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Abstract

We study the problem of polynomial identity testing (PIT) in arithmetic circuits.�is is
a fundamental problem in computational algebra and has been very well studied in the past
few decades. Despite many e�orts, a deterministic polynomial time algorithm is known
only for restricted circuits of depth 3. A recent result of Agrawal and Vinay show that PIT
for depth 4 circuit is almost as hard as the general case, and hence explains why there is
no progress beyond depth 3. �e main contribution of this thesis is a new approach to
designing a polynomial time algorithm for depth 3 circuits.

We �rst provide the background and related results to motivate the problem. We dis-
cuss the connections of PIT with arithmetic circuit lower bounds, and also brie�y the re-
sults in depth reduction. We then look at the deterministic algorithms for PIT on restricted
circuits.

We then proceed to the main contribution of the thesis which studies the power of
arithmetic circuits over higher dimensional algebras. We consider themodel of ΠΣ circuits
over the algebra of upper-triangularmatrices and show that PIT in this model is equivalent
to identity testing of depth three circuits over �elds. Further we also show that ΠΣ circuits
over upper-triangular matrices is computationally very weak.
In the case when the underlying algebra is a constant dimensional commutative alge-

bra, we present a polynomial time algorithm. PITs on arbitrary dimensional commutative
algebras, however, are as hard as PIT on depth 3 circuits.

�us ΣΠ circuits over upper-triangular matrices, the smallest non-commutative alge-
bra, captures PIT on depth 3 circuits. We hope that ideas used in the commutative case
would be useful to design a polynomial time identity test for depth 3 circuits.
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1Introduction

�e interplay betweenmathematics and computer science demands algorithmic approaches
to various algebraic constructions. �e area of computational algebra addresses precisely
this.�e most fundamental objects in algebra are polynomials and it is natural to desire a
classi�cation based on their “simplicity”.�e algorithmic approach suggests that the simple
polynomials are those that can be computed easily. �e ease of computation is measured
in terms of the number of arithmetic operations required to compute the polynomial.�is
yields a very robust de�nition of simple (and hard) polynomials that can be studied ana-
lytically.
It is worth remarking that the number of terms in a polynomial is not a good measure

of its simplicity. For example, consider the polynomials

f1(x1,⋯, xn) = (1 + x1)(1 + x2)⋯(1 + xn)

f2(x1,⋯, xn) = (1 + x1)(1 + x2)⋯(1 + xn) − x1 − x2 −⋯ − xn .

�e former has n more terms than the later, however, the former is easier to describe as
well as compute.
We use arithmetic circuits (formally de�ned in the Section 1.1) to represent the compu-

tation of a polynomial.�is also allows us to count the number of operations required in
computation. A few examples are the following:

x1 x2

× × ×

+

2

(x1 + x2)2

Example 1

x1 x2

+

×

(x1 + x2)2

Example 2

⋯x2x11 xn

+ + +⋯

×

(1 + x1)(1 + x2)⋯(1 + xn)

Example 3
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�e complexity of a given polynomial is de�ned as the size (the number of operations)
of the smallest arithmetic circuit that computes the polynomial.
With this de�nition, how do we classify “simple” polynomials? For this, we need to de-

�ne the intuitive notion of “polynomials that can be computed easily”. Following standard
ideas from computer science, we call any polynomial that can be computed using at most
nO(1) operations an easy polynomial. Strictly speaking, this de�nition applied to an in�nite
family of polynomials over n variables, one for each n, as otherwise every polynomial can
be computed using O(1) operations rendering the whole exercise meaningless. However,
o�en we will omit to explicitly mention the in�nite family to which a polynomial belongs
when talking about its complexity; the family would be obvious.

�e class VP is the class of low degree1 polynomial families that are easy in the above
sense. �e polynomials in VP are essentially represented by the determinant polynomial:
the determinant of an n × n matrix whose entries are a�ne linear combinations of vari-
ables. It is known that determinant polynomial belongs to the class VP [Sam42, Ber84,
Chi85, MV97] and any polynomial in VP over n variables can be written as a determinant
polynomial of a m ×m matrix with m = nO(log n) [Tod91].

�is provides a excellent classi�cation of easy polynomials. Hence, any polynomial that
cannot be written as a determinant of a small sized matrix is not easy. A simple counting
argument shows that there exist many such polynomials. However, proving an explicitly
given polynomial to be hard has turned out to be a challenging problem which has not
been solved yet. In particular, the permanent polynomial, the permanent of a matrix with
a�ne linear entries, is believed to be very hard to compute — requiring 2Ω(n)-size circuits
for an n × n matrix in general. However, there is no proof yet of this. It is not even known
if it requires ω(n2) operations!
A general way of classifying a given polynomial is to design an algorithm that, given

a polynomial as an arithmetic circuit as input, outputs the smallest size arithmetic circuit
computing the polynomial. Such an algorithm is easy to design: given an arithmetic circuit
C computing a polynomial, run through all the smaller circuits D and check if any com-
putes the same polynomial (this check can be performed easily as we discuss in the next
paragraph). However, the algorithm is not e�cient: it will take exponential time (in the
size of the given circuit) to �nd the classi�cation of a polynomial. No e�cient algorithm
for this is known; further, it is believed that no e�cient algorithm exists.

1A polynomial is said to have low degree if its degree is less than the size of the circuit
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A closely related problem that occurs above is to check if given two arithmetic circuits
C and D compute the same polynomial.�e problem is equivalent to asking if the circuit
C−D is the zero polynomial or not.�is problem of checking if a circuit computes the zero
polynomial is called polynomial identity testing (PIT). It turns out that this problem is easy
to solve algorithmically. We give later several randomized polynomial time algorithms
for solving it. Moreover, in a surprising connection, it has been found that if there is a
deterministic polynomial time algorithm for solving PIT, then certain explicit polynomials
are hard to compute [KI03, Agr05]!�erefore, the solution to PIT problem has a key role
in our attempt to computationally classify polynomials. In this article, we will focus on this
connection between PIT and polynomial classi�cation.
We now formally de�ne arithmetic circuits and the identity testing problem.

1.1 Problem de�nition

We shall �x an underlying �eld F.

De�nition 1.1 (ArithmeticCircuits and formulas). An arithmetic circuit is a directed acyclic
graph with one sink (which is called the output gate). Each of the source vertices (which are
called input nodes) are either labelled by a variable xi or an element from an underlying �eld
F. Each of the internal nodes are labelled either by + or × to indicate if it is an addition or
multiplication gate respectively. Sometimes edges may carry weights that are elements from
the �eld.

Such a circuit naturally computes a multivariate polynomial at every node. �e circuit
is said to compute a polynomial f ∈ F[x1,⋯, xn] if the output node computes f . Sometimes
edges may carry weights that are elements from the �eld.

If the underlying �eld F has characteristic zero, then a circuit is said to be monotone if
none of the constants are negative.

An arithmetic circuit is a formula if every internal node has out-degree 1.

Without loss of generality, the circuit is assumed to be layered, with edges only between
successive layers. Further, it is assumed it consists of alternating layers of addition and
multiplication gates. A layer of addition gates is denoted by Σ and that of multiplication
gates by Π.
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Some important parameters of an arithmetic circuit are the following:

• Size: the number of gates in the circuit

• Depth: the longest path from a leaf gate to the output gate

• Degree: the syntactic degree of the polynomial computed at the output gate.�is is
computed recursively at every gate in the most natural way (max of the degrees of
children at an addition gate, and the sum of the degrees at a multiplication gate).

�is needn’t be the degree of the polynomial computed at the output gate (owing to
cancellations) but this is certainly an upper bound.

A circuit evaluating a polynomial provides a succinct representation of the polynomial.
For instance, in Example 3, though the polynomial has 2n terms, we have a circuit sizeO(n)
computing the polynomial.�e PIT problem is deciding if a given succinct representation
is zero or not.
Also, a circuit of size s can potential compute a polynomial of exponential degree. But

usually in identity testing, it is assumed that the degree of the polynomial isO(n)where n is
the number of variables. Most interesting polynomials, like the determinant or permanent,
satisfy this property.

Problem 1.2 (Polynomial Identity Testing). Given an arithmetic circuit C with input vari-
ables x1, . . . , xn and constants taken from a �eld F, check if the polynomial computed is iden-
tically zero.

�e goal is to design a deterministic algorithm for PIT that runs in time polynomial in
n, size of C and ∣F∣. A much stronger algorithm is one that doesn’t look into the structure
of the circuit at all, but just evaluates it at chosen input points. Such an algorithm that just
uses the circuit as a “black box” is hence called a black-box algorithm.

1.2 Current Status

A likely candidate of a hard polynomial is the permanent polynomial. It is widely believed
that it requires circuits of exponential size, but this is still open. However, progress has been
made in restricted settings. Raz and Yehudayo� [RY08] showed that monotone circuits for
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permanent require exponential size. Nisan andWigderson [NW95] showed that “homoge-
neous” depth 3 circuits for the 2d-th symmetric polynomial requires ( n

4d )
Ω(d) size. Shpilka

and Wigderson [SW99] showed that depth 3 circuits for determinant or permanent over
Q require quadratic size. Over �nite �elds, Grigoriev and Karpinsky [GK98] showed that
determinant or permanent required exponential sized depth 3 circuit.

As for PIT, the problemhas drawn signi�cant attention due to its role in various �elds of
theoretical computer science. Besides being a natural problem in algebraic computation,
identity testing has found applications in various fundamental results like Shamir’s IP =

PSPACE [Sha90], the PCP�eorem [ALM+98] etc. Many other important results such as
the AKS Primality Test [AKS04], check if some special polynomials are identically zero or
not. Algorithms for graph matchings [Lov79] and multivariate polynomial interpolation
[CDGK91] also involve identity testing. Another promising role of PIT is its connection to
the question of “hardness of polynomials”. It is known that strong algorithms for PIT can
be used to construct polynomials that are very hard [KI03, Agr05].

