
Classifying polynomials and identity testing

MANINDRA AGRAWAL1,∗ and RAMPRASAD SAPTHARISHI2

1Indian Institute of Technology, Kanpur
2Chennai Mathematical Institute, and Indian Institute of Technology, Kanpur

e-mail:

One of the fundamental problems of computational algebra is to classify polynomials accord-
ing to the hardness of computing them. Recently, this problem has been related to another
important problem: Polynomial identity testing. Informally, the problem is to decide if a
certain succinct representation of a polynomial is zero or not. This problem has been
extensively studied owing to its connections with various areas in theoretical computer
science.

Several efficient randomized algorithms have been proposed for the identity testing problem over
the last few decades but an efficient deterministic algorithm is yet to be discovered. It is known
that such an algorithm will imply hardness of computing an explicit polynomial. In the last few
years, progress has been made in designing deterministic algorithms for restricted circuits, and also
in understanding why the problem is hard even for small depth.

In this article, we survey important results for the polynomial identity testing problem and its
connection with classification of polynomials.

1. Introduction

The interplay between mathematics and computer
science demands algorithmic approaches to vari-
ous algebraic constructions. The area of computa-
tional algebra addresses precisely this. The most
fundamental objects in algebra are polynomials
and it is a natural idea to classify the polyno-
mials according to their ‘simplicity’. The algorith-
mic approach suggests that the simple polynomials
are those that can be computed easily. The ease of
computation is measured in terms of the number
of arithmetic operations required to compute the
polynomial. This yields a very robust definition of
simple (and hard) polynomials that can be studied
analytically.

∗Research supported by J C Bose Fellowship
FLW/DST/CS/20060225 and IBM Fellowship DON/
IBM/CSE/20080179

It is worth remarking that the number of
terms in a polynomial is not a good measure of
its simplicity. For example, consider the polyno-
mials

(1 + x1)(1 + x2) · · · (1 + xn)

and

x1x2 . . . xn.

The former has 2n − 1 more terms than the later,
however, both are almost equally easy to describe
as well as compute.

We use arithmetic circuits (formally defined
in Section 1.1) to represent the computation of
a polynomial. This also allows us to count the
number of operations required in computation.
Given below are a few example:

Keywords.

Indian Academy of Sciences, Platinum Jubilee, P1, pp. 1–14
© Printed in India. 1

2 Manindra Agrawal and Ramprasad Saptharishi

Note that the first two circuits above, although
different, compute the same polynomial. The com-
plexity of a polynomial is defined as the size (the
number of operations) of the smallest arithmetic
circuit that computes the polynomial.

Using this definition, we can now classify poly-
nomials according to their complexity. What would
be the class of ‘simple’ polynomials? For this, we
need to define the intuitive notion of ‘polynomials
that can be computed easily’. Following standard
ideas from computer science, we call any polyno-
mial over n variables that can be computed using
at most nO(1) operations an easy polynomial (see
next section for the explanation of O(·) notation).
Strictly speaking, this definition is valid only for
an infinite family of polynomials that contains
one polynomial over n variables for each n > 0.
Any single polynomial can always be computed
using O(1) operations rendering the whole exercise
meaningless. However, often we will omit to expli-
citly mention the infinite family to which a poly-
nomial belongs when talking about its complexity;
the family would be obvious.

The class VP is the class of polynomial families
that are easy in the above sense. The polynomials
in VP are essentially represented by the deter-
minant polynomial: the determinant of an n × n
matrix whose entries are affine linear combinations
of variables. It is known that determinant polyno-
mial belongs to the class VP [1] and any polyno-
mial in VP over n variables can be written as a
determinant polynomial of a m × m matrix with
m = nO(log n) [2].

This provides a excellent classification of easy
polynomials. Hence, any polynomial that cannot be
written as a determinant of a small sized matrix is
not easy. A simple counting argument shows that
there exist many such polynomials. However, prov-
ing an explicitly given polynomial to be hard has
turned out to be a challenging problem which has
not been solved yet. In particular, the permanent
polynomial, the permanent of a matrix with affine
linear entries, is believed to be very hard to com-
pute – requiring 2Ω(n)-size circuits for an n × n

matrix in general. However, there is no proof yet
of this. It is not even known if it requires Ω(n3)
operations!

A general way of classifying a given polynomial
is to design an algorithm that, given a polyno-
mial in the form of one specific arithmetic circuit
as input, outputs the smallest size arithmetic cir-
cuit computing the same polynomial. Such an algo-
rithm is easy to design: given an arithmetic circuit
C as input, the algorithm runs through all circuits
smaller than C and checks if any of these computes
the same polynomial as C (this check can be per-
formed easily as we discuss in the next paragraph).
However, this algorithm is not efficient: it will take
exponential time (in the size of the input circuit
C) to find the classification of a polynomial. No
efficient algorithm for this is known; further, it is
believed that no efficient algorithm exists for this
problem.

A closely related problem that occurs above is
to check if two given arithmetic circuits C and
D compute the same polynomial. The problem is
equivalent to asking if the circuit C − D is the
zero polynomial or not. This problem of check-
ing if a circuit computes the zero polynomial is
called polynomial identity testing (PIT). It turns
out that this problem is easy to solve algorithmi-
cally. We give later several randomized polynomial
time algorithms for solving it. Moreover, in a sur-
prising connection, it has been found that if there
is a deterministic polynomial time algorithm for
solving PIT, then certain explicit polynomials are
hard to compute [3,4]! Therefore, the solution to
PIT problem has a key role in our attempt to com-
putationally classify polynomials. In this article,
we will focus on this connection between PIT and
polynomial classification.

We now formally define arithmetic circuits and
the identity testing problem.

1.1 Problem definition

Let N and Q denote the set of natural and rational
numbers, respectively.

Classifying polynomials and identity testing 3

Definition 1.1 (Order notation). Given two
functions f and g, f, g : N �→ N, we write f = O(g)
if there exist constants c, n0 > 0 such that for all
n ≥ n0, f(n) ≤ c · g(n). We write g = Ω(f) if
f = O(g).

Some examples are: 10 = O(1), 3n2+7 = O(n3),
n3 = Ω(n2), n22 = nO(1), etc.

We shall fix an underlying field F.

Definition 1.2 (Arithmetic circuits and for-
mulas). An arithmetic circuit is a directed acy-
clic graph with one sink (which is called the output
gate). Each of the source vertices (which are called
input nodes) are either labeled by a variable xi or
an element from an underlying field F. Each of
the internal nodes are labeled either by + or × to
indicate if it is an addition or multiplication gate,
respectively.

Such a circuit naturally computes a multivari-
ate polynomial at every node. The circuit is said to
compute a polynomial f ∈ F[x1, . . . , xn] if the out-
put node computes f .

If the underlying field F = Q, then a circuit is
said to be monotone if none of the constants are
negative.

An arithmetic circuit is a formula if every inter-
nal node has out-degree 1.

Without loss of generality, the circuit is assumed
to be layered, with edges only between successive
layers. Further, it is assumed it consists of alter-
nating layers of addition and multiplication gates.
A layer of addition gates is denoted by Σ and a
layer of multiplications by Π.

Some important parameters of an arithmetic cir-
cuit are the following:

• Size: the number of gates in the circuit
• Depth: the longest path from a leaf gate to the

output gate
• Degree: the syntactic degree of the polynomial

computed at the output gate. This is computed
recursively at every gate in the most natural way
(max of the degrees of children at an addition
gate, and the sum of the degrees at a multipli-
cation gate).

