Unified PITs via the Jacobian

Manindra Chandan Ramprasad Nitin Agrawal Saha Saptharishi Saxena

> Microsoft Research India January, 2012

Polynomials

$$f(x_1, x_2, x_3, x_4) = 1 + x_1 + x_2 + x_3 + x_4 + x_1 x_2 + x_1 x_3 + x_1 x_4 + x_2 x_3 + x_2 x_4 + x_3 x_4 + x_2 x_3 x_4 + x_1 x_3 x_4 + x_1 x_2 x_4 + x_1 x_2 x_3 + x_1 x_2 x_3 x_4$$

Polynomials

$$f(x_1, x_2, x_3, x_4) = 1 + x_1 + x_2 + x_3 + x_4$$

$$+ x_1 x_2 + x_1 x_3 + x_1 x_4 + x_2 x_3 + x_2 x_4 + x_3 x_4$$

$$+ x_2 x_3 x_4 + x_1 x_3 x_4 + x_1 x_2 x_4 + x_1 x_2 x_3$$

$$+ x_1 x_2 x_3 x_4$$

$$= (1 + x_1)(1 + x_2)(1 + x_3)(1 + x_4)$$

... certainly a more compact representation.

Arithmetic Formulae

- Tree
- Leaves containing variables or constants

Identity Testing of Arithmetic Circuits

Black-box Identity Testing of Arithmetic Circuits

The [Schwartz-Zippel-DeMillo-Lipton] Lemma

Lemma

Let f be a non-zero polynomial of degree d, and let $S \subseteq \mathbb{F}$. Then,

$$\Pr_{a_i \in S}[f(a_1, \dots, a_n) = 0] \le \frac{d}{|S|}$$

The [Schwartz-Zippel-DeMillo-Lipton] Lemma

Lemma

Let f be a non-zero polynomial of degree d, and let $S \subseteq \mathbb{F}$. Then,

$$\Pr_{a_i \in S}[f(a_1, \dots, a_n) = 0] \le \frac{d}{|S|}$$

Thus, if $|S| \ge d + 1$, then S^n contains a witness.

The [Schwartz-Zippel-DeMillo-Lipton] Lemma

Lemma

Let f be a non-zero polynomial of degree d, and let $S \subseteq \mathbb{F}$. Then,

$$\Pr_{a_i \in S}[f(a_1, \dots, a_n) = 0] \leq \frac{d}{|S|}$$

Thus, if $|S| \ge d + 1$, then S^n contains a witness.

Big Question: If f is computable by a small circuit, do we have polynomial sized hitting set?

Why do we care?

Part of many important results like IP = PSPACE, the PCP theorem, AKS primality test, etc.

Connections with lower bounds. [Kabanets-Impagliazzo03], [Agrawal05]: "Efficient PIT algorithms imply lower bounds"

Why do we care?

Part of many important results like IP = PSPACE, the PCP theorem, AKS primality test, etc.

Connections with lower bounds. [Kabanets-Impagliazzo03], [Agrawal05]: "Efficient PIT algorithms imply lower bounds"

"For the pessimist, this indicates that derandomizing identity testing is a hopeless problem. For the optimist, this means on the contrary that to obtain an arithmetic circuit lower bound, we 'simply' have to prove a good upper bound on identity testing."

- [Kayal-Saraf09]

Why do we care?

Part of many important results like IP = PSPACE, the PCP theorem, AKS primality test, etc.

Connections with lower bounds. [Kabanets-Impagliazzo03], [Agrawal05]: "Efficient PIT algorithms imply lower bounds"

"For the pessimist, this indicates that derandomizing identity testing is a hopeless problem. For the optimist, this means on the contrary that to obtain an arithmetic circuit lower bound, we 'simply' have to prove a good upper bound on identity testing."

- [Kayal-Saraf09]

Of course, it is a natural problem!

State of affairs

"If you can't solve a problem, then there is an easier problem you can solve: find it."

- George Pólya

Identity tests of restricted types of circuits:

- Formulae:
 - Bounded depth formulae?
 - Bounded read formulae?

$$f = \sum_{i=1}^{\text{poly}} \text{monomial}_i$$

Depth 2 is easy (sparse polynomials)

Black-box not-too-hard as well.

Black-box not-too-hard as well.

$$\Phi: \quad x_i \mapsto u^{(d+1)^i}$$

Works, but exponential degree

Black-box not-too-hard as well.

$$\Phi_r: \quad x_i \mapsto u^{(d+1)^i \bmod r}$$

Not too many bad r's

Hint: u^a and u^b collide if and only if $r \mid (a - b)$

$$f = \sum_{i=1}^{k} \ell_{i1} \cdots \ell_{id}$$

PIT for even depth 3 circuits is open.

State of affairs for $\Sigma\Pi\Sigma(k)$ Circuits

$$f = \sum_{i=1}^{k} \ell_{i1} \cdots \ell_{id}$$

[KayalSaxena07] : PIT in time $poly(s^k)$

State of affairs for $\Sigma\Pi\Sigma(k)$ Circuits

$$f = \sum_{i=1}^{k} \ell_{i1} \cdots \ell_{id}$$

[KayalSaxena07] : PIT in time $poly(s^k)$ [SaxenaSeshadri11]: Black-box PIT in time $poly(s^k)$

State of affairs for $\Sigma\Pi\Sigma\Pi$ Circuits

$$f = \sum_{i=1}^{\text{poly}} g_{i1} \cdots g_{id}$$

[AgrawalVinay08] : Black-box PIT for depth 4 implies $n^{O(\log n)}$ black-box PIT for any depth!

Depth 4 is (almost) as hard as the general case.

State of affairs for $\Sigma\Pi\Sigma\Pi$ Circuits

$$f = \sum_{i=1}^{\text{poly}} g_{i1} \cdots g_{id} \quad \text{with algRank} \left\{ g_{ij} \right\} \le k$$

[BeeckenMittmannSaxena11]: Polynomial time black-box PIT

State of affairs for $\Sigma\Pi\Sigma\Pi$ Circuits

$$f = C(g_1, \dots, g_m)$$
 with alg Rank $\{g_i\} \le k$

[BeeckenMittmannSaxena11]: Polynomial time black-box PIT

Read-1 formula

Read-2 formula

Read-3 formula

Read-k formula

Status of PIT:

Read-k formula

Status of PIT: Open!

State of affairs for bounded read formulae

Read-k multilinear formula

Status of PIT:

- [SarafVolkovich11]: Polytime black-box PIT for multilinear $\Sigma\Pi\Sigma\Pi(k)$.
- [Anderson-vanMelkebeek-Volkovich11]: Polytime black-box PIT for constant depth, multilinear, read-k formulae.
 Quasi-poly black-box PIT for arbitrary depth, multilinear read-k formulae, and polynomial time non-blackbox PIT.