�ere is a score of randomized algorithms proposed for PIT. �e �rst randomized
polynomial time algorithm for identity testing was given by Schwartz and Zippel [Sch80,
Zip79]. Several other randomness-e�cient algorithms [CK97, LV98, AB99, KS01] came up
subsequently, resulting in a signi�cant improvement in the number of random bits used.
However, despite numerous attempts a deterministic polynomial time algorithm has re-
mained unknown. Nevertheless, important progress has been made both in the designing
of deterministic algorithms for special circuits, and in the understanding of why a general
deterministic solution could be hard to get.

Kayal and Saxena [KS07] gave a deterministic polynomial time identity testing algo-
rithm for depth 3 (ΣΠΣ) circuits with constant top fan-in (the top addition gate has only
constantly many children). When the underlying �eld if Q, this was further improved to
a black-box algorithm by Kayal and Saraf [KS09]. Saxena [Sax08] gave a polynomial time
algorithm for a restricted form of depth 3 circuits called “diagonal circuits”. As such, no
polynomial time PIT algorithm is known for general depth 3 circuits.

Most of the progress made appears to stop at around depth 3. A “justi�cation” behind
the hardness of PIT even for small depth circuits was provided recently by Agrawal and
Vinay [AV08]. �ey showed that a deterministic polynomial time black-box identity test
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for depth 4 (ΣΠΣΠ) circuits would imply a quasi-polynomial (nO(log n)) time deterministic
PIT algorithm for any circuit computing a polynomial of low degree.�us, PIT for depth
4 circuits over a �eld is almost the general case.

�us we see that the non-trivial case for identity testing starts with depth 3 circuits;
whereas circuits of depth 4 are almost the general case.�us, the �rst step to attack PIT is
general ΣΠΣ circuits.
It is natural to ask what is the complexity of PIT, if the constants of the circuit are taken

from a �nite dimensional algebra over F. We shall assume that the algebra is given in its
basis form.

1.3 Circuits over algebras

�e PIT problem for depth two circuits over an algebra is the following:

Problem 1.3. Given an expression,

P =
d

∏
i=1

(Ai0 + Ai1x1 + . . . + Ainxn)

where Ai j ∈R, an algebra over F given in basis form, check if P is zero.

Since elements of a �nite dimensional algebra, given in basis form, can be expressed as
matrices over F we can equivalently write the above problem as,

Problem 1.4. Given an expression,

P =
d

∏
i=1

(Ai0 + Ai1x1 + . . . + Ainxn) (1.1)

where Ai j ∈Mk(F), the algebra of k×k matrices over F, check if P is zero using poly(k ⋅n ⋅d)
number of F-operations.

A result by Ben-Or andCleve [BC88] shows that any polynomial computed by an arith-
metic formula of size s can be computed by an expression as in Equation 1.1 consisting of
3 × 3 matrices. �erefore, solving Problem 1.4 for k = 3 is almost the general case. �ere-
fore, it is natural to ask how the complexity of PIT for depth 2 circuits overM2(F) relates
to PIT for arithmetic circuits.
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In this thesis, we provide an answer to this. We show a connection between PIT of
depth 2 circuits over U2(F), the algebra of upper-triangular 2 × 2 matrices, and PIT of
depth 3 circuits over �elds.�e reason this is a bit surprising is because we also show that,
a depth 2 circuit over U2(F) is not even powerful enough to compute a simple polynomial
like, x1x2 + x3x4 + x5x6!

1.4 Contributions of the thesis

A depth 2 circuit C over matrices, as in Equation 1.1, naturally de�nes a computational
model. AssumingR =Mk(F) for some k, a polynomial P ∈R[x1, . . . , xn] outputted by C
can be viewed as a k × k matrix of polynomials in F[x1, . . . , xn]. We say that a polynomial
f ∈ F[x1, . . . , xn] is computed by C if one of the k2 polynomials in P is f . Sometimes we
would abuse terminology a bit and say that P computes f to mean the same.
Our main results are of two types. Some are related to identity testing and the rest are

related to the weakness of the depth 2 computational model over U2(F) andM2(F).

1.4.1 Identity testing

We �ll in the missing information about the complexity of identity testing for depth 2 cir-
cuits over 2 × 2 matrices by showing the following result.

Ceorem 1.5. Identity testing for depth 2 (ΠΣ) circuits over U2(F) is polynomial time equiv-
alent to identity testing for depth 3 (ΣΠΣ) circuits.

�e above result has an interesting consequence on identity testing forAlgebraic Branching
Program (ABP) [Nis91]. It is known that identity testing for non-commutative ABP can
be done in deterministic polynomial time (a result due to Raz and Shpilka [RS04]). But
no result is known for identity testing of even width-2 commutative ABP’s.�e following
result explains why this is the case.

Corollary 1.6. Identity testing of depth 3 circuits is equivalent to identity testing of width-2
ABPs with polynomially many paths from source to sink.

Further, we give a deterministic polynomial time identity testing algorithm for depth 2
circuits over any constant dimensional commutative algebra given in basis form.
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Ceorem 1.7. Given an expression,

P =
d

∏
i=1

(Ai0 + Ai1x1 + . . . + Ainxn)

where Ai j ∈ R, a commutative algebra of constant dimension over F that is given in basis
form, there is a deterministic polynomial time algorithm to test if P is zero.

In a way, this result establishes the fact that the power of depth 2 circuits is primarily de-
rived from the non-commutative structure of the underlying algebra.

It would be apparent from the proof of�eorem 1.5 that our argument is simple in
nature. Perhaps the reason why such a connection was overlooked before is that, unlike
a depth 2 circuit overM3(F), we do not always have the privilege of exactly computing a
polynomial over F using a depth 2 circuit over U2(F). Showing this weakness of the latter
computational model constitutes the other part of our results.

1.4.2 Weakness of the depth 2model over U2(F) andM2(F)

Although�eorem 1.5 shows an equivalence of depth 3 circuits and depth 2 circuits over
U2(F)with respect to PIT, the computational powers of these twomodels are very di�erent.
�e following result shows that a depth 2 circuit over U2(F) is computationally strictly
weaker than depth 3 circuits.

Ceorem 1.8. Let f ∈ F[x1, . . . , xn] be a polynomial such that there are no two linear func-
tions l1 and l2 (with 1 /∈ (l1, l2), the ideal generated by l1 and l2) which make f mod (l1, l2)
also a linear function.�en f is not computable by a depth 2 circuit over U2(F).

It can be shown that even a simple polynomial like x1x2 + x3x4 + x5x6 satis�es the con-
dition stated in the above theorem, and hence it is not computable by any depth 2 circuit
over U2(F), no matter how large! �is contrast makes�eorem 1.5 surprising as it estab-
lishes an equivalence of identity testing in twomodels of di�erent computational strengths.

At this point, it is natural to investigate the computational power of depth 2 circuits if
we graduate from U2(F) toM2(F). �e following result hints that even such a model is
severely restrictive in nature.
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A depth 2 circuit overM2(F) computes P =∏
d
i=1 (Ai0 + Ai1x1 + . . . + Ainxn)with Ai j ∈

M2(F). Let Pℓ =∏d
i=ℓ (Ai0 + Ai1x1 + . . . + Ainxn), where ℓ ≤ d, denote the partial product.

De�nition 1.9. A polynomial f ∈ F[x1, . . . , xn] is computed by a depth 2 circuit overM2(F)

under a degree restriction of m if the degree of each of the partial products Pℓ is bounded by
m.

Ceorem 1.10. �ere exists a class of polynomials of degree n that cannot be computed by a
depth 2 circuit overM2(F), under a degree restriction of n.

�e motivation for imposing a condition like degree restriction comes very naturally
from depth 2 circuits overM3(F). Given a polynomial f = ∑i mi , where mi ’s are the
monomials of f , it is easy to construct a depth 2 circuit overM3(F) that literally forms
these monomials and adds then one by one. �is computation is degree restricted, if we
extend our de�nition of degree restriction toM3(F). However, the above theorem sug-
gests that no such scheme to compute f would succeed overM2(F).

Remark- By transferring the complexity of an arithmetic circuit from its depth to the di-
mension of the underlying algebras while �xing the depth to 2, our results provide some ev-
idence that identity testing for depth 3 circuits appears to bemathematicallymore tractable
than depth 4 circuits. Besides, it might be possible to exploit the properties of these un-
derlying algebras to say something useful about identity testing. A glimpse of this indeed
appears in our identity testing algorithm over commutative algebras.

1.5 Organization of the thesis

In chapter 2, we look at some randomized algorithms for identity testing. We then proceed
to some deterministic algorithms for restricted circuits in chapter 3. Chapter 4 covers the
result by Agrawal and Vinay[AV08] to help understand why depth 4 circuits are “as hard
as it can get”. We then move to study circuits over algebras, the main contribution of the
thesis, in chapter 5, and then conclude in chapter 6.
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2Randomized Algorithms for PIT

�ough deterministic algorithms for PIT have remained elusive, a number of randomized
solutions are available. Quite an extensive study has been made on reducing the number
of random bits through various techniques. In this chapter, we shall inspect a few of them.
We start with the simplest and the most natural test.

2.1 �e Schwarz-Zippel test

�e Schwarz-Zippel test is the oldest algorithm for PIT.�e idea of the test is that, if the
polynomial computed is non-zero then the value of the polynomial at a random point
would probably be non-zero too.�is intuition is indeed true.

