Algebra and Computation

Problem Set 2

Due date: April 21st, 2017

INSTRUCTIONS

- 1. You are strongly encouraged to try out the questions by yourself. But you can collaborate with other classmates; if you do, please mention who you collaborated with.
- 2. Solutions are expected as a LATEX document. You may use this very file by obtaining the source files from megh.
- 3. The deadline is **21st April 2017 (Friday)**, **2359 hrs**. For each day of delay you lose **7 points** of your total score in this assignment. So if you plan to delay, be smart about it.
- 4. The total score in this problem set is **65 points**.

QUESTIONS

Question 1. Let \mathbb{F} be a field of size at least n + 1. You are given as input distinct elements $\alpha_0, \alpha_1, \ldots, \alpha_n \in \mathbb{F}$ and elements (not necessarily distinct) $\beta_0, \beta_1, \ldots, \beta_n \in \mathbb{F}$. Find the unique univariate polynomial $f(x) \in \mathbb{F}[x]$ of degree at most n that satisfies $f(\alpha_i) = \beta_i$ for all $i = 0, \ldots, n$, in nearly linear time (i.e. O(n poly log n) time.) (10 points)

Question 2. Say we are given polynomials $f(x, y), g(x, y) \in \mathbb{F}_q[x, y]$ and assume that $q \gg (\deg f)(\deg g)$ and f(x, y), g(x, y) are monic with respect to x. Make the following sketch a formal algorithm for bivariate GCD computation.

For elements $\{a_1, a_2, ..., a_r\}$ from \mathbb{F}_q and compute the gcd of the partial evaluations — $h_{a_i}(x) = \gcd(f(x, a_i), g(x, a_i))$. Find a polynomial h(x, y) of the right degree such that $h(x, a_i) = h_{a_i}(x)$ for all $i \in \{1, ..., r\}$ and show that this must indeed be $\gcd(f, g)$. This r must be decided by you.

(15 points)

Question 3. Show that any lattice in \mathbb{Z}^n of rank *r* has a generating set of at most *r* vectors.

That is, if say $\mathbf{b}_1, \ldots, \mathbf{b}_m \in \mathbb{Z}^n$ such that $\operatorname{rank}_{\mathbb{Q}}(B) = r$, where B is the matrix consisting of the \mathbf{b}_i s are rows. Show that there you can find vectors $\mathbf{b}'_1, \ldots, \mathbf{b}'_r \in \mathbb{Z}^n$ such that

$$\langle \mathbf{b}_1, \dots, \mathbf{b}_m \rangle_{\mathbb{Z}} = \langle \mathbf{b}'_1, \dots, \mathbf{b}'_r \rangle_{\mathbb{Z}}.$$
 (10 points)

Question 4. Assume the following theorem of Minkowski

Theorem (Minkowski's theorem). Suppose \mathcal{L} is a full-rank lattice in \mathbb{Z}^n and let K be a symmetric, convex object such that vol(K/2) > $det(\mathcal{L})$ (where by det \mathcal{L} we mean the matrix with the generating set of the basis listed down as rows). Then, K contains a non-zero lattice point of \mathcal{L} .

Using the above theorem (or not):

- 1. Show that if \mathcal{L} is a full-rank lattice in \mathbb{Z}^n , then the shortest non-zero vector in \mathcal{L} has norm at most $\sqrt{n} |\det \mathcal{L}|^{1/n}$. (5 points)
- 2. Let $p(x) = x^3 + ax^2 + bx + c \in \mathbb{Z}[x]$ be a given cubic polynomial. For a fixed integer N > 0, let $\mathcal{L} := \langle N, Nx, Nx^2, p(x), xp(x), x^2p(x) \rangle_{\mathbb{Z}} \subseteq \mathbb{Z}^6$ (each element here is a polynomial of degree at most 5; think of that as a vector in \mathbb{Z}^6 by listing its coefficients).

Show that the LLL algorithm finds a non-zero $u(x) = u_0 + \cdots + u_5 x^5$ in this lattice of length at most $\sqrt{200N}$. (5 points)

- 3. Let u(x) be the polynomial in \mathcal{L} returned by the LLL algorithm and say $k \ll N^{1/10}$. Show that if $u(k) = 0 \mod N$, then $u(k) = 0 \inf \mathbb{Z}$. (5 points)
- 4. In the RSA cryptosystem (with exponent e = 3), a message $M \in [N]$ is encrypted as $C = M^e \mod N$, where N is a known large number that is a product of two unknown primes. But suppose we know* the first 93% of the bits of M, that is, $M = 2^k q + x$ where q, k is known but x is unknown. Come up with an algorithm to recover x from C, q, k and N in poly(log N) time. (15 points)

Hello customer, The password for the attached document is:******