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Polynomials

flxpxpx3,%4) = 14x+x+ x5+ x,
+ 212y F 215+ 2%, X555 + X%, + X3X,
X34 F X1 X3X4 + X1 XX + X1 Xp X3
+ X%y X3%4



Polynomials

fOexpx3%) = 14x4+x+x+%
+x1%) + X1 X5 + XXy + X5%5 + XX, + X3%y
+ xXyx3%, + X1 X3X4 + X1 X5X4 + X X5 X5
+ x1x5%5%4

= (1+x)14x)(14+x35)(14+x,)

.. certainly a more compact representation.



Arithmetic Formulae

f (g5 %0, %3, X4)

o Tree

e Leaves containing variables or constants






Arithmetic Circuits













Black-box Identity Testing of Arithmetic Circuits

Is this zero?

Circuit from some class 6



The [Schwartz-Zippel-DeMillo-Lipton] Lemma

Lemma

Let f be a non-zero polynomial of degree d, and let S C F. Then,

d
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The [Schwartz-Zippel-DeMillo-Lipton] Lemma

Lemma

Let f be a non-zero polynomial of degree d, and let S C F. Then,

d
Prlflaa)=0l S o

Thus, if |S| > d + 1, then S§” contains a witness.

Big Question: If / is computable by a small circuit, do we have polynomial
sized hitting set?



Why do we care?

Part of many important results like IP = PSPACE, the PCP theorem, AKS
primality test, etc.

Connections with lower bounds. [Kabanets-Impagliazzo03], [Agrawal05]:
“Efficient PIT algorithms imply lower bounds”
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Why do we care?

Part of many important results like IP = PSPACE, the PCP theorem, AKS
primality test, etc.

Connections with lower bounds. [Kabanets-Impagliazzo03], [Agrawal05]:
“Efficient PIT algorithms imply lower bounds”

“For the pessimist, this indicates that derandomizing identity testing is
a hopeless problem. For the optimist, this means on the contrary that
to obtain an arithmetic circuit lower bound, we simply” have to prove

a good upper bound on identity testing.”
- [Kayal-Saraf09]

Of course, it is a natural problem!
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State of affairs

“If you can't solve a problem, then there is an easier problem you can
solve: find it”

- George Polya

Identity tests of restricted types of circuits:
e Formulae:

@ Bounded depth formulae?
@ Bounded read formulae?



State of affairs for 211 Circuits

Depth 2 is easy (sparse polynomials)
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State of affairs for 211 Circuits

( Variables )

Black-box not-too-hard as well.

B, 0 x; e yldF1) modr

Not too many bad 7's

Hint: #% and #? collide if and only if 7 | (2 — b)



State of affairs for 21122 Circuits

( Linear functions of variables J
k
fo= Zgil"'[id
=1

PIT for even depth 3 circuits is open.



State of affairs for SXI(k) Circuits

[KayalSaxena07] : PIT in time poly(s¥)



State of affairs for XII1>3(k) Circuits

Depth 3, fan-in & (constant), degree d

( Variables )

[KayalSaxena07] : PIT in time poly(sk)
[SaxenaSeshadri11]: Black-box PIT in time poly(s¥)



State of affairs for XIIXIT Circuits

( Sparse Polynomials J

poly

f = Zgil"'gid
i=1

[AgrawalVinay08] : Black-box PIT for depth 4 implies 72°21°87) plack-box PIT
for any depth!

Depth 4 is (almost) as hard as the general case.



State of affairs for XIIXIT Circuits

( Sparse Polynomials, bounded algRank J

poly

f = Zgil'”gid vvithalgRank{g,»j}Sk

1=1

[BeeckenMittmannSaxena11]: Polynomial time black-box PIT



State of affairs for XIIXIT Circuits

C

f = C(g» 8, withalgRank{g;} <k

[BeeckenMittmannSaxena1]: Polynomial time black-box PIT



State of affairs for bounded read formulae

Read-1 formula
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Read-2 formula



State of affairs for bounded read formulae

Read-3 formula



State of affairs for bounded read formulae

Read-£ formula

Status of PIT:



State of affairs for bounded read formulae

Read-£ formula

Status of PIT: Open!