Summary of results

Model	Best known PIT	Idea
$\Sigma\Pi\Sigma(k)$	s^k black-box	CRT over local rings
bounded algRank $\Sigma\Pi\Sigma\Pi$	Polytime black-box	Jacobian
$\Sigma\Pi\Sigma\Pi(k)$ multilinear	s^{k^3} black-box	sparsity bounds
multilinear read- $m{k}$	Quasi-poly black-box	shattering, fragmentation under partial derivatives

Summary of results

Model	Best known PIT	ldea
$T_1 + \dots + T_k \stackrel{?}{=} 0$	${\it s}^{\it k}$ black-box	CRT over local rings
bounded algRank $\Sigma\Pi\Sigma\Pi$	Polytime black-box	Jacobian
$\Sigma\Pi\Sigma\Pi(k)$ multilinear	s^{k^3} black-box	sparsity bounds
multilinear read- $m{k}$	Quasi-poly black-box	shattering, fragmentation under partial derivatives

Model*	Best known PIT	Idea
$C(T_1, \dots, T_m) \stackrel{?}{=} 0$ algRank $\{T_1, \dots, T_m\} \le k$	s^k black-box	CRT over local rings
bounded $\operatorname{algRank}\Sigma\Pi\Sigma\Pi$	Polytime black-box	Jacobian
$\Sigma\Pi\Sigma\Pi(k)$ multilinear	s ^{k³} black-box	sparsity bounds
multilinear read- $oldsymbol{k}$	Quasi-poly black-box	shattering, fragmentation under partial derivatives

Model*	Best known PIT	Idea
$C(T_1, \dots, T_m) \stackrel{?}{=} 0$ algRank $\{T_1, \dots, T_m\} \le k$	s ^k black-box	CRT over local rings
bounded $\operatorname{algRank}\Sigma\Pi\Sigma\Pi$	Polytime black-box	Jacobian
$\Sigma\Pi\Sigma\Pi(rac{k}{})$ multilinear read- $rac{k}{}$	s ^{k²} black-box	sparsity bounds
multilinear read- $m{k}$	Quasi-poly black-box	shattering, fragmentation under partial derivatives

Model*	Best known PIT	Idea
$C(T_1, \dots, T_m) \stackrel{?}{=} 0$ algRank $\{T_1, \dots, T_m\} \le k$	s ^k black-box	CRT over local rings
bounded algRank $\Sigma\Pi\Sigma\Pi$	Polytime black-box	Jacobian
$\Sigma\Pi\Sigma\Pi(k)$ multilinear read- k	s ^{k²} black-box	sparsity bounds
$rac{ ext{multilinear}}{ ext{constant depth}}$	Polytime black-box	shattering, fragmentation under partial derivatives

Model*	Best known PIT	Idea
$C(T_1, \dots, T_m) \stackrel{?}{=} 0$ algRank $\{T_1, \dots, T_m\} \le k$	s ^k black-box	Jacobian
bounded $\operatorname{algRank}\Sigma\Pi\Sigma\Pi$	Polytime black-box	Jacobian
$\Sigma\Pi\Sigma\Pi(k)$ multilinear read- k	s^{k^2} black-box	Jacobian
$rac{ ext{multilinear}}{ ext{constant depth}}$	Polytime black-box	Jacobian

Model*	Best known PIT	Idea
$C(T_1, \dots, T_m) \stackrel{?}{=} 0$ algRank $\{T_1, \dots, T_m\} \le k$	s^k black-box	Jacobian
bounded $\operatorname{algRank}\Sigma\Pi\Sigma\Pi$	Polytime black-box	Jacobian
$\Sigma\Pi\Sigma\Pi(k)$ multilinear read- k	s^{k^2} black-box	Jacobian
multilinear read-k constant depth	Polytime black-box	Jacobian

... and some lower bounds

Model*	Best known PIT	Idea
$C(T_1, \dots, T_m) \stackrel{?}{=} 0$ algRank $\{T_1, \dots, T_m\} \le k$	s^k black-box	Jacobian
bounded $\operatorname{algRank}\Sigma\Pi\Sigma\Pi$	Polytime black-box	Jacobian
$\Sigma\Pi\Sigma\Pi(k)$ multilinear read- k	s ^{k²} black-box	Jacobian
multilinear read-k constant depth	Polytime black-box	Jacobian

... and some lower bounds

^{*:} $char(\mathbb{F}) = 0$ or large

Rank of a $\Sigma\Pi\Sigma$ circuit

$$C = \sum_{i} \prod_{j} \ell_{ij}$$

Rank of a $\Sigma\Pi\Sigma$ circuit

$$\begin{array}{rcl} C & = & \displaystyle \sum_{i} \prod_{j} \ell_{ij} \\ & \operatorname{rank}(C) & \stackrel{\mathrm{def}}{=} & \dim \left\{ \ell_{ij} \right\} \\ & & \operatorname{the maximum number of linearly independent} \ell_{ij} \text{'s} \end{array}$$

Rank of a $\Sigma\Pi\Sigma$ circuit

$$\begin{array}{rcl} C & = & \displaystyle \sum_{i} \prod_{j} \ell_{ij} \\ & \operatorname{rank}(C) & \stackrel{\mathrm{def}}{=} & \dim \left\{ \ell_{ij} \right\} \\ & & \operatorname{the maximum number of linearly independent} \ell_{ij} \text{'s} \end{array}$$

- Construct a linear transformation $\Psi: \mathbb{F}[x_{[n]}] \mapsto \mathbb{F}[y_{[k]}]$ such that $\dim \left\{\ell_{ij}\right\} = \dim \left\{\Psi(\ell_{ij})\right\}$.
- $oldsymbol{\circ}$ Show that this preserves non-zeroness of C.
- Use [DLSZ] on $\Psi(C)$ to get a hitting set of size $(d+1)^k$.

Rank of a $\Sigma\Pi\Sigma\Pi$ circuit

$$\begin{array}{rcl} C & = & \displaystyle \sum_{i} \prod_{j} f_{ij} \\ & \operatorname{rank}(C) & \stackrel{\mathrm{def}}{=} & \dim \left\{ \ell_{ij} \right\} \\ & & \operatorname{the maximum number of linearly independent} \ell_{ij} \text{'s} \end{array}$$

- Construct a linear transformation $\Psi: \mathbb{F}[x_{[n]}] \mapsto \mathbb{F}[y_{[k]}]$ such that $\dim \left\{\ell_{ij}\right\} = \dim \left\{\Psi(\ell_{ij})\right\}$.
- $oldsymbol{0}$ Show that this preserves non-zeroness of C.
- Use [DLSZ] on $\Psi(C)$ to get a hitting set of size $(d+1)^k$.