This needn’t be the degree of the polynomial
computed at the output gate (owing to cancella-
tions) but this is certainly an upper bound.

A circuit evaluating a polynomial provides a
succinct representation of the polynomial. For
instance, in Example 3, though the polynomial has
2n terms, we have a circuit size O(n) computing
the polynomial. The PIT problem is deciding if a
given succinct representation is zero or not.

Also, a circuit of size s can potentially com-
pute a polynomial of exponential degree. But usu-
ally in identity testing, it is assumed that the

degree of the polynomial is O(n), where n is the
number of variables. Most interesting polynomials,
like the determinant or permanent, satisfy this
property.

Problem 1.3 (Polynomial identity testing).
Given an arithmetic circuit C with input variables
x1, . . . , xn and constants taken from a field F, check
if the polynomial computed is identically zero.

The goal is to design a deterministic algorithm
for PIT that runs in time polynomial in n, size of
C and |F|. A much stronger algorithm is one that
doesn’t look into the structure of the circuit at all,
but just evaluates it at chosen input points. Such
an algorithm that just uses the circuit as a ‘black
box’ is hence called a black-box algorithm.

1.2 Current status

A likely candidate of a hard polynomial is the
permanent polynomial. It is widely believed that
it requires circuits of exponential size, but this is
still open. However, progress has been made in
restricted settings. Raz and Yehudayoff [5] showed
that monotone circuits for permanent require expo-
nential size. Nisan and Wigderson [6] showed
that ‘homogeneous’ depth 3 circuits for the 2d-
th symmetric polynomial requires

(
n
4d

)Ω(d)
size.

Shpilka and Wigderson [7] showed that depth
3 circuits for determinant or permanent over Q

require quadratic size. Over finite fields, Grig-
oriev and Karpinsky [8] showed that determinant
or permanent required exponential sized depth 3
circuit.

As for PIT, the problem has drawn signifi-
cant attention due to its role in various fields
of theoretical computer science. Besides being a
natural problem in algebraic computation, iden-
tity testing has found applications in various fun-
damental results like Shamir’s IP = PSPACE [9],
the PCP theorem [10], etc. Many other impor-
tant results, such as the AKS primality test [11],
check if some special polynomials are identically
zero or not. Algorithms for graph matchings [12]
and multivariate polynomial interpolation [13] also
involve identity testing. Another promising role of
PIT is its connection to the question of ‘hardness
of polynomials’. It is known that strong algorithms
for PIT can be used to construct polynomials that
are very hard [3,4].

There is a score of randomized algorithms
proposed for PIT. The first randomized poly-
nomial time algorithm for identity testing was
given by Schwartz and Zippel [14,15]. Several
other randomness-efficient algorithms [16–19]
came up subsequently, resulting in a significant
improvement in the number of random bits used.

4 Manindra Agrawal and Ramprasad Saptharishi

However, despite numerous attempts, a deter-
ministic polynomial time algorithm has remained
unknown. Nevertheless, important progress has
been made both in the designing of deterministic
algorithms for special circuits, and in the under-
standing of why a general deterministic solution
could be hard to get.

Kayal and Saxena [20] gave a deterministic poly-
nomial time identity testing algorithm for depth 3
(ΣΠΣ) circuits with constant top fan-in (the top
addition gate has only constantly many children).
When the underlying field is Q, this was further
improved to a black-box algorithm by Kayal and
Sharaf [21]. Saxena gave a polynomial time algo-
rithm for a restricted form of depth 3 circuits called
‘diagonal circuits’. As such, no polynomial time
PIT algorithm is known for general depth 3 cir-
cuits.

Most of the progress made appears to stop at
around depth 3. A ‘justification’ behind the hard-
ness of PIT even for small depth circuits was pro-
vided recently by Agrawal and Vinay [22]. They
showed that a deterministic polynomial time black-
box identity test for depth 4 (ΣΠΣΠ) circuits
would imply a quasi-polynomial (O(nlog n)) time
deterministic PIT algorithm for any circuit com-
puting a polynomial of low degree1. Thus, PIT for
depth 4 circuits over a field is almost the general
case.

Thus we see that the non-trivial case for iden-
tity testing starts with depth 3 circuits; whereas
circuits of depth 4 are almost the general case.
A natural first step to design an algorithm for PIT
of ΣΠΣ circuits. In this article, we survey some
important results in identity testing and possible
approaches to attack depth 3 circuits.

1.3 Organization

Section 2 discusses the connection between PIT
and circuit lower bounds. Section 3 looks at PIT
and lower bounds for depth 4 and why this is
almost the general case. In Section 4, we look
at some randomized algorithms for PIT and in
Section 5 we sketch some deterministic algorithms
for special cases.

2. Connecting PIT to lower bounds

The polynomial identity testing problem is very
closely connected to lower bounds in the arithmetic
settings. A well studied polynomial in this context
is the symbolic permanent polynomial.

1A polynomial is said to have low degree if its degree
is less than the size of the circuit.

permn(x11, x12, . . . , x1n, x21, . . . , xnn)

=
∑

σ∈Sn

n∏

i=1

xiσ(i).

Though the polynomial is very close to the deter-
minant polynomial2, it is widely believed that they
are very different in complexity. It is a long stand-
ing open problem to show that the permanent
polynomial requires exponential sized arithmetic
circuits.

The quest for an explicit polynomial with large
circuit complexity is one for ‘hardness’ in terms of
circuits. Polynomial identity testing on the other
hand is a quest for ‘easiness’. While the two seem
orthogonal, they are indeed very closely related.
Kabanets and Impagliazzo [3] showed that ‘subex-
ponential’ algorithms for identity testing does in
fact yield circuit lower bounds.

Theorem 2.1 ([3]). If PIT can be solved in poly-
nomial time, or even in

⋂
ε>0 NTIME(nε), then one

of the following statements is true:

• NEXP � P/poly
• Permanent requires super-polynomial sized ari-

thmetic circuits. �

As a partial converse, they also show that
explicit circuit lower bounds give quasi-polynomial
algorithms for PIT.

Theorem 2.2 ([3]). Let {qm}m≥1 be a family of
multilinear polynomials over F computable in ex-
ponential time and that cannot be computed by
subexponential sized arithmetic circuits. Then iden-
tity testing of low degree polynomials can be solved
in time nO(log n). �

Dvir, Shpilka and Yehudayoff [32] proved similar
results in the constant depth domain.

Theorem 2.3 ([32]). If PIT of depth d circuits
can be solved in polynomial time, or even in⋂

ε>0 NTIME(nε), then one of the following state-
ments is true:

• NEXP � P/poly
• Permanent requires super-polynomial sized depth

d arithmetic circuits. �

Theorem 2.4 ([32]). Let {qm}m≥1 be a family
of multilinear polynomials over F computable in
exponential time and that cannot be computed by
subexponential sized arithmetic circuits of depth d.

2In the determinant polynomial, each term in the
summation has a sign associated which is determined
by the permutation σ.