Lemma 2.1. [Sch80, Zip79]Let p(x1,⋯, xn) be a polynomial over F of total degree d. Let S
be any subset of F and let a1,⋯, an be randomly and independently chosen from S.�en,

Pr
a1 ,⋯,an

[p(a1, a2,⋯, an) = 0] ≤
d
∣S∣

Proof. �e proof proceeds by induction on n. For the base case when n = 1, we have a
univariate polynomial of degree d and hence has atmost d roots.�erefore, the probability
that p(a) = 0 at a randomly chosen a is at most d

∣S∣ .
For n > 1, rewrite p(x1,⋯, xn) = p0 + p1xn + p2x2n⋯pkxk

n where each pi is a polynomial
over the variables x1,⋯, xn−1 and k is the degree of xn in p.�en,

Pr[p(a1,⋯, an) = 0] ≤ Pr[p(a1,⋯, an−1, xn) = 0]

+Pr[p(a1,⋯, an) = 0∣p(a1,⋯, an−1, xn) ≠ 0]

≤ Pr[pk(a1,⋯, an−1) = 0]

+Pr[p(a1,⋯, an) = 0∣p(a1,⋯, an−1, xn) ≠ 0]

≤
d − k
∣S∣

+
k
∣S∣

=
d
∣S∣
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If we wish to get the error less than ε, then we need a set S that is as large as d
ε . Hence,

the total number of random bits required would be n ⋅ log d
ε .

2.2 Chen-Kao: Evaluating at irrationals

Let is consider the case where the circuit computes an integer polynomial. We wish to
derandomize the Schwarz-Zippel test by �nding out a small number of special points on
which we can evaluate and test if the polynomial is non-zero. Suppose the polynomial was
univariate, can we �nd out a single point on which we can evaluate to test if it is non-zero?
Indeed, if we evaluate it at some transcendental number like π; p(π) = 0 for an integer
polynomial if and only if p = 0. More generally, if we can �nd suitable irrationals such
that there exists no degree d multivariate relation between them, we can use those points
to evaluate and test if p is zero or not.�is is the basic idea in Chen-Kao’s paper [CK97].
However, it is infeasible to actually evaluate at irrational points since they have in�nitely

many bits to represent them. Chen and Kao worked with approximations of the numbers,
and introduced randomness to make their algorithm work with high probability.

2.2.1 Algebraically d-independent numbers

�e goal is to design an identity test for all n-variate polynomials whose degree in each
variable is less than d. �e following de�nition is precisely what we want for the identity
test.

De�nition 2.2 (Algebraically d-independence). A set of number {π1,⋯, πn} is said to be
algebraically d-independent over F if there exists no polynomial relation p(π1,⋯, πn) = 0
over F with the degree of p(x1,⋯, xn) in each variable bounded by d.

It is clear that if we can �nd such a set of numbers then this is a single point that would
be non-zero at all non-zero polynomials with degree bounded by d.�e following lemma
gives an explicit construction of such a point.

Lemma 2.3. Set k = log(d + 1) and K = nk. Let p11, p12,⋯, p1k , p2k⋯, pnk be �rst K distinct
primes and let πi = ∑

k
j=1

√pi j.�en {π1,⋯, πn} is algebraically d-independent.

Proof. LetA0 = B0 = Q and inductively de�neAi = Ai−1(πi) and Bi = Bi−1(
√
pi1,⋯,

√
pik).

We shall prove by induction that An = Bn. Of course it is clear when i = 0. Assuming that
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Ai−1 = Bi−1, we now want to show that Ai = Bi . It is of clear that Ai ⊆ Bi . Since none of
the square roots {√pi j} j

lie in Bi−1, we have that Bi is a degree 2k extension over Bi−1. And
if π′i = ∑ j α j

√pi j where each α j = ±1, we have an automorphism of Ai that �xes Ai−1 and
sends π to π′i . Since there are 2k distinct automorphisms, we have that Ai is indeed equal
to Bi and is a 2k degree extension over Ai−1.
Hence there is no univariate polynomial pi(x) over Ai−1 with degree bounded by d

such that pi(πi) = 0. Unfolding the induction, there is no polynomial p(x1,⋯, xn) overQ
with degree in each variable bounded d such that p(π1,⋯, πn) = 0.

2.2.2 Introducing randomness

As remarked earlier, it is not possible to actually evaluate the polynomial at these irrational
points. Instead we consider approximations of these irrational points and evaluate them.
However, we can no longer have the guarantee that all non-zero polynomials will be non-
zero at this truncated value. Chen andKao solved this problemby introducing randomness
in the construction of the πi ’s.
It is easy to observe that Lemma 2.3 would work even if each πi = ∑

k
j=1 αi j

√pi j where
each αi j = ±1. Randomness is introduced by setting each αi j to ±1 independently and
uniformly at random, and thenwe evaluate the polynomial at the π′is truncated to ℓ decimal
places.
Chen and Kao showed that if we want the error to be less than ε, we would have to

choose ℓ ≥ dO(1) log n. Randomness used in this algorithm is for choosing the αi j’s and
hence n log d random bits are used1; this is independent of ε! �erefore, to get better ac-
curacy, we don’t need to use a single additional bit of randomness but just need to look at
better approximations of πi ’s.

2.2.3 Chen-Kao over �nite �elds

�ough the algorithm that is described seems speci�c to polynomials over Q, they can
be extended to �nite �elds as well. Lewin and Vadhan [LV98] showed how use the same
idea over �nite �elds. Just like of using square root of prime numbers inQ, they use square
roots of irreducible polynomials.�e in�nite decimal expansion is paralleled by the in�nite

1In fact, if the degree in x i is bounded by d i , then∑i log(d i + 1) random bits would be su�cient
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power series expansion of the square roots, with the approximation as going modulo xℓ.
Lewin and Vadhan achieve more or less the exact same parameters as in Chen-Kao

and involves far less error analysis as they are working over a discrete �nite �eld.�ey also
present another algorithm that works over integers by considering approximations over
p-adic numbers, i.e. solutions modulo pℓ. �is again has the advantage that there is little
error analysis.

2.3 Agrawal-Biswas: Chinese Remaindering

Agrawal and Biswas [AB99] presented a new approach to identity testing via Chinese re-
maindering.�is algorithmworks in randomized polynomial time in the size of the circuit
and also achieves the time-error tradeo� as in the algorithm by Chen and Kao. It works
over all �elds but we present the case when it is a �nite �eld Fq.

�e algorithmproceeds in two steps.�e �rst is a deterministic conversion to a univari-
ate polynomial of exponential degree.�e second part is a novel construction of a sample
space consisting of “almost coprime” polynomials that is used for chinese remaindering.

2.3.1 Univariate substitution

Let f (x1,⋯, xn) be the polynomial given as a circuit of size s. Let the degree of f in each
variable be less than d.�e �rst step is a conversion to a univariate polynomial of exponen-
tial degree thatmaps distinctmonomials to distinctmonomials.�e following substitution
achieves this

xi = yd
i

Claim 2.4. Under this substitution, distinct monomials go to distinct monomials.

Proof. Each monomial of f is of the form xd11 ⋯xdnn where each di < d. Hence each mono-
mial can be indexed by d-bit number represented by ⟨d1,⋯, dn⟩ and this is precisely the
exponent it is mapped to.

Let the univariate polynomial thus produced by P(x) and let the degree be D. We
now wish to test that this univariate polynomial is non-zero. �is is achieved by picking
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a polynomial g(x) from a suitable sample space and doing all computations in the circuit
modulo g(x) and return zero if the polynomial is zero modulo g(x).
Suppose these g(x)’s came from a set such that the lcm of any ε fraction of them has

degree at least D, then the probability of success would be 1− ε. One way of achieving this
is to choose a very large set of mutually coprime polynomials say {(z − α) ∶ α ∈ Fq}. But
if every epsilon fraction of themmust have an lcm of degree D, then the size of the sample
space must be at least D

ε . �is might force us to go to an extension �eld of Fq and thus
require additional random bits. Instead, Agrawal and Biswas construct a sample space of
polynomials that share very few common factors between them which satis�es the above
property.

2.3.2 Polynomials sharing few factors

We are working with the �eld Fq of characteristic p. For a prime number r, let Qr(x) =

1 + x +⋯ + xr−1. Let ℓ ≥ 0 be a parameter that would be �xed soon. For a sequence of bits
b0,⋯, bℓ−1 ∈ {0, 1} and an integer t ≥ ℓ, de�ne

Ab,t(x) = x t +
ℓ−1
∑
i=0

bix i

Tr,b,t(x) = Qr(Ab,t(x))

�e space of polynomials consists of Tr,b,t for all values of b, having suitably �xed r and t.

Lemma 2.5. Let r ≠ p be a prime such that r does not divide any of q − 1, q2 − 1,⋯, qℓ−1 − 1.
�en, Tr,b,t(x) does not have any factor of degree less than ℓ, for any value of b and t.

Proof. LetU(x) be an irreducible factor of Tr,b,t(x) of degree δ and let α be a root ofU(x).
�en, Fq(α) is an extension �eld of degree δ.�erefore, Qr(Ab,t(α)) = 0 as U(x) divides
Tr,b,t(x). If β = Ab,t(α), then Qr(β) = 0. Since r ≠ p, we have β ≠ 1. And βr = 1 in Fqδ

therefore r ∣ qδ − 1 which forces δ ≥ ℓ.

Lemma 2.6. Let r be chosen as above. �en for any �xed t, a polynomial U(x) can divide
Tr,b,t(x) for at most r − 1many values of b.

Proof. Let U(x) be an irreducible polynomial that divides Tr,b1 ,t(x),⋯, Tr,bk ,t(x) and let
the degree of U(x) be δ. As earlier, consider the �eld extension Fqδ = Fq(α) where α is a
root of U(x).�en, Ab i ,t(α) is a root of Qr(x) for every 1 ≤ i ≤ k.



16 Chapter 2. Randomized Algorithms for PIT

Suppose Ab i ,t(α) = Ab′i ,t(α) for bi ≠ b′i , then α is a root of Ab i ,t(x) − Ab′i ,t(x) which
whose degree is less than ℓ. �is isn’t possible as U(x) is the minimum polynomial of α
and by Lemma 2.5 must have degree at least ℓ.�erefore, {Ab i ,t(α)}1≤i≤k are infact distinct
roots of Qr(x). Hence clearly k ≤ r − 1.