Rank of a $\Sigma\Pi\Sigma\Pi$ circuit

$$\begin{array}{rcl} C & = & \displaystyle \sum_{i} \prod_{j} f_{ij} \\ & \operatorname{rank}(C) & \stackrel{\mathrm{def}}{=} & \operatorname{algRank} \left\{ f_{ij} \right\} \\ & & \operatorname{the\ maximum\ number\ of\ algebraically\ independent\ } f_{ij}\text{'s} \end{array}$$

- Construct a linear transformation $\Psi: \mathbb{F}[x_{[n]}] \mapsto \mathbb{F}[y_{[k]}]$ such that $\dim \left\{\ell_{ij}\right\} = \dim \left\{\Psi(\ell_{ij})\right\}$.
- $oldsymbol{\circ}$ Show that this preserves non-zeroness of C.
- Use [DLSZ] on $\Psi(C)$ to get a hitting set of size $(d+1)^k$.

Rank of a $\Sigma\Pi\Sigma\Pi$ circuit

$$\begin{array}{rcl} C & = & \displaystyle \sum_{i} \prod_{j} f_{ij} \\ & \text{rank}(C) & \stackrel{\text{def}}{=} & \text{algRank} \left\{ f_{ij} \right\} \\ & \text{the maximum number of algebraically independent } f_{ij}\text{'s} \end{array}$$

- Construct a homomorphism $\Psi : \mathbb{F}[x_{[n]}] \mapsto \mathbb{F}[y_{[k]}]$ such that algRank $\{f_{ij}\} = \operatorname{algRank}\{\Psi(f_{ij})\}$.
- ② Show that this preserves non-zeroness of C.
- Use [DLSZ] on $\Psi(C)$ to get a hitting set of size $(\text{poly}(d) + 1)^k$.

Formal definitions

Definition

 $\{f_1,\cdots,f_m\}$ are algebraically independent if there is no non-trivial polynomial relation between them. That is,

$$H(f_1, \dots, f_m) = 0 \iff H = 0$$

Formal definitions

Definition

 $\{f_1,\cdots,f_m\}$ are algebraically independent if there is no non-trivial polynomial relation between them. That is,

$$H(f_1, \dots, f_m) = 0 \iff H = 0$$

Definition

The algebraic rank (algRank) of $\{f_1, \dots, f_m\}$ is the size of the largest algebraically independent subset.

Formal definitions

Definition

 $\{f_1,\cdots,f_m\}$ are algebraically independent if there is no non-trivial polynomial relation between them. That is,

$$H(f_1, \dots, f_m) = 0 \iff H = 0$$

Definition

The algebraic rank (algRank) of $\{f_1, \dots, f_m\}$ is the size of the largest algebraically independent subset.

Definition

A map
$$\Psi: \mathbb{F}[x_1, \cdots, x_n] \to \mathbb{F}[y_1, \cdots, y_k]$$
 is faithful for $\{f_1, \cdots, f_m\}$ if
$$\operatorname{algRank}\{f_1, \cdots, f_m\} \quad = \quad \operatorname{algRank}\{\Psi(f_1), \cdots, \Psi(f_m)\}$$

Theorem (Beecken-Mittmann-Saxena)

If
$$\Psi: \mathbb{F}[x_1, \cdots, x_n] \to \mathbb{F}[y_1, \cdots, y_k]$$
 is faithful for $\{f_1, \cdots, f_m\}$, then for any C
$$C(f_1, \cdots, f_m) \neq 0 \quad \text{if and only if} \quad \Psi(C(f_1, \cdots, f_m)) \neq 0$$

Proof.

Theorem (Beecken-Mittmann-Saxena)

$$\begin{split} & \text{If } \Psi : \mathbb{F}[x_1, \cdots, x_n] \to \mathbb{F}[y_1, \cdots, y_k] \text{ is faithful for } \{f_1, \cdots, f_m\} \text{, then for any } \\ & C \\ & C(f_1, \cdots, f_m) \neq 0 \quad \text{if and only if} \quad \Psi(C(f_1, \cdots, f_m)) \neq 0 \end{split}$$

Proof.

Say $\{f_1, \dots, f_r\}$ is a maximal algebraically independent set that is preserved by Ψ .

Theorem (Beecken-Mittmann-Saxena)

$$\begin{split} & \text{If } \Psi : \mathbb{F}[x_1, \cdots, x_n] \to \mathbb{F}[y_1, \cdots, y_k] \text{ is faithful for } \{f_1, \cdots, f_m\} \text{, then for any } \\ & C \\ & C(f_1, \cdots, f_m) \neq \mathbf{0} \quad \text{if and only if} \quad \Psi(C(f_1, \cdots, f_m)) \neq \mathbf{0} \end{split}$$

Proof.

Theorem (Beecken-Mittmann-Saxena)

If $\Psi: \mathbb{F}[x_1,\cdots,x_n] \to \mathbb{F}[y_1,\cdots,y_k]$ is faithful for $\{f_1,\cdots,f_m\}$, then for any C

$$C(f_1,\cdots,f_m)\neq 0$$
 if and only if $\Psi(C(f_1,\cdots,f_m))\neq 0$

Proof.

$$C(f_1, \dots, f_m) \cdot Q(f_1, \dots, f_m) = 1$$

Theorem (Beecken-Mittmann-Saxena)

If
$$\Psi : \mathbb{F}[x_1, \dots, x_n] \to \mathbb{F}[y_1, \dots, y_k]$$
 is faithful for $\{f_1, \dots, f_m\}$, then for any C

$$C(f_1, \dots, f_m) \neq \emptyset \quad \text{if and only if} \quad \Psi(C(f_1, \dots, f_m)) \neq \emptyset$$

Proof.

$$\begin{split} &C(f_1,\cdots,f_m)\cdot Q(f_1,\cdots,f_m) &= 1\\ \Longrightarrow &C(f_1,\cdots f_m)\cdot \tilde{Q}(f_1,\cdots,f_m) &= R(f_1,\cdots,f_r) \end{split}$$

Theorem (Beecken-Mittmann-Saxena)

If
$$\Psi : \mathbb{F}[x_1, \dots, x_n] \to \mathbb{F}[y_1, \dots, y_k]$$
 is faithful for $\{f_1, \dots, f_m\}$, then for any C

$$C(f_1, \dots, f_m) \neq \emptyset \quad \text{if and only if} \quad \Psi(C(f_1, \dots, f_m)) \neq \emptyset$$