Classifying polynomials and identity testing 5

Then identity testing of depth d′ = d − δ, for some
absolute constant δ, circuits computing low degree
polynomials can be solved in time nO(polylog n). �

2.1 Black-box PITs and lower bounds

Black-box algorithms for PIT imply much
stronger implications in terms of circuit lower
bounds. Agrawal showed a ‘hardness-randomness’
dichotomy in this setting, using the following defi-
nition of pseudorandom generators for arithmetic
circuits that captures black-box PITs.

Definition 2.5 ([4] Pseudorandom genera-
tors for arithmetic circuits). Let F be a field
and C be a class of low degree arithmetic circuits
over F. A function f : N −→ (F[y])∗ is a s(n)-
pseudorandom generator against C if

• f(n) = (p1(y), p2(y), . . . , pn(y)), where each
pi(y) is a univariate polynomial over F, whose
degree is bounded by s(n) and computable in time
polynomial in s(n)

• For any arithmetic circuit C ∈ C of size n,

C(x1, . . . , xn) = 0 if and only if

× C(p1(y), p2(y), . . . , pn(y)) = 0.

It is clear that given a s(n)-pseudorandom gen-
erator f against C, we can solve the PIT problem
for circuits in C in time (s(n))O(1) by just evalu-
ating the univariate polynomial. A polynomial
time derandomization is obtained if s(n) is nO(1)

and such generators are called optimal pseudoran-
dom generators. The following lemma shows that
existence of pseudorandom generators give lower
bounds.

Theorem 2.6 ([4]). Let f : N −→ (F(y))∗ be a
s(n)-pseudorandom generator against a class C
of arithmetic circuit computing a polynomials of
degree at most n. If n · s(n) ≤ 2n, then there is a
multilinear polynomial computed in 2O(n) time that
cannot be computed by C. �

This, coupled with Theorem 2.2, show that
explicit ‘hard’ polynomials and pseudorandom gen-
erators go hand in hand.

3. Chasm at depth 4

The previous section shows that strong lower
bounds can be obtained by giving a suitable deter-
ministic algorithm for PIT. However, attempts
to obtain such an algorithm have failed so far.
At present, we know deterministic algorithms for

only restricted kind of depth three PITs (we will
see this in section 5). In fact, as already observed
above, direct attempts to obtain lower bounds for
certain polynomials also stop at depth three. This
seems to suggest that we are very far away from
obtaining lower bounds for arbitrary depth cir-
cuits. However, a recent depth reduction result by
Agrawal and Vinay [22] shows that the gap is not
that large. Informally, their result states that expo-
nential sized circuits do not gain anything if the
depth is beyond 4. Formally, the main result can
be stated as follows:

Theorem 3.1 ([22]). If a polynomial P (x1, . . . ,
xn) of degree d = O(n) can be computed by an
arithmetic circuit of size 2o(d+d log n

d), it can be com-
puted by a depth 4 circuit of size 2o(d+d log n

d) as well.

It is a simple observation that any polynomial
p(x1, . . . , xn) of degree d has at most

(
n+d

d

)
mono-

mials and hence can be trivially computed by
a ΣΠ circuit of size

(
n+d

d

)
= 2O(d+d log n

d). Hence,
the above theorem implies that if we have subex-
ponential lower bounds for depth 4 circuits, we
have subexponential lower bounds for any depth!

Corollary 3.2. Let p(x1, . . . , xn) be a multivari-
ate polynomial. Suppose there are no 2o(n) sized
depth 4 arithmetic circuits that can compute p.
Then there is no 2o(n) sized arithmetic circuit (of
arbitrary depth) that can compute p. �

These results have very strong implications on
PITs for depth 4 circuits.

Proposition 3.3. If there is a PIT algorithm for
depth 4 circuit running in deterministic polynomial
time, then there is a PIT algorithm for any general
circuit computing a low degree polynomial running
in deterministic 2o(n) time. �

Proof. Given any circuit computing a low degree
polynomial, we can convert it to a depth 4 circuit
of size 2o(n). Further, this conversion can be done
in time 2o(n) as well. Therefore, a polynomial time
PIT algorithm for depth 4 would yield a 2o(n) algo-
rithm for general circuits. �

If the PIT on depth 4 circuits was black-box,
then we get stronger results for general circuits.

Theorem 3.4 ([22]). If there is a deterministic
black-box PIT algorithm for depth 4 circuit run-
ning in polynomial time, then there is a determini-
stic nO(logn) algorithm for PIT on general circuits
computing a low degree polynomial. �

Proof. Suppose there does indeed exist an opti-
mal pseudorandom generator against depth 4 cir-
cuits. By theorem 2.6 we know that we have a

6 Manindra Agrawal and Ramprasad Saptharishi

subexponential lower bound in depth 4 circuits
for a family of multilinear polynomials {qm}. By
corollary 3.2 we know that this implies a subexpo-
nential lower bound for {qm} in arithmetic circuits
of any depth. To finish, theorem 2.2 implies such
a family {qm} can be used to give a nO(log n) algo-
rithm for PIT. �

Therefore, in essence, solving PIT for depth 4 cir-
cuits or proving lower bounds for depth 4 circuits
would translate to general circuits as well.

We now present a sketch of the proof of
Theorem 3.1. The depth reduction is achieved in
two stages. The first stage reduces the depth to
O(log d) by the construction of Allender, Jiao,
Mahajan and Vinay [33]. Using a careful analysis
of this reduction, the circuit is further reduced to
a depth 4 circuit.

3.1 Reduction to depth O(log d)

Given as input is a circuit C computing a poly-
nomial p(x1, . . . , xn) of degree d = O(n). Without
loss of generality, we can assume that the circuit
is layered with alternative layers of addition and
multiplication gates. Further, we shall assume that
each multiplication gate has exactly two children.

Computing degrees

Though the polynomial computed by the circuit is
of degree less than d, it could be possible that the
intermediate gates compute larger degree polyno-
mials which are somehow canceled later. However,
we can make sure that each gate computes a poly-
nomial of degree at most d. Further, we can label
each gate by the formal degree of the polynomial
computed there.

Each gate gi of the circuit is now replaced by
d + 1 gates gi0, gi1, . . . , gid. The gate gis would com-
pute the degree s homogeneous part of the polyno-
mial computed at gi.

If g0 was an addition gate with g0 = h1+
h2 + · · · + hk, then we set g0i = h0i + · · · +hki for
each i. If g0 was a multiplication gate with two
children h1 and h2, we set g0i =

∑i

j=0 h1jh2(i−j).
Thus, every gate is naturally labeled by its

degree. As a convention, we shall assume that the
degree of the left child of any multiplication gate
is smaller than or equal to the degree of the right
child.

If the tree was ‘balanced’, that is, the two
children of every multiplication gate have roughly
the same degree, then the tree would have depth
at most O(log d). Else, we just need to reorient the
tree properly by digging deep enough where the
degree is halved. This is done through proof trees.

Evaluation through proof trees

A proof tree rooted at a gate g is a sub-circuit of
C that is obtained as follows:

• start with the sub-circuit in C that has gate g at
the top and computes the polynomial associated
with gate g,

• for every addition gate in this sub-circuit, retain
only one of the inputs to this gate and delete the
other input lines,

• for any multiplication gate, retain both the
inputs.

A simple observation is that a single proof tree
computes one monomial of the formal expression
computed at g. And the polynomial computed at
g is just the sum of the polynomial computed at
every proof tree rooted at g. We shall denote the
polynomial computed by a proof tree T as p(T).