State of affairs for bounded read formulae

Read-£ multilinear formula

Status of PIT:
o [SarafVolkovich11]: Polytime black-box PIT for multilinear XITXII(k).
o [Anderson-vanMelkebeek-Volkovich11]: Polytime black-box PIT for
constant depth, multilinear, read-k formulae.
Quasi-poly black-box PIT for arbitrary depth, multilinear read-%
formulae, and polynomial time non-blackbox PIT.
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Model Best known PIT Idea
Y1 (k) s* black-box CRT over local rings
bounded algRank >IT3IT Polytime black-box Jacobian
YIIXII(k) s** black-box sparsity bounds
multilinear

multilinear read-%

Quasi-poly black-box

shattering, fragmentation
under partial derivatives
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Summary of our results

Model* Best known PIT Idea
c(1y,---,T,) £0 s* black-box Jacobian
algRank {T},---,7T,,} <k

bounded algRank XITXIT  Polytime black-box Jacobian
YIIXI ) s* black-box Jacobian
rruttitinear read-k

ruttitinear read-k Polytime black-box Jacobian
constant depth

.. and some lower bounds

*: char(F) =0 or large
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c = 2114
i

rank(C) &« dim ‘{gij}
the maximum number of linearly independent éi/’s
If rank(C) is “small” (say less than k):
@ Constructalinear transformation W : F[xp,,1] — F[yp,1] such that
@ Show that this preserves non-zeroness of C.
@ Use [DLSZ] on ¥(C)to get a hitting set of size (d 4 1)*.
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Rank of a 211211 circuit

¢ = 30,

rank(C) o algRank { fi j}
the maximum number of algebraically independent i/’s
If rank(C) is “small” (say less than k):
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Rank of a 211211 circuit

¢ = 30,

rank(C) & algRank { fi j}
the maximum number of algebraically independent i/’s
If rank(C) is “small” (say less than k):

@ Constructa homomorphism ¥ : Fxp,,1] = F[yp,1] such that
algRank {fl]} = algRank {\Il(fl])}

@ Show that this preserves non-zeroness of C.

@ Use [DLSZ] on ¥(C) to get a hitting set of size (poly(d ) + 1)*.
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Formal definitions

Definition

{fi>++ /., } are algebraically independent if there is no non-trivial
polynomial relation between them. That is,

H(}q,~~~,fm)20 <— H=0

Definition
The algebraic rank (algRank) of {f;,- - , £, } is the size of the largest
algebraically independent subset.

Definition
Amap W :F[xy, - ,x,] = F[y,-,y,]isfaithful for { f1,---, £, } if

algRank {fl’ ’fm} = algRank{\I/(fl)"” ,\Il(fm)}
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Faithful maps preserve non-zeroness

Theorem (Beecken-Mittmann-Saxena)

O Fxy,-,x,] = Fy,- -,y ] is faithful for { f1,- -, f,,}, then for any
C
C(fys++ > fn) #0 ifandonlyif W(C(f},--+,f,,)) #0

Proof.
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Faithful maps preserve non-zeroness

Theorem (Beecken-Mittmann-Saxena)

O Fxy,-,x,] = Fy,- -,y ] is faithful for { f1,- -, f,,}, then for any
C
C(fys++ > fn) #0 ifandonlyif W(C(f},--+,f,,)) #0

Proof.
Say {1+, } isa maximal algebraically independent set that is preserved

by . Then, B(f1,-++ /) = F(fis s [ ) s 5 Fn -

Mm m

fl’ o /[m F[fl”f;] u



Faithful maps preserve non-zeroness

Theorem (Beecken-Mittmann-Saxena)

O Fxy,-,x,] = Fy,- -,y ] is faithful for { f1,- -, f,,}, then for any
C
C(fys++ > fn) #0 ifandonlyif W(C(f},--+,f,,)) #0

Proof.
Say {1+, } isa maximal algebraically independent set that is preserved

by . Then, B(f1,-++ /) = F(fis s [ ) s 5 Fn -

Clhssfn) QU f) = 1
= Cfysf) QU2 /) = R0 1)
V(Cfr o) UQU s ) = RO V() #0
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Constructing faithful maps

Question: Given polynomials f,---, f,, explicitly, can we even compute
algRank{f},---,/,,}’

Can we try to somehow find the annihilator polynomials?
[Kayal09]: NP-hard to even decide if it has a constant term or not!

Answer: Use the Jacobian!
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If char(IF) = O or “large enough

algRank {fy,---,f,,} = rank(Z(f,--, /)



The Jacobian

h ... 94

3951 axn
v, o) = 0

o fon 9 fm

3_361 Q_xn mxn

Theorem (Jacobi Criterion)
If char(IF) = O or “large enough

algRank {fy,---,f,,} = rank(Z(f,--, /)

algRank can be computed in randomized polynomial time. (how?)



The Jacobian

dh ... 2h

3951 axn
fxl,w,xn(fl’"me): .

P m fm

In mxn

Theorem (Jacobi Criterion)
If char(F) = O or “large enough’,

algRank {fy,---,f,,} = rank(Z(f,--, /)

algRank can be computed in randomized polynomial time. (how?)

How do we use this to construct faithful maps?