Proof.

$$\begin{split} &C(f_1,\cdots,f_m)\cdot Q(f_1,\cdots,f_m) &= 1\\ \Longrightarrow &C(f_1,\cdots f_m)\cdot \tilde{Q}(f_1,\cdots,f_m) &= R(f_1,\cdots,f_r) \end{split}$$

$$\mathbb{F}[f_1, \dots, f_m] \qquad \mathbb{F}[f_1, \dots, f_r]$$

Theorem (Beecken-Mittmann-Saxena)

If
$$\Psi : \mathbb{F}[x_1, \dots, x_n] \to \mathbb{F}[y_1, \dots, y_k]$$
 is faithful for $\{f_1, \dots, f_m\}$, then for any C

$$C(f_1, \dots, f_m) \neq 0 \quad \text{if and only if} \quad \Psi(C(f_1, \dots, f_m)) \neq 0$$

Proof.

$$\begin{split} &C(f_1,\cdots,f_m)\cdot Q(f_1,\cdots,f_m) &= 1\\ \Longrightarrow &C(f_1,\cdots f_m)\cdot \tilde{Q}(f_1,\cdots,f_m) &= R(f_1,\cdots,f_r)\\ &\Psi(C(f_1,\cdots,f_m))\cdot \Psi(\tilde{Q}(f_1,\cdots,f_m)) &= R(\Psi(f_1),\cdots,\Psi(f_r))\neq 0 \end{split}$$

Question: Given polynomials f_1, \dots, f_m explicitly, can we even compute algRank $\{f_1, \dots, f_m\}$?

Question: Given polynomials f_1, \dots, f_m explicitly, can we even compute algRank $\{f_1, \dots, f_m\}$?

Can we try to somehow find the annihilator polynomials?

Question: Given polynomials f_1, \dots, f_m explicitly, can we even compute algRank $\{f_1, \dots, f_m\}$?

Can we try to somehow find the annihilator polynomials? [Kayal09]: NP-hard to even decide if it has a constant term or not!

Question: Given polynomials f_1, \dots, f_m explicitly, can we even compute algRank $\{f_1, \dots, f_m\}$?

Can we try to somehow find the annihilator polynomials? [Kayal09]: **NP**-hard to even decide if it has a constant term or not!

Answer: Use the Jacobian!

The Jacobian

$$\mathcal{J}_{x_1,\dots,x_n}(f_1,\dots,f_m) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \dots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}_{m}$$

The Jacobian

$$\mathcal{J}_{x_1,\dots,x_n}(f_1,\dots,f_m) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \dots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}_{m \times m}$$

If
$$char(\mathbb{F}) = 0$$
 or "large enough",

$$\operatorname{algRank} \{f_1, \dots, f_m\} = \operatorname{rank}(\mathcal{J}(f_1, \dots, f_m))$$

The Jacobian

$$\mathcal{J}_{x_1,\dots,x_n}(f_1,\dots,f_m) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \dots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}_{m \times n}$$

Theorem (Jacobi Criterion)

If
$$char(\mathbb{F}) = 0$$
 or "large enough",

$$\operatorname{algRank} \{f_1, \cdots, f_m\} = \operatorname{rank}(\mathcal{J}(f_1, \cdots, f_m))$$

algRank can be computed in randomized polynomial time. (how?)

The Jacobian

$$\mathcal{J}_{x_1,\dots,x_n}(f_1,\dots,f_m) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \dots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}_{m \times n}$$

Theorem (Jacobi Criterion)

If
$$char(\mathbb{F}) = 0$$
 or "large enough",

$$\operatorname{algRank}\left\{f_1,\cdots,f_m\right\} \quad = \quad \operatorname{rank}(\mathscr{J}(f_1,\cdots,f_m))$$

algRank can be computed in randomized polynomial time. (how?)

How do we use this to construct faithful maps?

Revisiting $\Sigma\Pi\Sigma$ *circuits:*

$$C = \sum \prod \ell_{ij}$$

Say dim
$$\{\ell_{ij}\}_{i,j} = k$$
.

How do preserve the rank in a blackbox fashion?

Lemma (GabizonRaz05)

Lemma (GabizonRaz05)

$$\Psi_t = \left[\begin{array}{cccc} t & t^2 & \cdots & t^n \\ t^2 & t^4 & \cdots & t^{2n} \\ \vdots & \vdots & \ddots & \vdots \\ t^k & t^{2k} & \cdots & t^{nk} \end{array} \right]_{n \times k}$$

Lemma (GabizonRaz05)

$$\begin{bmatrix} t & t^2 & \cdots & t^n \\ t^2 & t^4 & \cdots & t^{2n} \\ \vdots & \vdots & \ddots & \vdots \\ t^k & t^{2k} & \cdots & t^{nk} \end{bmatrix} \begin{bmatrix} \uparrow & \uparrow & \uparrow \\ f_1 & f_2 & \cdots & f_k \\ & & & & \end{bmatrix} = \begin{bmatrix} f_1(t) & \cdots & f_k(t) \\ f_1(t^2) & \cdots & f_k(t^2) \\ \cdots & \ddots & \vdots \\ f_1(t^k) & \cdots & f_k(t^k) \end{bmatrix}$$

Lemma (GabizonRaz05)

$$\begin{bmatrix} t & t^2 & \cdots & t^n \\ t^2 & t^4 & \cdots & t^{2n} \\ \vdots & \vdots & \ddots & \vdots \\ t^k & t^{2k} & \cdots & t^{nk} \end{bmatrix} \begin{bmatrix} \uparrow & \uparrow & \uparrow \\ f_1 & f_2 & \cdots & f_k \\ \downarrow & \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} f_1(t) & \cdots & f_k(t) \\ f_1(t^2) & \cdots & f_k(t^2) \\ \cdots & \ddots & \vdots \\ f_1(t^k) & \cdots & f_k(t^k) \end{bmatrix}$$