For every gate g, define [g] to be the polynomial
computed at gate g. Also, for every pair of gates g
and h, define [g, h] =

∑
T p(T, h) where T runs over

all proof trees rooted at g with h occurring on its
rightmost path and p(T, h) is the polynomial com-
puted by the proof tree T when the last occurrence
of h is replaced by the constant 1. If h does not
occur on the right most path, then [g, h] is zero.
The gates of the new circuits are [g], [g, h] and [xi]
for gates g, h ∈ C and variables xi. We shall now
describe the connections between the gates.

Firstly, [g] =
∑

i[g, xi][xi]. Also, if g is an
addition gate with children g1, . . . , gk, then
[g, h] =

∑
i[gi, h]. If g is a multiplication gate, it is a

little trickier. If the rightmost path from g to h con-
sists of just addition gates, then [g, h] = [gL], the
left child of g. Otherwise, for any fixed rightmost
path, there must be at least a unique intermediate
multiplication gate p on this path such that

deg(pR) ≤ 1
2
(deg g + deg h) ≤ deg p.

Since there could be rightmost paths between g
and h, we just run over all gates p that satisfy the
above equation. Then, [g, h] =

∑
p[g, p][pL][pR, h].

We want to ensure that the degree of each child of
[g, h] is at most (deg(g) − deg(h))/2.

• deg([g, p]) = deg(g)− deg(p) ≤ 1
2
(deg g − deg h)

• deg([pR, h]) = deg(pR) − deg(h) ≤ 1
2
(deg(g) −

deg(h))
• deg(pL) ≤ deg(p) ≤ 1

2
deg(g)

Also, deg(pL) ≤ deg(pL)+deg(pR)−deg(h) ≤
deg(g) − deg(h).

Unfortunately, pL’s degree has not dropped by a
factor of 2 and hence this doesn’t directly give the

Classifying polynomials and identity testing 7

depth reduction. However, we know that deg(pL) ≤
deg(g)/2. By expanding the gate pL further, we can
obtain an expression of the form

[g, h] =
∑

[g, p][pL,j , q][qL][qR, xi][pR, h]

each of the children have degree at most
(deg(g) − deg(h)) /2. This completes the descrip-
tion of the new circuit. It is clear that the depth
of the circuit is O(log d) and the fan-in of multi-
plication gates is 6. The size of the new circuit is
polynomial bounded by size of C.

3.2 Reduction to depth 4

We now construct an equivalent depth 4 circuit
from the reduced circuit. Let t be a parameter that
will be appropriately fixed. The circuit is cut into
two parts: the top has exactly t layers of multiplica-
tion gates and the rest of the layers belonging to the
bottom. Let g1, . . . , gk (where k ≤ S) be the out-
put gates at the bottom layer. Thus, we can think
of the top half as computing a polynomial Ptop in
new variables y1, . . . , yk and each of the gi comput-
ing a polynomial Pi over the input variables. The
polynomial computed by the circuit equals

Ptop(P1(x1, . . . , xn), P2(x1, . . . , xn), . . . ,

Pk(x1, . . . , xn)).

Since the top half consists of t levels of multiplica-
tion gates, and each multiplication gate has at most
6 children, deg(Ptop) is bounded by 6t. And since
the degree drops by a factor of two across multipli-
cation gates, we also have deg(Pi) ≤ d

2t . Expressing
each of these as a sum of product, we have a depth
4 circuit computing the same polynomial. The size
of this circuit is

(
S + 6t

6t

)

+ S

(
n + d

2t

d
2t

)

.

The parameter t can be chosen appropriately to
make the size 2o(d+d log n

d), as theorem 3.1 claimed.

4. Randomized Algorithms for PIT

Though deterministic algorithms for PIT have
remained elusive, a number of randomized solu-
tions are available. Quite an extensive study has
been made on reducing the number of random bits.
In this section, we inspect a few of them, starting
with the oldest, simplest and the most natural test.

4.1 The Schwarz–Zippel test

The Schwarz–Zippel test is the oldest algorithm for
PIT. The idea is the following: if the polynomial
computed is non-zero then the value of the poly-
nomial cannot be zero at too many places. This
intuition is indeed true.

Lemma 4.1 ([14,15]). Let p(x1, . . . , xn) be a
non-zero polynomial over F of total degree d. Let
S be any subset of F and let a1, . . . , an be chosen
independently from S with the uniform distribu-
tion. Then, Pr[p(a1, a2, . . . , an) = 0] ≤ d

|S| . �

To get the error less than ε, we need a set S that
is as large as d

ε
. Hence, the total number of random

bits required would be n · log d
ε
. If the field F is not

large enough, then we may move to an appropriate
extension field.

4.2 Chen–Kao: Evaluating at irrationals

The Chen–Kao test works on circuits computing
an integer polynomial and can be thought of as
a ‘partial derandomization’ of the Schwarz–Zippel
test. The main idea can be described as follows:

Suppose we consider only univariate integer
polynomials, can we find out a single point on
which all non-zero univariate integer polynomial
evaluate to non-zero values? Indeed, if we evaluate
it at some transcendental number like π; p(π) = 0
for an integer polynomial if and only if p = 0. More
generally, if we can find suitable irrational that is
not a root of any degree d polynomial, we can use
that point to evaluate and test if a given degree d
polynomial is zero or not. This is the basic idea in
Chen–Kao’s paper [16].

However, it is infeasible to actually evaluate at
irrational points since they have infinitely many
bits to represent them. Chen and Kao worked with
approximations of the numbers, and introduced
randomness to make their algorithm work with
high probability.

4.2.1 Algebraically d-independent numbers

The goal is to design an identity test for all
n-variate polynomials whose degree in each vari-
able is less than d. The following definition is pre-
cisely what we want for the identity test.

Definition 4.2 (Algebraically ddd-indepen-
dence). A set of number {π1, . . . , πn} is said to
be algebraically d-independent over F if there exists
no polynomial relation p(π1, . . . , πn) = 0 over F

with the degree of p(x1, . . . , xn) in each variable
bounded by d.

8 Manindra Agrawal and Ramprasad Saptharishi

It is clear that if we can find such a set of
numbers then this is a single point that would be
non-zero at all non-zero polynomials with degree
bounded by d. The following lemma gives an
explicit construction of such a point.

Lemma 4.3. Set k = log(d + 1) and K = nk.
Let p11, p12, . . . , p1k, p2k, . . . , pnk be first K distinct
primes and let πi =

∑k

j=1

√
pij. Then {π1, . . . , πn}

is algebraically d-independent. �

As remarked earlier, it is not possible to actually
evaluate the polynomial at these irrational points.
Instead we consider approximations of these irra-
tional points and evaluate them. However, we can
no longer have the guarantee that all non-zero poly-
nomials will be non-zero at this truncated value.
Chen and Kao solved this problem by introducing
randomness in the construction of the πi.

It is easy to observe that Lemma 4.3 is true even
if each πi =

∑k

j=1 αij
√

pij , where each αij = ±1.
Randomness is introduced by setting each αij to
±1 independently and uniformly at random, and
then we evaluate the polynomial at the πi trun-
cated to � decimal places.

Chen and Kao showed that if we want the
error to be less than ε, we would have to choose
� ≥ dO(1) log n. Randomness used in this algorithm
is for choosing the αij ’s and hence n log d random
bits are used3; this is independent of ε! Therefore,
to get better accuracy, we don’t need to use a single
additional bit of randomness but just need to look
at better approximations of πi’s.