Lemma 2.7. Let r be chosen as above and let t be �xed.�en, the lcm of any K polynomials
from the set has degree at least K ⋅ t.

Proof. �e degree of the product of any K of them is K ⋅ t ⋅ (r − 1). And by Lemma 2.6, any
U(x) can be a factor of at most r − 1 of them and hence the claim follows.

�e algorithm is now straightforward:

1. Set parameters ℓ = logD and t =max{ℓ, 1ε}.

2. Let r is chosen as the smallest prime that doesn’t divide any of p, q − 1, q2 − 1, ⋯,
qℓ−1 − 1.

3. Let b0, b1,⋯, bℓ−1 be randomly and uniformly chosen from {0, 1}.

4. Compute P(x)modulo Tr,b,t(x) and accept if and only if P(x) = 0 mod Tr,b,t(x).

Since P(x)was obtained from a circuit of size S, we haveD ≤ 2s. It is easy to see that the
algorithm runs in time poly (s, 1ε , q), uses logD random bits and is correct with probability
at least 1 − ε.

Remark: Saha [Sah08] observed that there is a deterministic algorithm to �nd an irre-
ducible polynomial g(x) over Fq of degree roughly d in poly(d , log q) time.�erefore, by
going to a suitable �eld extension, wemay even use a sample space of coprime polynomials
of the form x t + α and choose t = 1

ε to bound the error probability by ε.�is also uses only
logD random bits and the achieves a slightly better time complexity.

2.4 Klivans-Spielman: Random univariate substitution

All the previous randomized discussed uses Ω(n) random bits. It is easy to see that iden-
tity testing for n-variate polynomials of degree bounded by total d need Ω(d log n) ran-
dom bits. For polynomials with mmonomials, one can prove a lower bound of Ω(logm).
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Klivans and Spielman [KS01] present a randomized identity test that uses O(log(mnd))
random bits which works better than the earlier algorithms if m was subexponential.

�e idea is to reduce the given multivariate polynomial f (x1,⋯, xn) to a univariate
polynomial whose degree is not too large. �is reduction will be randomized and the re-
sulting univariate polynomial would be non-zero with probability 1 − ε if the polynomial
was non-zero to begin with.
One possible approach is to just substitute xi = yr i for each i where ri ’s are randomly

chosen in a suitable range.�is indeedworks due to the following lemma.�e original ver-
sion of the Isolation lemmawas byMulmuley, Vazirani and Vazirani which isolates a single
element of a family of sets. �eir lemma was extended by Chari, Rohatgi and Srinivasan
[CRS95] where they show that the number of random bits could be reduced if the size of
the family was small. A multi-set version has been proposed by many people through a
proof that closely follows the original proof of Mulmuley, Mulmuley and Vazirani. Here
we present the version in the paper by Klivans and Spielman.

Lemma 2.8 (Isolation Lemma). LetF be a family of distinct linear forms {∑n
i=1 cixi}where

each ci is an integer less than C. If each xi is randomly set to a value in {1,⋯,Cn/ε}, then
with probability at least 1 − ε there is a unique linear form of minimum value.

Proof. For any �xed assignment, an index i is said to be singular if there are two linear
forms in F with di�erent coe�cients of xi that attain minimum value under this assign-
ment. It is clear that if there are no singular indices, then there is a unique linear form of
minimum value.
Consider an assignment for all variables other than xi . �is makes the value of each

linear form a linear function of xi . Partition F into sets S0,⋯, SC depending on what the
coe�cient of xi is. In each set, the minimum value would be attained by polynomials with
the smallest constant term. For each class St , choose one such representative and let its
weight be atxi + bt .
Now randomly assign xi to a value in {1,⋯,Cn/ε}.�e index i would be critical if and

only if there are two representatives of di�erent classes that give the same value a�er as-
signment of xi .�is means that xi must be set to one of the critical points of the following
piece-wise linear function:

w(xi) = min
0≤t≤C

{atxi + bt}
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Clearly, there can be at most C many such critical points. �erefore, there are at most C
values of xi that makes an index singular and hence the probability that an assignment
makes i singular is at most C

Cn/ε =
ε
n . A union bound over indices completes the proof.

�e isolation lemma gives a simple randomized algorithm for identity testing of poly-
nomials whose degree in each variable is bounded by d: make the substitution xi = yr i for
ri ∈ {1,⋯, dn/ε}. Eachmonomial xd11 ⋯xdnn is nowmapped to y∑ d i r i . Since ri ’s are chosen at
random, there is a unique monomial which has least degree and hence is never cancelled.
However, the number of randombits required is n log ( dn

ε ). Klivans and Spielman use a
di�erent reduction to univariate polynomials which usesO (log (mnd

ε )) randombits where
m is the number of monomials.�is technique closely parallels ideas in the work by Chari,
Rohatgi and Srinivasan. Just as Chari et al wish to isolate a single element from a family of
sets, Klivans and Spielman try to isolate a single monomial.�e ideas are very similar.

2.4.1 Reduction to univariate polynomials

Let t be a parameter that shall be �xed later. Pick a prime p larger than t and d. �e
reduction picks a k at random from {0,⋯, p − 1} and makes the following substitution:

xi = ya i where ai = k i mod p

Lemma 2.9. Let f (x1,⋯, xn) be a non-zero polynomial whose degree is bounded by d.�en,
each monomial of f is mapped to di�erent monomials under the above substitution, with
probability at least (1 − m2n

t ).

Proof. Suppose not. Let xα1
1 ⋯xαn

n and x
β1
1 ⋯xβn

n be two �xed monomials. If these two are
mapped to the same value, then∑ αik i = ∑ βik i mod p. And two di�erent polynomials of
degree n, which they are as p > d, can agree at atmost n points.�erefore the probability of
choosing such a k is hence atmost nt . A union bound over all pairs ofmonomials completes
the proof.

If we want the error to be less than ε, then choose t ≥ m2n
ε . �is would make the �nal

degree of the polynomial bounded by m2nd
ε on which we can use a Schwarz-Zippel test by

going to a large enough extension. Klivans and Spielman deal with this large degree (since
it depends on m) by using the Isolation Lemma. We now sketch the idea.
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2.4.2 Degree reduction (a sketch)

�e previous algorithm described how a multivariate polynomial can be converted to a
univariate polynomial while still keeping each monomial separated. Now we look at a
small modi�cation of that construction that uses the Isolation lemma to isolate a single
non-zero monomial, if present.

�e earlier algorithmmade the substitution xi = ya i for some suitable choice of ai . Let
us assume that each ai is a q bit number and let ℓ = O(log(dn)). Represent each ai in base
2ℓ as

ai = bi0 + bi12ℓ +⋯ + bi( q
ℓ −1)
2(

q
ℓ −1)ℓ

�e modi�ed substitution is the following:

1. Pick k at random from {0,⋯, p − 1} and let ai = k i mod p.

2. Represent ai in base 2ℓ as above.

3. Pick r0,⋯, r q
ℓ −1
values independently and uniformly at random from a small range

{1,⋯, R}.

4. Make the substitution xi = yc i where ci = bi0r0 + bi1r1 +⋯ + bi( q
ℓ −1)

r q
ℓ −1
.

A�er this substitution, each monomial in the polynomial is mapped to a power of y
where the power is a linear function over ri ’s.

Claim 2.10. Assume that the choice of k is a positive candidate in Lemma 2.9. �en, under
the modi�ed substitution, di�erent monomials are mapped to exponents that are di�erent
linear functions of the ri ’s.

Proof. A particular assignment of the ri ’s, namely ri = 2iℓ maps is precisely the mapping in
Lemma 2.9 and by assumption produces di�erent values. Hence, the linear functions have
to be distinct.

�erefore, each exponent of y in the resulting polynomial is a distinct linear function of
the ri ’s. It is a simple calculation to check that the coe�cients involved are poly(n, d) and
we can choose our range {1,⋯, R} appropriately to make sure that the Isolation Lemma
guarantees a unique minimum value linear form. �is means that the exponent of least
degree will be contributed by a unique monomial and hence the resulting polynomial is
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non-zero.�e degree of the resulting polynomial is poly (n, d , 1ε) and the entire reduction
uses only O (log (mnd

ε )) random bits.

We now proceed to study some deterministic algorithms for PIT.



3Deterministic Algorithms for PIT

In this chapter we look at deterministic algorithms for PIT for certain restricted circuits.
Progress has been only for restricted version of depth 3 circuits.

Easy cases

Depth 2 circuits can only compute “sparse” polynomials, i.e. polynomials with few (poly-
nomially many) monomials in them.
In fact PIT of any circuit, not just depth 2, that computes a sparse polynomial can be

solved e�ciently.�e following observation can be directly translated to a polynomial time
algorithm.

Observation 3.1. Let p(x1,⋯, xn) be a non-zero polynomial whose degree in each variable
is less than d and the number of monomials is m. �en there exists an r ≤ (mn log d)2 such
that

p (1, y, yd ,⋯, ydn−1
) ≠ 0 mod yr − 1

Proof. We know that q(y) = p (1, y, yd ,⋯, ydn−1
) is a non-zero polynomial and let ya be

a non-zero monomial in p. If p = 0 mod yr − 1, then there has to be another monomials
yb = ya mod yr − 1 and this is possible if and only if r ∣ b − a. �is would not happen if r
was chosen such that

r ∤ ∏
yb∈q(y)

(b − a) ≤ dnm = R.

SinceR has atmost logR = mn log d prime factors, and sincewe’d encounter at least logR+1
in the range 1 ≤ r ≤ (mn log d)2 it is clear that at least one such r we’d get q(y) ≠ 0 mod
yr − 1.