Lemma (GabizonRaz05)

$$\begin{bmatrix} t & t^2 & \cdots & t^n \\ t^2 & t^4 & \cdots & t^{2n} \\ \vdots & \vdots & \ddots & \vdots \\ t^k & t^{2k} & \cdots & t^{nk} \end{bmatrix} \begin{bmatrix} \uparrow & \uparrow & \uparrow \\ f_1 & f_2 & \cdots & f_k \\ \downarrow & \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} f_1(t) & \cdots & f_k(t) \\ f_1(t^2) & \cdots & f_k(t^2) \\ \cdots & \ddots & \vdots \\ f_1(t^k) & \cdots & f_k(t^k) \end{bmatrix}$$

$$= \begin{bmatrix} f_1(t) & \cdots & f_k(t) \\ f_1(t^2) & \cdots & f_k(t^2) \\ \vdots & \vdots & \vdots \\ f_1(t^k) & \cdots & f_k(t^k) \end{bmatrix}$$

$$\left[\begin{array}{ccc} \partial_{x_1} f_1 & \cdots & \partial_{x_n} f_1 \\ \vdots & \ddots & \vdots \\ \partial_{x_1} f_m & \cdots & \partial_{x_n} f_m \end{array} \right]_{m \times n}$$

$$\begin{bmatrix} \partial_{x_1} f_1 & \cdots & \partial_{x_n} f_1 \\ \vdots & \ddots & \vdots \\ \partial_{x_1} f_m & \cdots & \partial_{x_n} f_m \end{bmatrix}_{m \times n}$$

$$\Psi : \mathbb{F}[x_1, \cdots, x_n] \longrightarrow \mathbb{F}[y_1, \cdots, y_n]$$

$$\begin{bmatrix} \partial_{x_1} f_1 & \cdots & \partial_{x_n} f_1 \\ \vdots & \ddots & \vdots \\ \partial_{x_1} f_m & \cdots & \partial_{x_n} f_m \end{bmatrix}_{m \times n}$$

$$\Psi : \mathbb{F}[x_1, \cdots, x_n] \longrightarrow \mathbb{F}[y_1, \cdots, y_n]$$

$$\begin{bmatrix} \partial_{y_1} \Psi(f_1) & \cdots & \partial_{y_k} \Psi(f_1) \\ \vdots & \ddots & \vdots \\ \partial_{y_1} \Psi(f_m) & \cdots & \partial_{y_k} \Psi(f_m) \end{bmatrix}_{m \times k}$$

$$\left[\begin{array}{cccc} \partial_{x_1} f_1 & \cdots & \partial_{x_n} f_1 \\ \vdots & \ddots & \vdots \\ \partial_{x_1} f_m & \cdots & \partial_{x_n} f_m \end{array}\right]_{m \times n}$$

$$\Psi : \mathbb{F}[x_1, \cdots, x_n] \longrightarrow \mathbb{F}[y_1, \cdots, y_n]$$

$$\begin{bmatrix} \partial_{y_1} \Psi(f_1) & \cdots & \partial_{y_k} \Psi(f_1) \\ \vdots & \ddots & \vdots \\ \partial_{y_1} \Psi(f_m) & \cdots & \partial_{y_k} \Psi(f_m) \end{bmatrix}_{m \times k}$$

How does the Jacobian evolve?

$$\frac{\partial \Psi(f)}{\partial y} = \frac{\partial}{\partial y} f(\overline{\Psi(x)})$$

$$\frac{\partial \Psi(f)}{\partial y} = \frac{\partial}{\partial y} f(\overline{\Psi(x)})$$
$$= \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \left[\overline{\Psi(x)} \right] \cdot \frac{\partial \Psi(x_i)}{\partial y}$$

$$\frac{\partial \Psi(f)}{\partial y} = \frac{\partial}{\partial y} f(\overline{\Psi(x)})$$
$$= \sum_{i=1}^{n} \Psi\left(\frac{\partial f}{\partial x_{i}}\right) \cdot \frac{\partial \Psi(x_{i})}{\partial y}$$

$$\begin{bmatrix} \partial_{y_1} \Psi(f_1) & \cdots & \partial_{y_k} \Psi(f_1) \\ \vdots & \ddots & \vdots \\ \partial_{y_1} \Psi(f_m) & \cdots & \partial_{y_k} \Psi(f_m) \end{bmatrix} =$$

$$\Psi \circ \left[\begin{array}{ccc} \partial_{x_1} f_1 & \cdots & \partial_{x_n} f_1 \\ \vdots & \ddots & \vdots \\ \partial_{x_1} f_m & \cdots & \partial_{x_n} f_m \end{array} \right] \quad \cdot \quad \left[\begin{array}{ccc} \partial_{y_1} \Psi(x_1) & \cdots & \partial_{y_k} \Psi(x_1) \\ \vdots & \ddots & \vdots \\ \partial_{y_1} \Psi(x_n) & \cdots & \partial_{y_k} \Psi(x_n) \end{array} \right]$$

$$\left[\begin{array}{cccc} \partial_{y_1} \Psi(f_1) & \cdots & \partial_{y_k} \Psi(f_1) \\ \vdots & \ddots & \vdots \\ \partial_{y_1} \Psi(f_m) & \cdots & \partial_{y_k} \Psi(f_m) \end{array}\right] =$$

$$\Psi \circ \left[\begin{array}{cccc} \partial_{x_1} f_1 & \cdots & \partial_{x_n} f_1 \\ \vdots & \ddots & \vdots \\ \partial_{x_1} f_m & \cdots & \partial_{x_n} f_m \end{array} \right] \quad \cdot \quad \left[\begin{array}{cccc} \partial_{y_1} \Psi(x_1) & \cdots & \partial_{y_k} \Psi(x_1) \\ \vdots & \ddots & \vdots \\ \partial_{y_1} \Psi(x_n) & \cdots & \partial_{y_k} \Psi(x_n) \end{array} \right]$$

$$\Psi: \quad x_i \quad \mapsto \quad \sum_{i=1}^k y_j t^{ij} \quad + \Phi(x_i)$$

$$\begin{bmatrix} \partial_{y_1} \Psi(f_1) & \cdots & \partial_{y_k} \Psi(f_1) \\ \vdots & \ddots & \vdots \\ \partial_{y_1} \Psi(f_m) & \cdots & \partial_{y_k} \Psi(f_m) \end{bmatrix} =$$

$$\Psi \circ \left[\begin{array}{cccc} \partial_{x_1} f_1 & \cdots & \partial_{x_n} f_1 \\ \vdots & \ddots & \vdots \\ \partial_{x_1} f_m & \cdots & \partial_{x_n} f_m \end{array} \right] \quad \cdot \quad \left[\begin{array}{cccc} t & t^2 & \cdots & t^k \\ \vdots & \vdots & \ddots & \vdots \\ t^n & t^{2n} & \cdots & t^{nk} \end{array} \right]$$

$$\Psi: \quad x_i \quad \mapsto \quad \sum_{i=1}^k y_j t^{ij} \quad + \Phi(x_i)$$

$$\left[\begin{array}{ccc} \partial_{y_1} \Psi(f_1) & \cdots & \partial_{y_k} \Psi(f_1) \\ \vdots & \ddots & \vdots \\ \partial_{y_1} \Psi(f_m) & \cdots & \partial_{y_k} \Psi(f_m) \end{array} \right] =$$

$$\Psi \circ \left[\begin{array}{ccc} \partial_{x_1} f_1 & \cdots & \partial_{x_n} f_1 \\ \vdots & \ddots & \vdots \\ \partial_{x_1} f_m & \cdots & \partial_{x_n} f_m \end{array} \right] \quad \cdot \quad \left[\begin{array}{ccc} t & t^2 & \cdots & t^k \\ \vdots & \vdots & \ddots & \vdots \\ t^n & t^{2n} & \cdots & t^{nk} \end{array} \right]$$

$$\Psi : \quad x_i \quad \mapsto \quad \sum_{i=1}^k y_j t^{ij} \quad + \Phi(x_i)$$