4.2.2 Chen–Kao over finite fields

Though the algorithm that is described seems spe-
cific to polynomials over Q, they can be extended
to finite fields as well. Lewin and Vadhan [17]
showed how to use the same idea over finite fields.
Instead of using square root of prime numbers in
Q, they use square roots of irreducible polyno-
mials. The infinite decimal expansion is paralleled
by the infinite power series expansion of the square
roots, with the approximation to � decimal places
replaced by taking residues modulo x�.

Lewin and Vadhan result achieves more or less
the exact same parameters as in Chen–Kao and
involves far less error analysis as it works over a
finite field. They also present another algorithm
that works over integers by considering approxi-
mations over p-adic numbers, i.e. solutions modulo
p�. This again has the advantage that little error
analysis is required.

3In fact, if the degree in xi is bounded by di, then∑
i log(di + 1) random bits would be sufficient.

4.3 Agrawal–Biswas: Chinese remaindering

Agrawal and Biswas [18] presented a new approach
to identity testing via Chinese remaindering. This
algorithm works in randomized polynomial time in
the size of the circuit and also achieves the time-
error tradeoff as in the algorithm by Chen and Kao.
This algorithm can be made to work over all fields
but we present the case when it is a finite field Fq.

The algorithm proceeds in two steps. The first
is a deterministic conversion to a univariate poly-
nomial of exponential degree. The second part is
a novel construction a sample space of ‘almost
coprime’ polynomials that is used for Chinese
remaindering.

4.3.1 Univariate substitution

Let f(x1, . . . , xn) be the polynomial given as a
circuit of size s. Let the degree of f in each
variable be less than d. The first step is a well-
known conversion to a univariate polynomial of
exponential degree that maps distinct monomials
to distinct monomials. The following substitution
achieves this

xi = ydi

.

Claim 4.4. Under this substitution, distinct
monomials go to distinct monomials.

Denote the univariate polynomial thus produced
by P (x) and let the degree be D. We now wish to
test whether this univariate polynomial is non-zero.
This is achieved by picking a polynomial g(x) from
a suitable sample space and doing all computations
in the circuit modulo g(x) and return zero if the
polynomial is zero modulo g(x).

Suppose these g(x)’s came from a set such that
the l cm of any ε fraction of them has degree at
least D, then the probability of success would be
1 − ε. One way of achieving this is to choose a
very large set of mutually coprime polynomials say
{(x − α) : α ∈ Fq}. But if every epsilon fraction
of must have an l cm of degree D, then the size of
the sample space must be at least D

ε
. This might

force us to go to an extension field of Fq and thus
require additional random bits. Instead, Agrawal
and Biswas construct a sample space of polyno-
mials that share very few common factors between
them which satisfies the above property.

4.3.2 Polynomials sharing few factors

We are working with the field Fq of charac-
teristic p. For a prime number r, let Qr(x)
denote the r-th cyclotomic polynomial, i.e

Classifying polynomials and identity testing 9

Qr(x) = 1 + x + · · · + xr−1. Let � ≥ 0 be a para-
meter that would be fixed soon. For a sequence
of bits b0, . . . , b�−1 ∈ {0, 1} and an integer t ≥ �,
define

Ab,t(x) = xt +
�−1∑

i=0

bix
i

Tr,b,t(x) = Qr(Ab,t(x)).

The space of polynomials consists of Tr,b,t for all
values of b, having suitably fixed r and t.

Lemma 4.5. Let r be a prime such that r �= p
and r does not divide any of q − 1, q2 − 1, . . . ,
q�−1 − 1 and let t be a fixed parameter. Then, the
l cm of any K polynomials from the set {Tr,b,t(x)}b
has degree at least K · t. �

The algorithm is now straightforward:

1. Set parameters � = log D and t = max
{
�, 1

ε

}
.

2. Let r is chosen as the smallest prime that
doesn’t divide any of p, q−1, q2−1, . . . , q�−1−1.

3. Let b0, b1, . . . , b�−1 be randomly and uniformly
chosen from {0, 1}.

4. Compute P (x) modulo Tr,b,t(x) and accept if
and only if P (x) = 0 mod Tr,b,t(x).

Since P (x) was obtained from a circuit of size S,
we have D ≤ 2s. It is easy to see that the algorithm
runs in time poly

(
s, 1

ε
, q

)
, uses log D random bits

and is correct with probability at least 1 − ε.

Remark. Saha [23] observed that there is a deter-
ministic algorithm to find an irreducible poly-
nomial g(x) over Fq of degree roughly d in
poly(d, log q) time. Therefore, by going to a suitable
field extension, we may even use a sample space of
coprime polynomials of the form xt + α and choose
t = 1

ε
to bound the error probability by ε. This also

uses only log D random bits and achieves a slightly
better time complexity.

4.4 Klivans–Spielman: Random univariate
substitution

All the previous randomized algorithms use Ω(n)
random bits. It is easy to see that identity testing
for n-variate polynomials of total degree bounded
by d needs Ω(d log n) random bits. For polynomials
with m monomials, one can prove a lower bound
of Ω(log m). Klivans and Spielman [19] present a
randomized identity test that uses O(log(mnd))
random bits which works better than the earlier
algorithms if m is subexponential.

The idea is to reduce the given multivariate poly-
nomial f(x1, . . . , xn) to a univariate polynomial

whose degree is not too large. This reduction will
be randomized and the resulting univariate poly-
nomial would be non-zero with probability 1 − ε if
the polynomial was non-zero to begin with.

One possible approach is to just substitute
xi = yri for each i where ri’s are randomly chosen
in a suitable range. This indeed works due to
the following lemma. The original version of the
isolation lemma was by Mulmuley, Vazirani and
Vazirani. Their lemma was extended by Chari,
Rohatgi and Srinivasan [24], and the parameters
improved by Klivans and Spielman [19].

Lemma 4.6 (Isolation lemma [25,24,19]).
Let F be a family of distinct linear forms {∑n

i=1

cixi} where each ci is an integer less than C. If each
xi is randomly set to a value in {1, . . . , Cn/ε}, then
with probability at least 1−ε there is a unique linear
form of minimum value. �

The isolation lemma gives a simple randomized
algorithm for identity testing of polynomials whose
degree in each variable is bounded by d: make the
substitution xi = yri for ri ∈ {1, . . . , dn/ε}. Each
monomial xd1

1 . . . xdn
n is now mapped to y

�
diri .

Since ri’s are chosen at random, there is a unique
monomial which has least degree and hence is never
canceled.

However, the number of random bits required
is n log

(
dn
ε

)
. Klivans and Spielman use a differ-

ent reduction to univariate polynomials which uses
O

(
log

(
mnd

ε

))
random bits where m is the number

of monomials.

4.4.1 Reduction to univariate polynomials

Let t be a parameter that shall be fixed later. Pick
a prime p larger than t and d. The reduction picks
a k at random from {0, . . . , p − 1} and makes the
following substitution:

xi = yai , where ai = ki mod p.

Lemma 4.7. Let f(x1, . . . , xn) be a non-zero
polynomial whose degree is bounded by d. Then,
each monomial of f is mapped to different mono-
mials under the above substitution, with probability
at least

(
1 − m2n

t

)
. �

If we want the error to be less than ε, then
choose t ≥ m2n

ε
. This would make the final degree

of the polynomial bounded by m2nd
ε

on which we
can use a Schwarz–Zippel test by going to a large
enough extension. Klivans and Spielman deal with
this large degree (since it depends on m) by using
the isolation lemma. We now sketch the idea.