Revisiting 22113 circuits:

c = X2 11I¢4

Say dim {gij}i’]» =k.

How do preserve the rank in a blackbox fashion?



Rank p?’ES(ﬁ?’Vlﬂg maps

Lemma (GabizonRaz05)

Given n, k, there is a set of O(nk?) of linear transformations {¥, } : F” — T
such that for any subspace V- C F” of dimension k, there is at least one ¥, that
is an isomorphism between V' and F®.



Rank preserving maps

Lemma (GabizonRaz05)

Given n, k, there is a set of O(nk?) of linear transformations {¥, } : F” — T
such that for any subspace V- C B of dimension k, there is at least one v, that
is an isomorphism between V' and F®.

r 2 "

t2 t4 th
v, = :

ko 2k (nk



Rank preserving maps

Lemma (GabizonRaz05)

Given n, k, there is a set of O(nk?) of linear transformations {¥, } : F” — T
such that for any subspace V- C B of dimension k, there is at least one v, that
is an isomorphism between V' and F®.
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Rank preserving maps

Lemma (GabizonRaz05)

Given n, k, there is a set of O(nk?) of linear transformations {¥, } : F” — T
such that for any subspace V- C B of dimension k, there is at least one v, that
is an isomorphism between V' and F®.

t t2 o om 1 ’ ] ] ]'ﬁ((tz)) ]J:/e((tz))
NG BREE t
fihh| =00

o2k Jk 1 l £(t5) fk('t/e)




Rank preserving maps

Lemma (GabizonRaz05)

Given n, k, there is a set of O(nk?) of linear transformations {¥, } : F” — T
such that for any subspace V- C B of dimension k, there is at least one v, that
is an isomorphism between V' and F®.

tz tj - tzn [ ’ ] ] ]{1(( tz)) e ]{,‘é(( tz))
t t A i 1(t t
N N R
tk tzk tn/e ‘ l f1(tk) fk(tk)
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What do we need?

n

axlfl ax fl

” mxn

U Fle,,x,] — Flyyo,y,]
a,%(fy) - 9, ¥AH)

3,9, 8,9,

How does the Jacobian evolve?

mxk



Evolution of the Jacobian under homomorphism

— J U(x)
5" = 2,/



Evolution of the Jacobian under homomorphism

av(f) —

5, = 27/ )
nIf r— dV(x;)
lz—;gxi [\P(X)] dy



Evolution of the Jacobian under homomorphism

- J W(x)
= 5,/

< af IW(x;)
- gqj(axi) . dy




Evolution of the Jacobian under homomorphism
V() - 9,9

3,9, - 2,9f,)

8961][1 e an.fl gyl ‘Ij(xl) e ayk ‘Ij(xl)
axlfm 8xnfm 8yl‘lj(xn) aykq}(xn)



/i

Evolution of the Jacobian under homomorphism
V() - 9,9

3,9, - 2,9f,)

8x,,f1 le\lj(xl) ayk (x,)
P a9, ¥(x,) 9, ¥(x,)



Evolution of the Jacobian under homomorphism
V() - 9,9

3,9, - 2,9f,)

Uo



Evolution of the Jacobian under homomorphism
8,9(f) - 8, W(f)
8,00,) 8,

ah v AN {t 2. tk]

" t2n eee

axl'fm a 8xn.fm

k
x; Zyjt” + ®(x;)
If rank (_LZ (f15+ 5 fo )_rank({)of (fi>+ > /), we are done.



Recipe for constructing faithful maps
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j(f‘l,... ,f,n): _




Recipe for constructing faithful maps

S s fn)=

axlfl axkfl
]: : . .

Al Ol



Recipe for constructing faithful maps

S s fn)=

axlfl o a)c,efl
: : <~— Preserve this determinant

Al Ol

Lemma (4 Composition Lemma)

Let ® be a map such that ®(J ) # O. Then the map W is faithful to { 1, -+ , f,, }:

k
U:x;, — Zy]»t” +  ®(x;)
j=1
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[BeeckenMittmannSaxena]s PIT

Theorem
There is a black-box PIT for circuits of the form C(fy,--- , f,,) where each f; is
“sparse”and algRank {£;,---, f,,} < k.

Proof.
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[BeeckenMittmannSaxena]s PIT

Theorem

There is a black-box PIT for circuits of the form C(fy,--- , f,,) where each f; is
“sparse”and algRank {£;,---, f,,} < k.

Proof

LU fm)=

axlfl o axkfl
J= : : which is a sparse poly!

IS o Fha
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Read-k depth-4 formulae

Observation

IfC(xq,-++,x,) F O, then there exists an i such that
C(xl’...’xi+1’... ’xn)_C(xl’... ’xl.,... ,xn)¢o

In fact, any x; that C non-trivially depends on.