Several black-box tests have also been devised for depth 2 circuits but considerable
progress has been made for restricted depth 3 circuits as well.
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�e case when root is a multiplication gate is easy to solve.�is is because the polyno-
mial computed by a ΠΣΠ circuit is zero if and only if one of the addition gates compute
the zero polynomial.�erefore, it reduces to depth 2 circuits.�us, the non-trivial case is
ΣΠΣ circuits. PIT for general ΣΠΣ circuits is still open but polynomial time algorithms
are known for restricted versions.

3.1 �e Kayal-Saxena test

Let C be a ΣΠΣ circuit over n variables and degree d such that the top addition gate has k
children. For sake of brevity, we shall refer to such circuits as ΣΠΣ(n, k, d) circuits. Kayal
and Saxena [KS07] presented a poly(n, dk , ∣F∣) algorithm for PIT. Hence, for the case when
the top fan-in is bounded, this algorithm runs in polynomial time.

3.1.1 �e idea

Let C be the given circuit, with top fan-in k, that computes a polynomial f . �erefore,
f = T1 + ⋯ + Tk where each Ti = ∏

d
j=1 Li j is a product of linear forms. Fix an ordering of

the variables to induce a total order ⪯ on the monomials. For any polynomial g, let LM(g)
denote the leading monomial of g. We can assume without loss of generality that

LM(T1) ⪰ LM(T2) ⪰ ⋯ ⪰ LM(Tk)

If f is zero then the coe�cient of the LM( f )must be zero, and this can be checked easily.
Further, if we are able to show that f ≡ 0 mod T1, then f = 0. And this would be done by
induction on k.
Let us assume that T1 consists of distinct linear forms.�erefore by Chinese Remainder

�eorem, f ≡ 0 mod T1 if and only if f ≡ 0 mod L1i for each i. To check if f ≡ 0 mod L
for some linear form L, we replace L by variable x1 and transform the rest to make it an
invertible transformation. �us the equation reduces to the form f mod x1 ∈ F[x1 ,⋯,xn]

x1 =

F[x2,⋯, xn]. �e polynomial f mod x1 is now a ΣΠΣ circuit with top fan-in k − 1 (as
T1 ≡ 0 mod x1), and using induction, can be checked if it is zero. Repeating this for every
L1i , we can check if f is identically zero or not.

�is method fails if T1 happens to have repeated factors. For e.g., if T1 = x51 x32 , we should
instead be checking if f mod x51 and f mod x32 are zero or not. Here f mod x51 ∈

F[x1 ,⋯,xn]
x51

=
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(
F[x1]
x51

) [x2,⋯, xn] is a polynomial over a local ring. �us, in the recursive calls, we would
be over a local ring rather than over the �eld.�erefore, we need tomake sure that Chinese
Remaindering works over local rings; Kayal and Saxena showed that it indeed does.

3.1.2 Local Rings

We shall now look at a few properties that local rings inherit from �elds.

De�nition 3.2. (Local ring) A ringR is said to be local if it contains a uniquemaximal ideal.
�is unique maximal idealM is the ideal of all nilpotent elements.

Fact 3.3. Every element a ∈R can be written uniquely as α +m where α ∈ F and m ∈M.

�is therefore induces a natural homomorphism gφ ∶ R Ð→ F such that φ(a) = α, which
can also be li�ed as φ ∶ R[x1,⋯, xn] Ð→ F[x1,⋯, xn]. �e following lemma essentially
states that Chinese Remaindering works over local rings as well.

Lemma 3.4. [KS07] LetR be a local ring overF and let p, f , g ∈R[z1,⋯, zn] bemultivariate
polynomials such that φ( f ) and φ(g) are coprime.

If p ≡ 0 mod f

and p ≡ 0 mod g

then p ≡ 0 mod f g

Proof. Let the total degree of f and g be d f and dg . Without loss of generality, using a
suitable invertible transformation on the variables, we can assume that the coe�cients of
xd f
n and x

dg
n in f and g respectively are units.

�inking of f and g as univariate polynomials R(x1,⋯, xn−1)[xn] (the ring of frac-
tions), we have φ( f ) and φ(g) coprime over F(x1,⋯, xn−1) as well. Hence, there exists
a, b ∈ F(x1,⋯, xn−1) such that aφ( f ) + bφ(g) = 1.�is can be re-written as

a f + bg = 1 modR(x1,⋯, xn−1)[xn]/M

whereM = {r ∶ r ∈R(x1,⋯, xn−1)[xn] is nilpotent}. SinceM is nilpotent, let t be such
thatMt = 0. Using repeated applications of Hensel li�ing, the above equation becomes

a∗ f ∗ + b∗g∗ = 1 modR(x1,⋯, xn−1)[xn]/Mt

= 1 modR(x1,⋯, xn−1)[xn]
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And there exists a m ∈M such that a∗ f + b∗g = 1 + m, which is invertible. Setting a′ =
a∗(1 +m)−1 and b′ = b∗(1 +m)−1, we get

a′ f + b′g = 1 inR(x1,⋯, xn−1)[xn]

p = 0 mod f

Ô⇒ p = f q for q ∈R(x1,⋯, xn)[xn]

Ô⇒ f q = 0 mod g

Ô⇒ q = 0 mod g

Ô⇒ q = gh for h ∈R(x1,⋯, xn)[xn]

Ô⇒ p = f gh inR(x1,⋯, xn−1)[xn]

Since p, f , g are polynomials in R[x1,⋯, xn] and f , g monic, by Gauss’s lemma we have
p = f gh inR[x1,⋯, xn] itself.

We are now set to look at the identity test.

3.1.3 �e identity test

Let C be a ΣΠΣ arithmetic circuit, with top fan-in k and degree d computing a polyno-
mial f .�e algorithm is recursive where each recursive call decreases k but increases the
dimension of the base ring (which is F to begin with).

Input

�e algorithm takes three inputs:

• A local ringR over a �eld F with the maximal idealM presented in its basis form.
�e initial setting isR = F andM = ⟨0⟩.

• A set of k coe�cients ⟨β1,⋯, βk⟩, with βi ∈R for all i.

• A set of k terms ⟨T1,⋯, Tk⟩. Each Ti is a product of d linear functions in n variables
overR.�at is, Ti =∏

d
j=1 Li j.
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Output

Let p(x1,⋯, xn) = β1T1 +⋯, βkTk.�e output, ID(R, ⟨β1,⋯, βk⟩ , ⟨T1,⋯, Tk⟩) is YES if and
only if p(x1,⋯, xn) = 0 inR.

Algorithm

Step 1: (Rearranging Ti ’s) If necessary, rearrange the Ti ’s to make sure that

LM(T1) ⪰ ⋯ ⪰ LM(Tk)

Also make sure that coe�cient of LM(T1) is a unit.

Step 2: (Single multiplication gate) If k = 1, we need to test if β1T1 = 0 in R. Since the
leading coe�cient of T1 is a unit, it su�ces to check if β1 = 0.

Step 3: (Checking if p = 0 mod T1) Write T1 as a product of coprime factors, where each
factor is of the form

S = (l +m1)(l +m2)⋯(l +mt)

where l ∈ F[x1,⋯, xn] and mi ∈M for all i.
For each such factor S, do the following:

Step 3.1: (Change of variables) Apply an invertible linear transformation σ on the vari-
ables to make convert l to x1.�us, S divides p if and only if σ(S) divides σ(p).

Step 3.2: (Recursive calls)�e new ring R′ = R[x1]/(σ(S)) which is a local ring as
well. For 2 ≤ i ≤ k, the transformation σ might convert some of the factors of Ti to an
element ofR′. Collect all such ring elements of σ(Ti) as γi ∈R

′ and write σ(Ti) = γiT ′
i .

Recursively call ID(R′, ⟨β2γ2,⋯, βkγk⟩ , ⟨T ′
2 ,⋯, T ′

k⟩). If the call returns NO, exit and
output NO.

Step 4: Output YES.

Ceorem 3.5. �e algorithm runs in time poly(dimR, n, dk) outputs YES if and only if
p(x1,⋯, xn) = 0 inR.

Proof. �e proof is an induction on k.�e base case when k = 1 is handled in step 2. For
k ≥ 2, let T1 = S1S2⋯Sm. By induction we verify in step 3 if p(x1,⋯, xn) = 0 mod Si for each
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Si .�erefore, by Lemma 3.4 we have p(x1,⋯, xn) = 0 mod T1. Since p = ∑Ti , the leading
monomial in T1 and p are the same. But since we also checked that the coe�cient of the
leading monomial is zero, p has to be zero.
For the running time analysis, let r be the dimension of the ring R. In every recursive

call, k decreases by 1 and the dimension of the ring R grows by a factor of at most R′. If
T(r, k) is the time taken for ID(R, ⟨β1,⋯, βk⟩ , ⟨T1,⋯, Tk⟩), we have the recurrence

T(r, k) ≤ d ⋅ T(dr, k − 1) + poly(n, dk , r)

which is poly(n, dk , r).

�is completes the Kayal-Saxena identity test for ΣΠΣ circuits with bounded top fan-
in.

3.2 Rank bounds and ΣΠΣ(n, k, d) circuits

�e rank approach asks the following question: if C is a ΣΠΣ circuit that indeed computes
the zero polynomial, then how many variables does it really depend on? To give a reason-
able answer, we need to assume that the given circuit is not “redundant” in some ways.

De�nition 3.6 (Minimal and simple circuits). A ΣΠΣ circuit C = P1 +⋯ + Pk is said to be
minimal if no proper subset of {Pi}1≤i≤k sums to zero.

�e circuit is said to be simple there is no non-trivial common factor between all the Pi ’s.

De�nition 3.7 (Rank of a circuit). For a given circuit ΣΠΣ circuit, the rank of the circuit is
the maximum number of independent linear functions that appear as a factor of any product
gate.

Supposewe can get anupper-boundR on the rank of anyminimal and simple ΣΠΣ(n, k, d)
circuit computing the zero polynomial.�en we have a partial approach towards identity
testing.