10 Manindra Agrawal and Ramprasad Saptharishi

4.4.2 Degree reduction (a sketch)

The previous algorithm described how a multivari-
ate polynomial can be converted to a univariate
polynomial while still keeping each monomial sepa-
rated. Now we look at a small modification of that
construction that uses the isolation lemma to iso-
late a single non-zero monomial, if present.

The earlier algorithm made the substitution
xi = yai for some suitable choice of ai. Let us
assume that each ai is a q bit number and let
� = O(log(dn)). The modified substitution is the
following:

1. Pick k at random from {0, . . . , p − 1} and let
ai = ki mod p.

2. Represent ai in base 2� as

ai = bi0 + bi12� + · · · + bi(q
� −1)2

(q
� −1)�.

3. Pick r0, . . . , r q
� −1 values independently and

uniformly at random from a small range
{1, . . . , R}.

4. Make the substitution xi = yci where ci = bi0

r0 + bi1r1 + · · · + bi(q
� −1)r q

� −1.

After this substitution, each monomial in the
polynomial is mapped to a power of y, where the
power is a linear function over ri’s.

Claim 4.8. Assume that the choice of k is a posi-
tive candidate in lemma 4.7. Then, under the modi-
fied substitution, different monomials are mapped
to exponents that are different linear functions of
the ri’s. �

Therefore, each exponent of y in the resulting
polynomial is a distinct linear function of the ri’s.
It is a simple calculation to check that the coef-
ficients involved are poly(n, d) and we can choose
our range {1, . . . , R} appropriately to make sure
that the isolation lemma guarantees a unique
minimum value linear form with high probability.
This means that the exponent of least degree will
be contributed by a unique monomial and hence
the resulting polynomial is non-zero. The degree of
the resulting polynomial is poly

(
n, d, 1

ε

)
and the

entire reduction uses only O
(
log

(
mnd

ε

))
random

bits.

5. Deterministic algorithms for PIT

In this section we look at deterministic algorithms
for PIT for certain restricted circuits. As men-
tioned above, progress has been made only for
restricted versions of depth 3 circuits. Hopefully,

some of the techniques developed here would also
be useful for designing a deterministic algorithm
for depth four PITs.

Easy cases

Depth 2 circuits can only compute ‘sparse’ poly-
nomials, i.e. polynomials with few monomials in
them. PIT of polynomials, where the number of
monomials is a polynomial in n can be solved effi-
ciently. The following observation can be directly
translated to a polynomial time algorithm.

Observation 5.1. Let p(x1, . . . , xn) be a non-
zero polynomial whose degree in each variable is
less than d and the number of monomials is n.
Then there exists an r ≤ (mn log d)2 such that

p(1, y, yd, . . . , ydn−1
) �= 0 mod yr − 1.

Several black-box tests have also been devised
for depth 2 circuits but considerable progress has
been made for restricted depth 3 circuits as well.

The case when root is a multiplication gate is
easy to solve. This is because the polynomial com-
puted by a ΠΣΠ circuit is zero if and only if one of
the addition gates computes the zero polynomial.
Therefore, the problem reduces to depth 2 circuits.
Thus, the non-trivial case is ΣΠΣ circuits. PIT for
general ΣΠΣ circuits is still open but polynomial
time algorithms are known for restricted versions.

5.1 The Kayal–Saxena test

Let C be a ΣΠΣ circuit over n variables and degree
d such that the top addition gate has k children.
For the sake of brevity, we shall refer to such cir-
cuits as ΣΠΣ(n, k, d) circuits. Kayal and Saxena
[20] presented a poly(n, dk, |F|) algorithm for PIT.
Hence, for the case when the top fan-in is bounded,
this algorithm runs in polynomial time.

5.1.1 The idea

By fixing an ordering of the variables, let � be
the induced total order on the monomials. For any
polynomial g, let LM(g) denote the leading mono-
mial of g.

Let C be the given ΣΠΣ(n, k, d) circuit that
computes a polynomial f . Therefore, f = T1+· · ·+
Tk where each Ti =

∏d

j=1 Lij is a product of the
linear forms Lij’s. We can assume without loss of
generality that

LM(T1) 	 LM(T2) 	 · · · 	 LM(Tk).

Classifying polynomials and identity testing 11

If f is zero then the coefficient of the LM(f) must
be zero, and this can be checked easily. Further, if
we are able to show that f ≡ 0 mod T1, then f = 0.
And this would be done by induction on k.

Suppose T1 consists of distinct linear forms.
Then, by the Chinese remainder theorem,
f ≡ 0 mod T1 if and only if f ≡ 0 mod L1i for
each i. To check if f ≡ 0 mod L for some linear
form L, we replace L by the variable x1 and
transform the rest to make it an invertible trans-
formation. Thus the equation reduces to the form
f mod x1 ∈ F[x1,...,xn]

x1
= F[x2, . . . , xn]. The poly-

nomial f mod x1 is now a ΣΠΣ(n − 1, k − 1, d)
circuit and using induction, can be checked if it is
zero. Repeating this for every L1i, we can check if
f = 0 mod T1, and hence check if it is identically
zero or not.

This method fails if T1 happens to have repeated
factors. For example, if T1 = x5

1x
3
2, we should

instead be checking if f mod x5
1 and f mod x3

2

are zero or not. Here f mod x5
1 ∈ F[x1,...,xn]

x5
1

=
(

F[x1]

x5
1

)
[x2, . . . , xn] is a polynomial over a local ring,

not a field. Thus, in the recursive calls, the com-
putations would be over a local ring rather than
over the field. Therefore, we need to make sure that
Chinese remaindering works over local rings; Kayal
and Saxena showed that it indeed does.

We are now set to look at the identity test.

5.1.2 The identity test

Let C be a ΣΠΣ arithmetic circuit, with top fan-
in k and degree d computing a polynomial f . The
algorithm is recursive where each recursive call
decreases k but increases the dimension of the base
ring (which is F to begin with).

Input:

The algorithm takes three inputs:

• A local ring R over a field F with the maximal
ideal M of R presented in its basis form. The
initial setting is R = F and M = 〈0〉.

• A set of k coefficients 〈β1, . . . , βk〉, with βi ∈ R
for all i.

• A set of k terms 〈T1, . . . , Tk〉. Each Ti is a product
of d linear functions in n variables over R. That
is, Ti =

∏d

j=1 Lij.

Output:

Let p(x1, . . . , xn) = β1T1 + · · · , βkTk. The out-
put, ID(R, 〈β1, . . . , βk〉 , 〈T1, . . . , Tk〉) is YES if and
only if p(x1, . . . , xn) = 0 in R.

Algorithm:

Assume without loss of generality that LM(T1) 	
· · · 	 LM(Tk).

Step 1: Check if the coefficient of LM(T1) is a
unit.

Step 2: (Single multiplication gate) If k = 1, we
need to test if β1T1 = 0 in R. Check if
β1 = 0.

Step 3: (Checking if p = 0 mod T1) Write T1 as
a product of coprime factors, where each
factor is of the form

S = (l + m1)(l + m2) · · · (l + mt)

with l ∈ F[x1, . . . , xn] and mi ∈ M for
all i.

