by an algebraic circuit of size That is, ABP \subseteq poly(s).

What is the depth of the circuit that you constructed?

2. (10 points) Additionally, if you knew that the ABP computing f is a layered graph (that is, the nodes are partitioned into disjoint layers and edges go only from layer i to layer i + 1) with at most 10 vertices in each layer. Show that f is computable by an algebraic formula of size poly(s).

Question 2. We shall say that an ABP is homogeneous if

• *the nodes can be partitions into disjoint layers, with edges only going from layer i to layer i* + 1,

Note that the underlying DAG is, in general, a multigraph.

That is (in general), O(1)-width-ABP \subseteq

Formulas.

• all edge weights are of the form αx_i for some $\alpha \in \mathbb{F}$.

(15 points) Show that any ABP computing a degree-d homogeneous polynomial $f(x_1, ..., x_n)$ can be converted to a homogeneous ABP of size poly(s, d) computing the same polynomial.

Question 3. Consider the complete homogeneous symmetric polynomial of degree d, denoted by $h_d(x_1, ..., x_n)$, that is a sum of all monomials of degree d (including non-multilinear monomials) with coefficient 1 each. For instance,

$$h_3(x_1, x_2, \dots, x_n) = \sum_i x_i^3 + \sum_{\substack{1 \le i, j \le n \\ i \ne j}} x_i^2 x_j + \sum_{\substack{1 \le i < j < k \le n \\ 1 \le i < j < k \le n}} x_i x_j x_k.$$

(10 points) For any *d*, show that the polynomial $h_d(x_1, ..., x_n)$ is computable by a poly(n, d)-size algebraic circuit over any large enough field.

Question 4. Say we are given an algebraic circuit $C(x_1, ..., x_n)$ of size *s* that computes a degree-*d* polynomial $f(x_1, ..., x_n)$.

- 1. (5 points) Show that the polynomial $\frac{\partial f}{\partial x_1}$ can be computed by an algebraic circuit without much blow-up in size, if \mathbb{F} is large enough.
- 2. **(5 points)** What can you say if you are instead given a formula for f? Can you construct a formula computing $\frac{\partial f}{\partial x_1}$?
- 3. **(5 points)** What if we have a $\Sigma\Pi\Sigma$ circuit computing f? Can you construct a $\Sigma\Pi\Sigma$ circuit computing $\frac{\partial f}{\partial x_1}$ of not-much-larger size?

4. (5 **points**) What about computing $\frac{\partial^i f}{\partial x_1^i}$, for $i = \frac{d}{2}$ say?

5. (15 points) Suppose we want to compute the higher-order derivative

$$g = \frac{\partial^{n/2} f}{\partial x_1 \ \partial x_2 \ \cdots \ \partial x_{n/2}}$$

Given f as a small algebraic circuit, do you think it is possible to compute g by a small algebraic circuit? Try and justify your answer.