Read-k depth-4 formulae

Observation

IfC(xq,-++ ,x,) # 0, then there exists an i such that

C(xl,...,xl._i_l’...’xn)_c(xl,...’xi’...,xn)#o

Infact, any x; that C non-trivially depends on.
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Read-k depth-4 formulae



Read-F depth-4 formulae

a1, - 4T,
] = : :

8.1, - 3,7,
Observation

Atmost rk ofthefij’sdependon X1yttt s X,



Read-k depth-4 formulae

o1 - 4T,

.. a product of sparse polys!



Read-k depth-4 formulae

2.1, 8,1/ - 3,7
: = (ITf)-| @ -
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.. a product of sparse polys!

i
s ydimodr preserves J



Read-F depth-4 formulae

3,1 - 8T

.. a product of sparse polys!

i
s ydimodr preserves J

k
— Zy]-t” +  u? ™47 isablack-box PIT
j=1
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Read-k depth-D formulae

. 3 o1 - 3T
‘ ol =My o
2.1, a.T, 8,1 - 3T

Function of "few” Q; ;s
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o1, - 4T, o1 - 3T
Jo= | o =1y o
8.1, - 3,7, 8,1 - 3T

_

Product of functions of “few” Q;j's

~

To preserve non-zeroness of C it suffices to preserve non-zeroness of J.



Read-k depth-D formulae

o1, - 4T, o1 - 3T
Jo= | o =1y o
8.1, - 3,7, 8,1 - 3T

_

Product of functions of “few” Q;j's

~

To preserve non-zeroness of C it suffices to preserve non-zeroness of J.
Hence, suffices to preserve the Jacobian of the Ql-]-’s.



Read-k depth-D formulae

o1, - 4T, o1 - 3T
Jo= | o =1y o
8.1, - 3,7, 8,1 - 3T

_

Product of functions of “few” Q;j's

~

To preserve non-zeroness of C it suffices to preserve non-zeroness of J.
Hence, suffices to preserve the Jacobian of the Ql-]-’s. Recursel OJ
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Generalizing XIIX.(k) PITs

d
f = C(Ty,-,T,) wheeT;=] [¢;

j=1



Generalizing XIIX.(k) PITs

gxlTl ’ ax,Tl
2T . o



Lemma
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Generalizing XITX(k) PITs

gx1Tl gerl
J(Tys--,T,) = : :
8T, -~ 4T,
Lemma
aP 4.0
dP.-Q=PQ (= x
pQ=ro: (4
Lemma
b, + b b, b,
det a.z = det a,z + det a,z
a a, a
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Generalizing XIIX.(k) PITs

axlTl ax,Tl
J(Tys--,T,) = : :
gxlTr 8x,Tr
ar
— T1"'Tk'2
P

1 1

A similar analysis (slightly simpler due to lack of multiplicities)
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General philosophy

Ifyou have black-box PITs for a class 6, then you have
determinant/permanent lower bounds for (almost) 6.

[Kabanetsimpagliazzo03], [Agrawal05], [DvirShpilkaYehudayoff08] etc...
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PITs & Lower bounds

Theorem Zero?

®® 6 - ®

Black-box PIT if algRank { f{,--- , £,,} = O(1).




PITs & Lower bounds

Theorem det,,

®® 6 - ®

IfalgRank {f},---, f,,} =k, thensize(f;) > on/k?




PITs & Lower bounds

Theorem

Black-box PIT if at most O(1) of the f;'s depend on any x;.



PITs & Lower bounds

Theorem

Ifat most k of the f;'s depend on any x;, then size(f;) > /K’



PITs & Lower bounds

Theorem Zero?

depth- D read-k

®® 6 - ®

Black-box PIT if at most O(1) of the f;'s depend on any x;.




PITs & Lower bounds

Theorem det,,

depth- D read-k

®® 6 - ®

Ifat most O(1) of the f;'s depend on any x,, then size(f;) > 2%"), assuming a
conjecture abour determinants is true.
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Concluding Remarks

e Generalizes all known polynomial time black-box PITs for sub-classes of
constant depth formulae.

e Unified approach.

o Simpler proofs.



Open Problems

Models where PIT is known but not hit by the Jacobian (yet!)
o Arbitrary depth, read-k formulae
However, Jacobian gives a quasipoly blackbox test for arbitrary depth read-1 formulae
?
e Diagonal circuits: Z‘f +-t Ki = 0

Polynomial time non-blackbox known [Kayal09,Saxena08

Others problems
e PIT for bounded fan-in depth-4 circuits? With constant degree sparse
polyomials?
o PITs for polynomials with low dimension partial-derivative space?
e Conjecture on independence of minors

o Fields of small characteristic
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