For each such factor S, do the following:

Step 3.1: (Change of variables) With a suitable
invertible linear transformation σ on
the variables, make convert l to x1.

Step 3.2: (Recursive calls) The new ring
R′ = R[x1]/(σ(S)) which is a local
ring as well. For 2 ≤ i ≤ k, the trans-
formation σ might convert some of
the factors of Ti to an element of R′.
Collect all such ring elements of σ(Ti)
as γi ∈ R′ and write σ(Ti) = γiT

′
i .

Recursively call ID(R′, 〈β2γ2, . . . , βkγk〉,
〈T ′

2, . . . , T
′
k〉). If the call returns NO, exit and out-

put NO.

Step 4: Output YES.

It is fairly straight-forward to check that the
algorithm is indeed right, and runs in time
poly(n, dk, |F|). This completes the Kayal–Saxena
identity test for ΣΠΣ circuits with bounded top
fan-in.

5.2 Black-box algorithm for ΣΠΣ(n, k, d) circuits
over Q

The rank approach asks the following question: if
C is a ΣΠΣ circuit that indeed computes the zero
polynomial, then how many variables does it really
depend on? To give a reasonable answer, we need
to assume that the given circuit is not ‘redundant’
in some ways.

Definition 5.2 (Minimal and simple cir-
cuits). A ΣΠΣ circuit C = P1 + · · · + Pk is said
to be minimal if no proper subset of {Pi}1≤i≤k sums
to zero.

The circuit is said to be simple there is no non-
trivial common factor between all the Pi’s.

Definition 5.3 (Rank of a circuit). For a
given circuit ΣΠΣ circuit, the rank of the circuit is
the maximum number of independent linear func-
tions that appear as a factor of any product gate.

12 Manindra Agrawal and Ramprasad Saptharishi

Suppose we can get an upper-bound R on the rank
of any minimal and simple ΣΠΣ(n, k, d) circuit
computing the zero polynomial. Then we have a
partial approach towards identity testing.

1. Without loss of generality, we may assume that
the circuit is simple and minimal.

2. Compute the rank r of the circuit C.
3. If the r < R is small, then the circuit is essen-

tially a circuit on just R variables. We can
check in dR time if C is zero or not.

4. If the rank is larger than the upper-bound
then the circuit computes a non-zero poly-
nomial.

This was in fact the idea in Dvir and Shpilka’s
nO(log n) algorithm [26] for ΣΠΣ circuits of bounded
top fan-in (before the algorithm by Kayal and
Saxena [20]). Saxena and Seshadri recently showed
rank upper bounds that are almost tight.

Theorem 5.4 ([27]). Let C be a minimal, simple
ΣΠΣ(n, k, d) circuit that is identically zero. Then,
rank (C) = O(k3 log d). And there exist identities
with rank Ω(k log d). �

Karnin and Shpilka showed how rank bounds
can be turned into black-box identity tests. Using
the bound by Saxena and Seshadri, this gave a
nO(log n) black-box test for depth 3 circuits with
bounded top fan-in.

Theorem 5.5 ([28]). Fix a field F. Let R(k, d)
be an integer such that every minimal, simple
ΣΠΣ(n, k, d) circuit computing the zero polynomial
has rank at most R(k, d). Then, there is a black-box
algorithm to test if a given ΣΠΣ(n, k, d) circuit is
zero or not, in deterministic time poly(dR(k,d), n).

It was conjectured by Dvir and Shpilka [26] that
R(k, d) is a polynomial function of k alone. How-
ever, Kayal and Saxena [20] provided a counter-
example over finite fields. The question remained
if R(k, d) is a function of k alone over Q or R. This
was answered in the affirmative by Kayal and Saraf
[21] very recently.

Theorem 5.6 ([21]). Every minimal, simple
ΣΠΣ(n, k, d) circuit with coefficients from R that
computes the zero polynomial has rank bounded by
3k((k + 1)!) = 2O(k log k).

This, along with theorem 5.5, gives a black-box
algorithm for ΣΠΣ circuits with bounded top
fan-in.

Theorem 5.7 ([21]). There is a deterministic
black-box algorithm for ΣΠΣ(n, k, d) circuits over
Q, running in time poly(d2O(k log k)

, n).

5.3 Saxena’s test for diagonal circuits

In this section we shall look at yet another
restricted version of depth 3 circuits.

Definition 5.8. A ΣΠΣ circuit C is said to be
diagonal if it is of the form

C(x1, . . . , xn) =
k∑

i=1

�ei

i ,

where �i is a linear function over the variables.

The idea is to reduce this problem to a PIT prob-
lem of a formula over non-commuting variables.
In the setting of formulas over non-commuting vari-
ables, Raz and Shpilka [29] showed that PIT can
be solved in deterministic polynomial time.

The reduction to a non-commutative formula is
by a conversion to express a multiplication gate
(a0 + a1x1 + · · · anxn)d in a dual form:

(a0 + a1x1 + · · · anxn)d

=
∑

j

fj1(x1)fj2(x2) . . . fjn(xn).

The advantage of using the expression on the RHS
is that the variables can be assumed to be non-
commuting. Therefore if the above conversion can
achieved in polynomial time, then we have a poly-
nomial algorithm for identity testing of diagonal
circuits by just making this transformation and
using the algorithm by Raz and Shpilka. Saxena
provides a simple way to convert a multiplication
gate to its dual. We present the case when F is
a field of characteristic zero though it may be
achieved over any field.

Lemma 5.9 ([30]). Let a0, . . . , an be elements of
a field F of characteristic zero. Then, in poly(n, d)
many field operations, we can compute univariate
polynomials fi,j’s such that

(a0 + a1x1 + · · · anxn)d

=
nd+d+1∑

i=1

fi1(x1)fi2(x2) · · · fin(xn). �

Once we obtain such a transformation, we can
think of the transformed circuit as computing a
non-commuting polynomial and employ the test by
Raz and Shpilka. Thus, we get a deterministic poly-
nomial time PIT for diagonal circuits.

Classifying polynomials and identity testing 13

The lemma can be extended to restricted forms
of depth 4 circuits as well, giving the following
theorem.

Theorem 5.10 ([30]). Given a circuit C over a
field F with

C =
k∑

i=1

Lei1
i1 · · ·Leis

is ,

where each Lij is a sum of univariate poly-
nomials. We can test if C is identically zero
or not in deterministic time poly(size(C),maxi≤k

{(1 + ei1) · · · (1 + eis)}). �

Though (1+ei1) · · · (1+eis) could be exponential
in general circuits, they perform well if the multi-
plication gates have ‘few’ distinct factors.

5.4 Circuits over algebras

A possible approach towards a deterministic poly-
nomial time algorithm for general ΣΠΣ circuits is
to look at generalizations of PIT to other algebras
(where the underlying constants come, not from
F, but an algebra over F). Saha, Saptharishi and
Saxena [31] showed that ΠΣ circuits over algebras
are strongly connected to PIT for ΣΠΣ circuits
over fields.