If rank $(\mathcal{J}(f_1,\dots,f_m)) = \operatorname{rank}(\Phi \circ \mathcal{J}(f_1,\dots,f_m))$, we are done.

$$\mathcal{J}(f_1,\cdots,f_m) =$$

$$\mathcal{J}(f_1,\cdots,f_m) =$$

$$\mathcal{J}(f_1, \dots, f_m) = \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\$$

Lemma (Composition Lemma)

Let Φ be a map such that $\Phi(J) \neq 0$. Then the map Ψ is faithful to $\{f_1, \dots, f_m\}$:

$$\Psi: x_i \longrightarrow \sum_{i=1}^k y_j t^{ij} + \Phi(x_i)$$

Theorem

There is a black-box PIT for circuits of the form $C(f_1, \dots, f_m)$ where each f_i is "sparse" and $\operatorname{algRank}\{f_1, \dots, f_m\} \leq k$.

Theorem

There is a black-box PIT for circuits of the form $C(f_1, \dots, f_m)$ where each f_i is "sparse" and $\operatorname{algRank}\{f_1, \dots, f_m\} \leq k$.

$$\mathcal{J}(f_1,\cdots,f_m) = \boxed{}$$

Theorem

There is a black-box PIT for circuits of the form $C(f_1, \dots, f_m)$ where each f_i is "sparse" and $\operatorname{algRank}\{f_1, \dots, f_m\} \leq k$.

$$\mathcal{J}(f_1,\cdots,f_m) =$$

Theorem

There is a black-box PIT for circuits of the form $C(f_1, \dots, f_m)$ where each f_i is "sparse" and $\operatorname{algRank}\{f_1, \dots, f_m\} \leq k$.

Theorem

There is a black-box PIT for circuits of the form $C(f_1, \cdots, f_m)$ where each f_i is "sparse" and $\operatorname{algRank}\{f_1, \cdots, f_m\} \leq k$.

$$\mathcal{J}(f_1,\cdots,f_m) = \begin{bmatrix} & & & & \\ & & &$$

Observation

If $C(x_1, \dots, x_n) \neq 0$, then there exists an i such that

$$C(x_1, \dots, x_i + 1, \dots, x_n) - C(x_1, \dots, x_i, \dots, x_n) \neq 0$$

In fact, any x_i that C non-trivially depends on.

Observation

If $C(x_1, \dots, x_n) \neq 0$, then there exists an i such that

$$C(x_1, \dots, x_i + 1, \dots, x_n) - C(x_1, \dots, x_i, \dots, x_n) \neq 0$$

In fact, any x_i that C non-trivially depends on.

$$\begin{array}{ccc} \cdots & \mathcal{O}_{x_r} T_1 \\ \vdots & & \vdots \\ \cdots & \mathcal{O}_{x_r} T_r \end{array}$$

$$J = \begin{pmatrix} \partial_{x_1} T_1 & \cdots & \partial_{x_r} T_1 \\ \vdots & \ddots & \vdots \\ \partial_{x_1} T_r & \cdots & \partial_{x_r} T_r \end{pmatrix}$$

$$J = \left| \begin{array}{ccc} \partial_{x_1} T_1 & \cdots & \partial_{x_r} T_1 \\ \vdots & \ddots & \vdots \\ \partial_{x_1} T_r & \cdots & \partial_{x_r} T_r \end{array} \right|$$

Observation

At most rk of the f_{ij} 's depend on x_1, \dots, x_r .

$$J = \begin{pmatrix} \partial_{x_1} T_1 & \cdots & \partial_{x_r} T_1 \\ \vdots & \ddots & \vdots \\ \partial_{x_1} T_r & \cdots & \partial_{x_r} T_r \end{pmatrix} = (\prod f_{ij}) \cdot \begin{pmatrix} \partial_{x_1} T'_1 & \cdots & \partial_{x_r} T'_1 \\ \vdots & \ddots & \vdots \\ \partial_{x_1} T'_r & \cdots & \partial_{x_r} T'_r \end{pmatrix}$$

... a product of sparse polys!

$$J = \left| \begin{array}{ccc} \partial_{x_1} T_1 & \cdots & \partial_{x_r} T_1 \\ \vdots & \ddots & \vdots \\ \partial_{x_1} T_r & \cdots & \partial_{x_r} T_r \end{array} \right| = \left(\prod f_{ij} \right) \cdot \left| \begin{array}{ccc} \partial_{x_1} T_1' & \cdots & \partial_{x_r} T_1' \\ \vdots & \ddots & \vdots \\ \partial_{x_1} T_r' & \cdots & \partial_{x_r} T_r' \end{array} \right|$$

... a product of sparse polys!

 $\Psi_r: x_i \mapsto u^{d^i \bmod r}$ preserves J

$$J = \left| \begin{array}{ccc} \partial_{x_1} T_1 & \cdots & \partial_{x_r} T_1 \\ \vdots & \ddots & \vdots \\ \partial_{x_1} T_r & \cdots & \partial_{x_r} T_r \end{array} \right| = \left(\prod f_{ij} \right) \cdot \left| \begin{array}{ccc} \partial_{x_1} T_1' & \cdots & \partial_{x_r} T_1' \\ \vdots & \ddots & \vdots \\ \partial_{x_1} T_r' & \cdots & \partial_{x_r} T_r' \end{array} \right|$$

... a product of sparse polys!

$$J = \left| \begin{array}{ccc} \partial_{x_1} T_1 & \cdots & \partial_{x_r} T_1 \\ \vdots & \ddots & \vdots \\ \partial_{x_1} T_r & \cdots & \partial_{x_r} T_r \end{array} \right|$$