1. If k is a constant, it can be checked recursively if C is simple and minimal.

2. Compute the rank r of the circuit C.

3. If the r < R is small, then the circuit is essentially a circuit on just R variables. We
can check in dR time if C is zero or not.
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4. If the rank is larger than the upper-bound then the circuit computes a non-zero poly-
nomial.

�is was infact the idea in Dvir and Shpilka’s nO(log n) algorithm [DS05] for ΣΠΣ cir-
cuits of bounded top fan-in (before the algorithm by Kayal and Saxena [KS07]). It was
conjectured by Dvir and Shpilka that R(k, d) is a polynomial function of k alone. How-
ever, Kayal and Saxena [KS07] provided a counter-example over �nite �elds. Karnin and
Shpilka showed how rank bounds can be turned into black-box identity tests.

Ceorem 3.8. [KS08] Fix a �eldF. Let R(k, d) be an integer such that everyminimal, simple
ΣΠΣ(n, k, d) circuit computing the zero polynomial has rank at most R(k, d). �en, there
is a black-box algorithm to test if a given ΣΠΣ(n, k, d) circuit is zero or not, in deterministic
time poly(dR(k,d), n).

We’ll see the proof of this theorem soon but we �rst look at some consequences of
the above theorem with some recent developments in rank bounds. Saxena and Seshadri
recently showed rank upper bounds that are almost tight.

Ceorem 3.9. [SS09] Let C be a minimal, simple ΣΠΣ(n, k, d) circuit that is identically
zero.�en, rank(C) = O(k3 log d). And there exist identities with rank Ω(k log d).

Using the bound by Saxena and Seshadri, this gave a nO(log n) black-box test for depth
3 circuits with bounded top fan-in.

�ough the conjecture of Dvir and Shpilka was disproved over �nite �elds, the ques-
tion remained if R(k, d) is a function of k alone over Q or R. �is was answered in the
a�rmative by Kayal and Saraf [KS09] very recently.

Ceorem 3.10. [KS09] Every minimal, simple ΣΠΣ(n, k, d) circuit with coe�cients fromR
that computes the zero polynomial has rank bounded by 3k((k + 1)!) = 2O(k log k).

�is, using with�eorem 3.8, gives a black-box algorithm for ΣΠΣ circuits with bounded
top fan-in.

Ceorem 3.11. [KS09]�ere is a deterministic black-box algorithm for ΣΠΣ(n, k, d) circuits
over Q, running in time poly(d2O(k log k) , n).

We now see how rank bounds can be converted to black-box PITs
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3.2.1 Rank bounds to black-box PITs

�e proof of�eorem 3.8 crucially uses the following Lemma by Gabizon and Raz [GR05].

Lemma 3.12. [GR05] For integers n ≥ t > 0 and an element α ∈ F, de�ne the linear trans-
formation

φα,t,n(x1,⋯, xn) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 α α2 ⋯ αn−1

1 α2 α4 ⋯ α2(n−1)

⋮ ⋮ ⋮ ⋱ ⋮

1 αt α2t ⋯ αt(n−1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1
x2
⋮

xn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Fix any number of subspaces W1,⋯,Ws ⊆ Fn of dimension at most t.�en, there are at most
s ⋅ (n − 1) ⋅ (t+12 ) elements α ∈ F such for some Wi with dim(φα,t,n(Wi)) < dim(Wi).

Using this lemma, we shall come up with a small set of linear transformations such that
for each non-zero ΣΠΣ(n, k, d) circuit, at least one of the linear transformations continues
to keep it non-zero. We’ll assume that all linear functions that appear in the circuit are
linear forms i.e. they don’t have a constant term. �is is because we can assume that a
linear function a0 + a1x1 + ⋯anxn is actually a0x0 + ⋯anxn. We shall assume that R(k, d)
is a rank bound for minimal, simple ΣΠΣ(n, k, d) circuits that evaluate to zero.

Ceorem 3.13. [KS08] Let C be a ΣΠΣ(n, k, d) circuit that is non-zero. Let S ⊆ F such that

∣S∣ ≥ ((
dk
2
) + 2k) ⋅ n ⋅ (

R(k, d) + 2
2

) + 1

�en there is some α ∈ S such that Vα(C) = φα,n,R(k,d)+1(C) is non-zero.

Proof. Let C = T1 +⋯ + Tk. We shall de�ne sim(C) as follows:

sim(C) =
C

gcd(T1,⋯, Tk)

�e proof proceeds by picking up a few subspaces of linear functions of small dimension
such that, if all their dimensions were preserved, then the circuit has to be non-zero a�er
the transformation.�e subspaces are as follows:

1. For every pair of linear forms ℓi , ℓ j that appear in the circuit, letWℓ i ,ℓ j = (ℓi , ℓ j).

2. For every subset ∅ ≠ A ⊆ [k], de�ne CA = ∑i∈A Ti and let

rA =min{R(k, d) + 1, rank(sim(CA))}

LetWA be the space spannedby rA linearly independent vectors that appear in sim(CA).
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�e claim is that, if each of the Wℓ i ,ℓ j ’s and WA’s are preserved, then the circuit will
continue to be non-zero. Suppose not.

�e �rst observation is that the transformation cannot map two linear functions that
appear in the circuit to the same linear function since it preservesWℓ i ,ℓ j ’s. Hence, we have
Vα(sim(CA)) = sim(Vα(CA)). We shall just argue on the simple part of the circuit so we
shall assume that C (and hence Vα(C) as well) is simple.
If Vα(C) = 0, then the rank bound says that either Vα(C) is not minimal or we have

rank(Vα(C)) ≤ R(k, d). If the rank was small, since we are preservingWA’s, and in par-
ticularW[k], the circuit C has to be preserved.
Suppose the Vα(C) is not minimal. Let A be a minimal subset such that Vα(CA) =

0 with CA ≠ 0. Hence, Vα(sim(CA)) is a simple, minimal circuit that evaluates to zero
and therefore has rank at most R(k, d). But the rank of WA is preserved, CA ≠ 0 forces
Vα(CA) ≠ 0 which is a contradiction.

Once we have obtained such a rank-preserving transformation, the circuit is now es-
sentially over R(k, d) + 1 variables. An application of a brute-force Schwarz-Zippel would
complete the proof of�eorem 3.8.

3.3 Saxena’s test for diagonal circuits

In this section we shall look at yet another restricted version of depth 3 circuits.

De�nition 3.14. A ΣΠΣ circuit C is said to be diagonal if it is of the form

C(x1,⋯, xn) =
k

∑
i=1
ℓe ii where ℓi is a linear function over the variables

�e idea is to reduce this problem to a PIT problem of a formula over non-commuting
variables. In the setting of formulas over non-commuting variables, Raz and Shpilka [RS04]
showed that it can be tested in deterministic polynomial time if it zero.

�e reduction to a non-commutative formula is by a conversion to express a multipli-
cation gate (a0 + a1x1 +⋯anxn)d to a dual form:

(a0 + a1x1 +⋯anxn)d =∑
j
f j1(x1) f j2(x2)⋯ f jn(xn)

�e advantage of using the expression on the RHS is that the variables can be assumed to
be non-commuting. �erefore if the above conversion can achieved in polynomial time,
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thenwe have a polynomial algorithm for identity testing of diagonal circuits by justmaking
this transformation and using the algorithm by Raz and Shpilka. Saxena provides a simple
way to convert a multiplication gate to its dual. We present the case when F is a �eld of
characteristic zero though it may be achieved over any �eld.

Lemma 3.15. [Sax08] Let a0,⋯, an be elements of a �eld F of characteristic zero. �en, in
poly(n, d)many �eld operations, we can compute univariate polynomials fi , j’s such that

(a0 + a1x1 +⋯anxn)d =
nd+d+1
∑
i=1

fi1(x1) fi2(x2)⋯ fin(xn)

Proof. Let E(x) = exp(x) = 1 + x + x2
2! +⋯ and let Ed(x) = E(x)mod xd be the truncated

version.

(a0 + a1x1 +⋯anxn)d

d!
= coe�cient of zd in exp((a0 + a1x1 +⋯anxn)z)

= coe�cient of zd in exp(a0z) exp(a1x1z)⋯ exp(anxnz)

= coe�cient of zd in Ed(a0z)Ed(a1x1z)⋯Ed(anxnz)

Hence, viewing Ed(a0z)Ed(a1x1z)⋯Ed(anxnz) as a univariate polynomial in z of degree
d′ = nd+d, we just need to �nd the coe�cient of the zd .�is can be done by evaluating the
polynomial at distinct points and interpolating. Hence, for distinct points α1,⋯, αd′ ∈ F,
we can compute β1,⋯, βd′ in polynomial time such that

(a0 + a1x1 +⋯anxn)d =
d′

∑
i=1

βiEd(a0αi)Ed(a1x1αi)⋯Ed(anxnαi)

which is precisely what we wanted.
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In this chapter we look at a result by Agrawal and Vinay [AV08] on depth reduction. In-
formally, the result states that exponential sized circuits do not gain anything if the depth
is beyond 4. Formally, the main result can be stated as follows:

Ceorem 4.1 ([AV08]). If a polynomial P(x1,⋯, xn) of degree d = O(n) can be computed
by an arithmetic circuit of size 2o(d+d log

n
d ), it can also be computed by a depth 4 circuit of size

2o(d+d log
n
d ).

It is a simple observation that any polynomial p(x1,⋯, xn) has atmost (n+dd )monomials
and hence can be trivially computed by a ΣΠ circuit of size (n+dd ) = 2O(d+d log n

d ). Hence, the
above theorem implies that if we have subexponential lower bounds for depth 4 circuits,
we have subexponential lower bounds for any depth!

Corollary 4.2. Let p(x1,⋯, xn) be a multivariate polynomial. Suppose there are no 2o(n)

sized depth 4 arithmetic circuits that can compute p. �en there is no 2o(n) sized arithmetic
circuit (of arbitrary depth) that can compute p.