Theorem 5.11 ([31]). PIT for ΣΠΣ circuits
over fields is polynomial time equivalent to PIT for
ΠΣ circuits over U2(F), the algebra of 2× 2 upper-
triangular matrices. �

The above theorem can also be re-written in
terms of algebraic branching programs as follows:

Corollary 5.12. PIT for ΣΠΣ circuits over
fields is polynomial time equivalent to PIT on
restricted width 2 algebraic branching program. �

But why should ΠΣ circuits over algebras
be easier to attack than ΣΠΣ circuits? Saha,
Saptharishi and Saxena further showed that the
problem is tractable if the underlying algebra
was a constant dimensional commutative algebra
over F.

Theorem 5.13 ([31]). PIT for ΠΣ circuits over
k-dimensional commutative algebras can be solved
in O(nk) time. �

The proof decomposes uses a decomposition of
the underlying algebra into local rings to reduce the
problem into smaller subproblems. Perhaps similar
mathematical tools can be used to attack U2(F)
and hence depth 3 circuits.

6. Conclusions

Finding a deterministic algorithm for PIT for
depth 3 and 4 circuits remains a very challenging
problem and is being investigated actively. There
is a hope that in near future we would be able to
find such algorithms and use them to show that
permanent polynomial is hard to compute.

References

[1] Stuart Berkowitz J 1984 On computing the determi-
nant in small parallel time using a small number of
processors; Inf. Process. Lett. 18 (3) 147–150.

[2] Leslie Valiant G 1979 Completeness classes in algebra;
in STOC 249–261.

[3] Valentine Kabanets and Russell Impagliazzo 2003
Derandomizing polynomial identity tests means prov-
ing circuit lower bounds; in STOC 355–364.

[4] Manindra Agrawal 2005 Proving lower bounds via
pseudo-random generators; in FSTTCS 92–105.

[5] Ran Raz and Amir Yehudayoff 2008 Multilinear
formulas, maximal-partition discrepancy and mixed-
sources extractors; in FOCS ’08: Proc. 2008 49th
Annual IEEE Symposium on Foundations of Computer
Science 273–282 (Washington, DC USA: 2008. IEEE
Computer Soc.).

[6] Nisan N and Wigderson A 1995 Lower bounds on
arithmetic circuits via partial derivatives; in FOCS
’95: Proc. 36th Annual Symposium on Foundations of
Computer Science 16 (Washington DC, USA: IEEE
Computer Soc.).

[7] Amir Shpilka and Avi Wigderson 1999 Depth-3 arith-
metic formulae over fields of characteristic zero; in
COCO ’99: Proc. Fourteenth Annual IEEE Confer-
ence on Computational Complexity 87 (Washington
DC, USA: IEEE Computer Soc.).

[8] Dima Grigoriev and Marek Karpinski 1998 An ex-
ponential lower bound for depth 3 arithmetic circuits;
in STOC ’98: Proc. thirtieth annual ACM symposium
on theory of computing 577–582 (New York, USA:
ACM).

[9] Adi Shamir 1990 IP=PSPACE; in FOCS 11–15.
[10] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu

Sudan and Mario Szegedy 1998 Proof verification and
the hardness of approximation problems; J. ACM 45
(3) 501–555.

[11] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena
2004 PRIMES is in P; Ann. Math 160 (2) 781–793.

[12] László Lovász 1979 On determinants, matchings, and
random algorithms; in FCT 565–574.

[13] Michael Clausen, Andreas Dress W M, Johannes
Grabmeier and Marek Karpinski 1991 On zero-testing
and interpolation of k-sparse multivariate polyno-
mials over finite fields; Theor. Comput. Sci. 84 (2)
151–164.

[14] Jacob Schwartz T 1980 Fast probabilistic algorithms
for verification of polynomial identities; J. ACM 27 (4)
701–717.

[15] Richard Zippel 1979 Probabilistic algorithms for sparse
polynomials; EUROSAM 216–226.

[16] Zhi-Zhong Chen and Ming-Yang Kao 1997 Reducing
randomness via irrational numbers; in STOC 200–209.

14 Manindra Agrawal and Ramprasad Saptharishi

[17] Daniel Lewin and Salil Vadhan P 1998 Checking poly-
nomial identities over any field: Towards a derandomi-
zation? in STOC 438–447.

[18] Manindra Agrawal and Somenath Biswas 1999
Primality and identity testing via Chinese remainder-
ing; in FOCS 202–209.

[19] Adam Klivans and Daniel Spielman A 2001 Random-
ness efficient identity testing of multivariate polyno-
mials; in STOC 216–223.

[20] Neeraj Kayal and Nitin Saxena 2007 Polynomial iden-
tity testing for depth 3 circuits; Computational Com-
plexity 16 (2).

[21] Neeraj Kayal and Shubhangi Saraf 2009 Blackbox
polynomial identity testing for depth 3 circuits;
Electronic Colloquium on Computational Complexity
(ECCC).

[22] Manindra Agrawal and Vinay V 2008 Arithmetic cir-
cuits: A chasm at depth four; in FOCS 67–75.

[23] Chandan Saha 2008 A note on irreducible polynomials
and identity testing; (Manuscript)
http://www.cse.iitk.ac.in/users/csaha/PID−CR.pdf.

[24] Suresh Chari, Pankaj Rohatgi, and Aravind Srinivasan
1995 Randomness-optimal unique element isolation
with applications to perfect matching and related prob-
lems; SIAM J. Comput. 24 (5) 1036–1050.

[25] Ketan Mulmuley, Umesh Vazirani V and Vijay
Vazirani V 1987 Matching is as easy as matrix inver-
sion; in STOC ’87: Proc. nineteenth annual ACM sym-
posium on theory of computing 345–354 (New York,
USA: ACM).

[26] Zeev Dvir and Amir Shpilka 2005 Locally decodable
codes with 2 queries and polynomial identity testing

for depth 3 circuits; in STOC ’05: Proceedings of the
thirty-seventh annual ACM symposium on theory of
computing 592–601 (New York, USA: ACM).

[27] Nitin Saxena and Seshadhri C 2009 An almost optimal
rank bound for depth 3 identities; in Conference on
Computational Complexity.

[28] Zohar Karnin S and Amir Shpilka 2008 Black box poly-
nomial identity testing of generalized depth-3 arith-
metic circuits with bounded top fan-in; in CCC ’08:
Proc. 2008 IEEE 23rd Annual Conference on Compu-
tational Complexity 280–291 (Washington DC, USA:
IEEE Computer Soc.)

[29] Ran Raz and Amir Shpilka 2004 Deterministic poly-
nomial identity testing in non-commutative models;
in IEEE Conference on Computational Complexity
215–222.

[30] Nitin Saxena 2008 Diagonal circuit identity testing and
lower bounds; in ICALP ’08: Proc. 35th international
colloquium on automata, languages and programming
Part I 60–71 (Berlin, Heidelberg: Springer-Verlag.).

[31] Chandan Saha, Ramprasad Saptharishi, and Nitin
Saxena 2009 The power of depth 2 circuits over alge-
bras. (Manuscript) http://arxiv.org/abs/0904.2058.

[32] Zeev Dvir, Amir Shpilka, and Amir Yehudayoff 2008
Hardness-randomness tradeoffs for bounded depth
arithmetic circuits; in STOC ’08: Proc. 40th annual
ACM symposium on theory of computing 741–748
(New York, USA: ACM).

[33] Eric Allender, Jia Jiao, Meena Mahajan and Vinay V
1998 Non-commutative arithmetic circuits: depth
reduction and size lower bounds; Theor. Comput. Sci.
209 (1–2) 47–86.