Function of "few" Q_{ij} 's

$$J = \begin{vmatrix} \partial_{x_1} T_1 & \cdots & \partial_{x_r} T_1 \\ \vdots & \ddots & \vdots \\ \partial_{x_1} T_r & \cdots & \partial_{x_r} T_r \end{vmatrix} = (\prod Q_{ij}) \cdot \begin{vmatrix} \partial_{x_1} T'_1 & \cdots & \partial_{x_r} T'_1 \\ \vdots & \ddots & \vdots \\ \partial_{x_1} T'_r & \cdots & \partial_{x_r} T'_r \end{vmatrix}$$

$$J = \begin{vmatrix} \partial_{x_1} T_1 & \cdots & \partial_{x_r} T_1 \\ \vdots & \ddots & \vdots \\ \partial_{x_1} T_r & \cdots & \partial_{x_r} T_r \end{vmatrix} = \underbrace{\left(\prod Q_{ij} \right) \cdot \begin{vmatrix} \partial_{x_1} T_1' & \cdots & \partial_{x_r} T_1' \\ \vdots & \ddots & \vdots \\ \partial_{x_1} T_r' & \cdots & \partial_{x_r} T_r' \end{vmatrix}}_{\text{Product of functions of "few" } Q_{ij}'s}$$

$$J = \begin{vmatrix} \partial_{x_1} T_1 & \cdots & \partial_{x_r} T_1 \\ \vdots & \ddots & \vdots \\ \partial_{x_1} T_r & \cdots & \partial_{x_r} T_r \end{vmatrix} = \underbrace{\left(\prod Q_{ij}\right) \cdot \begin{vmatrix} \partial_{x_1} T_1' & \cdots & \partial_{x_r} T_1' \\ \vdots & \ddots & \vdots \\ \partial_{x_1} T_r' & \cdots & \partial_{x_r} T_r' \end{vmatrix}}_{\text{Product of functions of "few" } Q_{ij}'s}$$

To account the first the f

To preserve non-zeroness of ${\it C}$ it suffices to preserve non-zeroness of ${\it J}$.

$$J = \begin{vmatrix} \partial_{x_1} T_1 & \cdots & \partial_{x_r} T_1 \\ \vdots & \ddots & \vdots \\ \partial_{x_1} T_r & \cdots & \partial_{x_r} T_r \end{vmatrix} = \underbrace{\left(\prod Q_{ij}\right) \cdot \begin{vmatrix} \partial_{x_1} T_1' & \cdots & \partial_{x_r} T_1' \\ \vdots & \ddots & \vdots \\ \partial_{x_1} T_r' & \cdots & \partial_{x_r} T_r' \end{vmatrix}}_{\text{Product of functions of "few" } Q_{ij}\text{'s}}$$

To preserve non-zeroness of C it suffices to preserve non-zeroness of J. Hence, suffices to preserve the Jacobian of the Q_{ij} 's.

$$J = \begin{vmatrix} \partial_{x_1} T_1 & \cdots & \partial_{x_r} T_1 \\ \vdots & \ddots & \vdots \\ \partial_{x_1} T_r & \cdots & \partial_{x_r} T_r \end{vmatrix} = \underbrace{\left(\prod Q_{ij} \right) \cdot \begin{vmatrix} \partial_{x_1} T'_1 & \cdots & \partial_{x_r} T'_1 \\ \vdots & \ddots & \vdots \\ \partial_{x_1} T'_r & \cdots & \partial_{x_r} T'_r \end{vmatrix}}_{}$$

Product of functions of "few" Q_{ij} 's

To preserve non-zeroness of C it suffices to preserve non-zeroness of J. Hence, suffices to preserve the Jacobian of the Q_{ij} 's. Recurse!

$$f = C(T_1, \dots, T_k)$$
 where $T_i = \prod_{j=1}^d \ell_{ij}$

$$J(T_1, \dots, T_m) = \begin{vmatrix} \partial_{x_1} T_1 & \cdots & \partial_{x_r} T_1 \\ \vdots & \ddots & \vdots \\ \partial_{x_1} T_r & \cdots & \partial_{x_r} T_r \end{vmatrix}$$

$$J(T_1, \dots, T_m) = \begin{vmatrix} \partial_{x_1} T_1 & \cdots & \partial_{x_r} T_1 \\ \vdots & \ddots & \vdots \\ \partial_{x_1} T_r & \cdots & \partial_{x_r} T_r \end{vmatrix}$$

Lemma

$$\partial_x P \cdot Q = PQ \cdot \left(\frac{\partial_x P}{P} + \frac{\partial_x Q}{Q}\right)$$

$$J(T_1, \dots, T_m) = \begin{vmatrix} \partial_{x_1} T_1 & \cdots & \partial_{x_r} T_1 \\ \vdots & \ddots & \vdots \\ \partial_{x_1} T_r & \cdots & \partial_{x_r} T_r \end{vmatrix}$$

Lemma

$$\partial_x P \cdot Q = PQ \cdot \left(\frac{\partial_x P}{P} + \frac{\partial_x Q}{Q}\right)$$

Lemma

$$\det \left[\begin{array}{ccc} b_1 & + & b_1' \\ & a_2 \\ & \vdots \\ & a_n \end{array} \right] \quad = \quad \det \left[\begin{array}{ccc} b_1 \\ & a_2 \\ & \vdots \\ & a_n \end{array} \right] + \det \left[\begin{array}{ccc} b_1' \\ & a_2 \\ & \vdots \\ & a_n \end{array} \right]$$

$$J(T_1, \dots, T_m) = \begin{vmatrix} \partial_{x_1} T_1 & \cdots & \partial_{x_r} T_1 \\ \vdots & \ddots & \vdots \\ \partial_{x_1} T_r & \cdots & \partial_{x_r} T_r \end{vmatrix}$$

$$= T_1 \cdots T_k \cdot \sum_{\ell_i \in T_i} \frac{J(\ell_1, \cdots, \ell_k)}{\ell_1 \cdots \ell_k}$$

$$J(T_1, \dots, T_m) = \begin{vmatrix} \partial_{x_1} T_1 & \cdots & \partial_{x_r} T_1 \\ \vdots & \ddots & \vdots \\ \partial_{x_1} T_r & \cdots & \partial_{x_r} T_r \end{vmatrix}$$
$$= T_1 \dots T_k \cdot \sum_{\ell, \in T_k} \frac{\alpha_L}{\ell_1 \dots \ell_k}$$

$$J(T_1, \dots, T_m) = \begin{vmatrix} \partial_{x_1} T_1 & \cdots & \partial_{x_r} T_1 \\ \vdots & \ddots & \vdots \\ \partial_{x_1} T_r & \cdots & \partial_{x_r} T_r \end{vmatrix}$$
$$= T_1 \dots T_k \cdot \sum_{\ell: \in T_i} \frac{\alpha_L}{\ell_1 \dots \ell_k}$$