�e depth reduction is proceeded in two stages. �e �rst stage reduces the depth to
O(log d) by the construction of Allender, Jiao, Mahajan and Vinay [AJMV98]. Using a
careful analysis of this reduction, the circuit is further reduced to a depth 4 circuit.

4.1 Reduction to depth O(log d)

Given as input is a circuit C computing a polynomial p(x1,⋯, xn) of degree d = O(n).
Without loss of generality, we can assume that the circuit is layered with alternative layers
of addition andmultiplication gates. Further, we shall assume that eachmultiplication gate
has exactly two children.



32 Chapter 4. Chasm at Depth 4

4.1.1 Computing degrees

�ough the polynomial computed by the circuit is of degree less than d, it could be possible
that the intermediate gates compute larger degree polynomials which are somehow can-
celled later. However, we can make sure that each gate computes a polynomial of degree at
most d. Further, we can label each gate by the formal degree of the polynomial computed
there.
Each gate gi of the circuit is now replaced by d + 1 gates gi0, gi1,⋯, gid . �e gate gis

would compute the degree s homogeneous part of the polynomial computed at gi .
If g0 was an addition gate with g0 = h1+h2+⋯+hk, thenwe set g0i = h0i+⋯+hki for each

i. If g0 was a multiplication gate with two children h1 and h2, we set g0i = ∑i
j=0 h1 jh2(i− j).

�us, every gate is naturally labelled by its degree. As a convention, we shall assume
that the degree of the le� child of any multiplication gate is smaller than or equal to the
degree of the right child.

4.1.2 Evaluation through proof trees

A proof tree rooted at a gate g is a sub-circuit of C that is obtained as follows:

• start with the sub-circuit in C that has gate g at the top and computes the polynomial
associated with gate g,

• for every addition gate in this sub-circuit, retain only one of the inputs to this gate
and delete the other input lines,

• for any multiplication gate, retain both the inputs.

A simple observation is that a single proof tree computes one monomial of the formal
expression computed at g. And the polynomial computed at g is just the sumof the polyno-
mial computed at every proof tree rooted at g. We shall denote the polynomial computed
by a proof tree T as p(T).

For every gate g, de�ne [g] to be the polynomial computed at gate g. Also, for every
pair of gates g and h, de�ne [g , h] = ∑T p(T , h) where T runs over all proof trees rooted
at g with h occurring on its rightmost path and p(T , h) is the polynomial computed by the
proof tree T when the last occurance of h is replaced by the constant 1. If h does not occur
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on the right most path, then [g , h] is zero.�e gates of the new circuits are [g], [g , h] and
[xi] for gates g , h ∈ C and variables xi . We shall now describe the connections between the
gates.
Firstly, [g] = ∑i[g , xi][xi]. Also, if g is an addition gate with children g1,⋯, gk, then

[g , h] = ∑i[gi , h]. If g is a multiplication gate, it is a little tricker. If the rightmost path
from g to h consists of just addition gates, then [g , h] = [gL], the le� child of g. Otherwise,
for any �xed rightmost path, there must be at least a unique intermediate multiplication
gate p on this path such that

deg(pR) ≤
1
2
(deg g + deg h) ≤ deg p

Since there could be rightmost paths between g and h, we just run over all gates p that
satisfy the above equation.�en, [g , h] = ∑p[g , p][pL][pR , h]. We want to ensure that the
degree of each child of [g , h] is at most (deg(g) − deg(h))/2.

• deg([g , p]) = deg(g) − deg(p) ≤ 1
2 (deg g − deg h)

• deg([pR , h]) = deg(pR) − deg(h) ≤ 1
2(deg(g) − deg(h))

• deg(pL) ≤ deg(p) ≤ 1
2 deg(g)

Also, deg(pL) ≤ deg(pL) + deg(pR) − deg(h) ≤ deg(g) − deg(h)

�us the problem is with pL as the degree hasn’t dropped by a factor of 2. However, we
know that deg(pL) ≤ deg(g)/2. By unfolding this gate further to reduce the degree. Note
that [pL] = ∑i[pL , xi][xi] and pL is an addition gate. Let pL = ∑ j pL, j where each pL, j is a
multiplication gate. �erefore [pL , xi] = ∑ j[pL, j, xi]. Repeating the same analysis for this
gate, we have [pL , xi] = ∑q[pL , q][qL][qR , xi] for states q satisfying the degree constraint.
Now, deg(qL) ≤ 1

2 deg(pL) ≤
1
2 deg([g , h]) as required. We hence have

[g , h] =∑
p
∑
i
∑
j
∑
q
[g , p][pL, j, q][qL][qR , xi][pR , h]

where p and q satisfy the appropriate degree constraints.�is completes the description of
the new circuit.
It is clear that the depth of the circuit is O(log d) and the fan-in of multiplication gates

is 6.�e size of the new circuit is polynomial bounded by size of C.
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4.2 Reduction to depth 4

We now construct an equivalent depth 4 circuit from the reduced circuit. Choose an ℓ ≤
d+d log n

d
log S where S is the size of the circuit. And let t = 1

2 log6 ℓ. Cut the circuit into two two
parts: the top has exactly t layers of multiplication gates and the rest of the layers belonging
to the bottom. Let g1,⋯, gk (where k ≤ S) be the output gates at the bottom layer.�us, we
can think of the top half as computing a polynomial Ptop in new variables y1,⋯, yk and each
of the gi computing a polynomial Pi over the input variables. �e polynomial computed
by the circuit equals

Ptop(P1(x1,⋯, xn), P2(x1,⋯, xn),⋯, Pk(x1,⋯, xn))

Since the top half consists of t levels of multiplication gates, and each multiplication gate
has at most 6 children, deg(Ptop) is bounded by 6t . And since the degree drops by a factor
of two across multiplication gates, we also have deg(Pi) ≤ d

2t . Expressing each of these as
a sum of product, we have a depth 4 circuit computing the same polynomial. �e size of
this circuit is

(
S + 6t

6t
) + S(

n + d
2t

d
2t

)

It is now just a calculation to see that the choice of t makes this 2o(d+d log
n
d ). And that

completes the proof of�eorem 4.1.

4.3 Identity testing for depth 4 circuits

In this section we brie�y describe how the depth reduction implies that PIT for depth 4
circuits is almost the general case.

Proposition 4.3. If there is a PIT algorithm for depth 4 circuit running in deterministic
polynomial time, then there is a PIT algorithm for any general circuit computing a low degree
polynomial running in deterministic 2o(n) time.

Proof. Given any circuit computing a low degree polynomial, we can convert it to a depth
4 circuit of size 2o(n). Further, this conversion can be done in time 2o(n) as well.�erefore,
a polynomial time PIT algorithm for depth 4 would yield a 2o(n) algorithm for general
circuits.
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Agrawal and Vinay further showed that if there was a stronger derandomization for
identity testing on depth 4 circuits, then we get stronger results for general circuits.
As remarked earlier, a black-box algorithm is one that does not look into the circuit

but just evaluations of the circuit at chosen points. �is can be equivalently presented as
pseudorandom generators for arithmetic circuits.

De�nition 4.4 (Pseudorandom generators for arithmetic circuits). Let F be a �eld and C
be a class of low degree arithmetic circuits over F. A function f ∶ N Ð→ (F[y])∗ is a s(n)-
pseudorandom generator against C if

• f (n) = (p1(y), p2(y),⋯, pn(y)) where each pi(y) is a univariate polynomial over F
whose degree is bounded by s(n) and computable in time polynomial in s(n)

• For any arithmetic circuit C ∈ C of size n,

C(x1,⋯, xn) = 0 if and only if C(p1(y), p2(y),⋯, pn(y)) = 0

It is clear that given a s(n)-pseudorandom generator f against C, we can solve the PIT
problem for circuits in C in time (s(n))O(1) by just evaluating the univariate polynomial.
A polynomial time derandomization is obtained if s(n) is nO(1) and such generators are
called optimal pseudorandom generators.

4.3.1 Hardness vs randomness in arithmetic circuits

Just like in the boolean setting, there is a “Hardness vs randomness” tradeo� in arithmetic
circuits as well.�e following lemma shows that existence of optimal PRGs leads to lower
bounds.

Lemma 4.5. [Agr05] Let f ∶ N Ð→ (F(y))∗ be a s(n)-pseudorandom generator against a
class C of arithmetic circuit computing a polynomials of degree at most n. If n ⋅ s(n) ≤ 2n,
then there is a multilinear polynomial computed in 2O(n) time that cannot be computed by C.

Proof. Let q(x1,⋯, xn) be a generic multivariate polynomial, that is:

q(x1,⋯, xn) = ∑
S⊆[n]

cS∏
i∈S

xi
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We shall choose coe�cients to satisfy the following condition

∑
S⊆[n]

cS∏
i∈S

pi(y) = 0

where f (n) = (p1(y),⋯, pn(y)). Such a polynomial certainly exists because the coe�-
cients can be obtained by solving a set of linear equations in the cS ’s.�e number of vari-
ables is 2n and the number of constraints is at most n ⋅ s(n) (since each pi(y) has degree at
most s(n)). As long as n ⋅ s(n) ≤ 2n we have an under-determined set of linear equations
and there exists a non-trivial solution, which can certainly be computed in time 2O(n).

�us, in particular, optimal pseudorandom generators would yield lower bounds. It is
also known that explicit lower bounds of this kind would yield to black-box algorithms for
PIT as well.

Lemma 4.6. [KI03] Let {qm}m≥1 be a multilinear polynomial over F computable in expo-
nential time and that cannot be computed by subexponential sized arithmetic circuits. �en
identity testing of low degree polynomial can be solved in time nO(logn).