A similar analysis (slightly simpler due to lack of multiplicities)

$$C = T \cdot \sum \frac{\alpha_L}{\ell_1 \cdots \ell_k}$$

$$C = T \cdot \sum_{i=1}^{\infty} \frac{\alpha_i}{\ell_i}$$

$$C = T \cdot \sum_{i=1}^{\infty} \frac{\alpha_i}{\ell_i}$$

• Degree = |T| - 1.

$$C = T \cdot \sum_{i=1}^{\infty} \frac{\alpha_i}{\ell_i}$$

- Degree = |T| 1.
- Hence $C \mod \ell \neq 0$ for some $\ell \in T$. [CRT]

$$C = T \cdot \sum_{i=1}^{\infty} \frac{\alpha_i}{\ell_i}$$

- Degree = |T| 1.
- Hence $C \mod \ell \neq 0$ for some $\ell \in T$. [CRT]

$$C \bmod \ell = \frac{T}{\ell}$$

$$C = T \cdot \sum \frac{\alpha_{ij}}{\ell_i \ell_j}$$

$$C = T \cdot \sum \frac{\alpha_{ij}}{\ell_i \ell_j}$$

• Degree = |T| - 2.

$$C = T \cdot \sum \frac{\alpha_{ij}}{\ell_i \ell_j}$$

- Degree = |T| 2.
- Hence $C \mod \ell \neq 0$ for some $\ell \in T$.[CRT]

$$C = T \cdot \sum \frac{\alpha_{ij}}{\ell_i \ell_j}$$

- Degree = |T| 2.
- Hence $C \mod \ell \neq 0$ for some $\ell \in T$.[CRT]

$$C \bmod \ell = \frac{T}{\ell} \cdot \sum \frac{\alpha_i}{\ell_i}$$

$$C = T \cdot \sum \frac{\alpha_{ij}}{\ell_i \ell_j}$$

- Degree = |T| 2.
- Hence $C \mod \ell \neq 0$ for some $\ell \in T$.[CRT]

$$C \bmod \ell = \frac{T}{\ell} \cdot \sum \frac{\alpha_i}{\ell_i}$$

...recurse

General philosophy

If you have black-box PITs for a class \mathscr{C} , then you have determinant/permanent lower bounds for (almost) \mathscr{C}' .

[KabanetsImpagliazzo03], [Agrawal05], [DvirShpilkaYehudayoff08] etc...

Theorem

Black-box PIT if algRank $\{T_1, \dots, T_m\} = O(1)$.

Theorem

Then, algRank $\{T_1, \dots, T_m\} = \Omega(n)$.

Theorem

Black-box PIT if algRank $\{f_1, \dots, f_m\} = O(1)$.

If $algRank\{f_1, \dots, f_m\} = k$, then $size(f_i) \ge 2^{n/k^2}$

Theorem

Black-box PIT if at most $\mathrm{O}(1)$ of the f_i 's depend on any x_j .

Theorem

If at most k of the f_i 's depend on any x_j , then $\operatorname{size}(f_i) \geq 2^{n/k^3}$

Theorem

Black-box PIT if at most O(1) of the f_i 's depend on any x_j .

Theorem

If at most O(1) of the f_i 's depend on any x_j , then $\operatorname{size}(f_i) \geq 2^{\Omega(n)}$, assuming a conjecture about determinants is true.

Theorem

If
$$\det_n = C(f_1, \dots, f_k)$$
, then one of the f_i 's has $2^{n/k^2}$ monomials.

$$\mathscr{J}(\det_n, f_1, \cdots, f_k) =$$

Theorem

If
$$\det_n = C(f_1, \dots, f_k)$$
, then one of the f_i 's has $2^{n/k^2}$ monomials.

$$\mathscr{J}(\det_n, f_1, \cdots, f_k) =$$

Theorem

If
$$\det_n = C(f_1, \dots, f_k)$$
, then one of the f_i 's has $2^{n/k^2}$ monomials.

$$\mathscr{J}(\det_n, f_1, \cdots, f_k) =$$

Theorem

If
$$\det_n = C(f_1, \dots, f_k)$$
, then one of the f_i 's has $2^{n/k^2}$ monomials.

$$\mathscr{J}(\det_n, f_1, \cdots, f_k) =$$

Theorem

If $\det_n = C(f_1, \dots, f_k)$, then one of the f_i 's has $2^{n/k^2}$ monomials.

$$\mathcal{J}(\det_n, f_1, \cdots, f_k) = \sum_{i=1}^k M_i \cdot g_i = 0$$

Theorem

If
$$\det_n = C(f_1, \dots, f_k)$$
, then one of the f_i 's has $2^{n/k^2}$ monomials.

Theorem

If
$$\det_n = C(f_1, \dots, f_k)$$
, then one of the f_i 's has $2^{n/k^2}$ monomials.

Proof

$$\mathscr{J}(\det_n, f_1, \cdots, f_k) = \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

Not unless $size(g_i) > 2^{n/k}$

Hanc marginis exiguitas non caperet.

Theorem

If $\det_n = C(f_1, \dots, f_k)$, then one of the f_i 's has $2^{n/k^2}$ monomials.

Proof

$$\mathscr{J}(\det_n, f_1, \cdots, f_k) = \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

Not unless $\operatorname{size}(g_i) > 2^{n/k}$

Hanc marginis exiguitas non caperet.

Concluding Remarks

• Generalizes all known polynomial time black-box PITs for sub-classes of constant depth formulae.

• Unified approach.

• Simpler proofs.

Open Problems

Models where PIT is known but not hit by the Jacobian (yet!)

ullet Arbitrary depth, read-k formulae

However, Jacobian gives a guasipoly blackbox test for arbitrary depth read-1 formulae

• Diagonal circuits: $\ell_1^d + \dots + \ell_m^d \stackrel{?}{=} 0$

Polynomial time non-blackbox known [Kayal09,Saxena08]

Others problems

- PIT for bounded fan-in depth-4 circuits? With constant degree sparse polyomials?
- PITs for polynomials with low dimension partial-derivative space?
- Conjecture on independence of minors
- Fields of small characteristic

Open Problems

Models where PIT is known but not hit by the Jacobian (yet!)

• Arbitrary depth, read-k formulae

However, Jacobian gives a quasipoly blackbox test for arbitrary depth read

• Diagonal circuits: $\ell_1^d + \cdots + \ell_n^d$

Others problems

- polyomials?
- PITs for polynomials with low dimension partial-derivative space?
- Conjecture on independence of minors
- Fields of small characteristic