Proof. Pick subsets S1,⋯, Sn be subsets of [1, c log n] such that ∣Si ∣ = d log n (for suitable
constants c and d) and ∣Si ∩ S j∣ ≤ log n for i ≠ j. Such a family of sets is called a Nisan-
Wigderson Design [NW94]. For a tuple of variables (x1,⋯, xn), let (x1,⋯, xn)S denote the
tuple that retains only those xi where i ∈ S. Let pi = qd log n(x1,⋯, xn)S i . We claim that the
function f ∶ n ↦ (p1,⋯, pn) is a pseudorandom generator for the class of size n arithmetic
circuits computing low degree polynomials.
Suppose not, then there exists a circuit C of size n computing a polynomial of degree at

most n such that C(z1,⋯, zn) ≠ 0 but C(p1,⋯, pn) = 0. By an hybrid argument, there must
exist an index j such thatC(p1,⋯, p j−1, z j, z j+1⋯, zn) ≠ 0 butC(p1,⋯, p j−1, p j, z j+1,⋯, zn) =
0. Fix values for the variables z j+1,⋯, zn and also for the xi ’s not occurring in p j to still en-
sure that the resulting polynomial in C(p1,⋯, p j−1, z j, z j+1⋯, zn) ≠ 0. For each pi for i ≤ j,
all but log n of the variables have been �xed and the degree of pi is bounded by n. Replace
each such pi by ΣΠ circuit of size at most n. A�er all the �xing and replacement, we have
a circuit of size at most n2 over variables (x1,⋯, xc log n)S j and z j. �is circuit computes a
non-zero polynomial but becomes zero when z is substituted by p j. Hence, z j − p j divides
the polynomial computed by this circuit. We now use can a multivariate polynomial fac-
torization algorithm to compute this factor, and hence compute p j.�e circuit computing
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the factor has size ne for some constant e independent of d and this gives a ne + n2 sized
circuit that computes p j contradicting the hardness of qd log n for suitable choice of d.

�erefore, C would continue to be non-zero even a�er the substitution. A�er the sub-
stitution, we have a polynomial over d log n variables of degree O(n log n) and it has at
most nO(log n) terms.�erefore, this gives a nO(log n) algorithm to check if C is zero.

Ceorem 4.7. [AV08] If there is a deterministic black-box PIT algorithm for depth 4 circuit
running in polynomial time, then there is a deterministic nO(logn) algorithm for PIT on general
circuits computing a low degree polynomial.

Proof. Suppose there does indeed exist an optimal pseudorandom generator against depth
4 circuits. By Lemma 4.5 we know that we have a subexponential lower bound in depth
4 circuits for a family of multilinear polynomials {qm}. By Corollary 4.2 we know that
this implies a subexponential lower bound for {qm} in arithmetic circuits of any depth. To
�nish, Lemma 4.6 implies such a family {qm} can be used to give a nO(log n) algorithm for
PIT.

It would be interesting to see if the above result can be tightened to get a polynomial
time PIT algorithm for general circuits.
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5Depth 2 Circuits Over Algebras

... or “Trading Depth for Algebra”

Wenow come to themain contribution of the thesis – a new approach to identity testing
for depth 3 circuits.�e contents this chapter is joint work with Saha and Saxena [SSS09].

As mentioned earlier, we study a generalization of arithmetic circuits where the con-
stants come from an algebra instead of a �eld.�e variables still commute with each other
and with elements of the algebra. In particular, we are interested in depth 2 circuits over
the algebra.�ese involve expressions like

P =
d

∏
i=1

(Ai0 + Ai1x1 + . . . + Ainxn)

where Ai j ∈R, an algebra over F given in basis form.
Without loss of generality, every �nite dimensionally associative algebra can be thought

of as amatrix algebra.�erefore, we are interested in circuits overmatrix algebras.�us the
above equation reduces to a product of matrices, each of whose entries is a linear function
of the variables. For convenience, let us call such a matrix a linear matrix.
Ben-Or and Cleve showed that any polynomial computed by a small sized arithmetic

formula can be computed by a depth 2 circuits over the algebra of 3×3 matrices.�erefore
PIT over depth 2 circuits over 3 × 3 matrices almost capture PIT over general circuits. A
natural question to study the setting over 2×2 matrices. We show that this question is very
closely related to PIT of depth 3 circuits.

5.1 Equivalence of PIT with ΣΠΣ circuits

We will now prove�eorem 1.5.
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Ceorem 1.5. (restated) Identity testing for depth 2 (ΠΣ) circuits over U2(F) is polynomial
time equivalent to identity testing for depth 3 (ΣΠΣ) circuits.

�e usual trick would be to construct a ΠΣ circuit over matrices that computes the
same function f as the ΣΠΣ circuit. However, this isn’t possible in the setting of upper-
triangular 2 × 2 matrices because they are computationally very weak. We shall see soon
that they cannot even compute simple polynomials like x1x2 + x3x4 + x5x6.
To circumvent this issue, we shall compute a multiple of f instead of f itself. �e fol-

lowing lemma shows how this can be achieved.

Lemma 5.1. Let f ∈ F[x1, . . . , xn] be a polynomial computed by a ΣΠΣ(n, s, d) circuit.
Given circuit C, it is possible to construct in polynomial time a depth 2 circuit over U2(F) of
size O((d + n)s2) that computes a polynomial p = L ⋅ f , where L is a product of non-zero
linear functions.

Proof. A depth 2 circuit over U2(F) is simply a product sequence of 2×2 upper-triangular
linear matrices. We now show that there exists such a sequence of length O((d + n)s2)
such that the product 2 × 2 matrix has L ⋅ f as one of its entries.
Since f is computed by a depth 3 circuit, we canwrite f = ∑s

i=1 Pi , where each summand
Pi = ∏ j li j is a product of linear functions. Observe that we can compute a single Pi using
a product sequence of length d as:

⎡
⎢
⎢
⎢
⎢
⎣

li1
1

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

li2
1

⎤
⎥
⎥
⎥
⎥
⎦

⋯

⎡
⎢
⎢
⎢
⎢
⎣

li(d−1)
1

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

1 lid
1

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

L′ Pi
1

⎤
⎥
⎥
⎥
⎥
⎦

(5.1)

where L′ = li1⋯li(d−1).
�e proof will proceed by induction where Equation 5.1 serves as the induction basis.

A generic intermediate matrix would look like
⎡
⎢
⎢
⎢
⎢
⎣

L1 L2g
L3

⎤
⎥
⎥
⎥
⎥
⎦

where each Li is a product of

non-zero linear functions and g is a partial summand of Pi ’s. We shall inductively double
the number of summands in g at each step.

At the i-th iteration, assume that we have thematrices
⎡
⎢
⎢
⎢
⎢
⎣

L1 L2g
L3

⎤
⎥
⎥
⎥
⎥
⎦

and
⎡
⎢
⎢
⎢
⎢
⎣

M1 M2h
M3

⎤
⎥
⎥
⎥
⎥
⎦

,

each computed by a sequence of ni linearmatrices. We nowwant a sequence that computes
a polynomial of the form L ⋅ (g + h). Consider the following sequence,

⎡
⎢
⎢
⎢
⎢
⎣

L1 L2g
L3

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

A
B

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

M1 M2h
M3

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

AL1M1 AL1M2h + BL2M3g
BL3M3

⎤
⎥
⎥
⎥
⎥
⎦

(5.2)
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where A, B are products of linear functions. By setting A = L2M3 and B = L1M2 we get the
desired sequence,

⎡
⎢
⎢
⎢
⎢
⎣

L1 L2g
L3

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

A
B

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

M1 M2h
M3

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

L1L2M1M3 L1L2M2M3(g + h)
L1L3M2M3

⎤
⎥
⎥
⎥
⎥
⎦

�is way, we have doubled the number of summands in g + h.�e length of the sequence
computing L2g and M2h is ni , hence each Li and Mi is a product of ni many linear func-
tions.�erefore, both A and B are products of at most 2ni linear functions and the matrix
⎡
⎢
⎢
⎢
⎢
⎣

A
B

⎤
⎥
⎥
⎥
⎥
⎦

can be written as a product of at most 2ni diagonal linear matrices. �e total

length of the sequence given in Equation 5.2 is hence bounded by 4ni .
�e number of summands in f is s and the above process needs to be repeated at most

log s+1 times.�e �nal sequence length is hence bounded by (d+n) ⋅4log s = (d+n)s2.

Proof of�eorem 1.5. It follows fromLemma5.1 that, given a depth 3 circuitC computing f

we can e�ciently construct a depth 2 circuit overU2(F) that outputs amatrix,
⎡
⎢
⎢
⎢
⎢
⎣

L1 L ⋅ f
L2

⎤
⎥
⎥
⎥
⎥
⎦

,

where L is a product of non-zero linear functions. Multiplying this matrix by
⎡
⎢
⎢
⎢
⎢
⎣

1 0
0

⎤
⎥
⎥
⎥
⎥
⎦

to

the le� and
⎡
⎢
⎢
⎢
⎢
⎣

0 0
1

⎤
⎥
⎥
⎥
⎥
⎦

to the right yields another depth 2 circuitD that outputs
⎡
⎢
⎢
⎢
⎢
⎣

0 L ⋅ f
0

⎤
⎥
⎥
⎥
⎥
⎦

.

�us D computes an identically zero polynomial over U2(F) if and only if C computes an
identically zero polynomial. �is shows that PIT for depth 3 circuits reduces to PIT of
depth 2 circuits over U2(F).

�e other direction, that is PIT for depth 2 circuits overU2(F) reduces to PIT for depth
3 circuits, is trivial to observe. �e diagonal entries of the output 2 × 2 matrix is just a
product of linear functions whereas the o�-diagonal entry is a sum of at most d′ many
products of linear functions, where d′ is the multiplicative fan-in of the depth 2 circuit
over U2(F).

5.1.1 Width-2 algebraic branching programs

�emain theoremhas an interesting consequence in terms of algebraic branching programs.
Algebraic Branching Programs (ABPs) is amodel of computation de�ned byNisan [Nis91].
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Formally, an ABP is de�ned as follows.

De�nition 5.2. (Nisan [Nis91]) An algebraic branching program (ABP) is a directed acyclic
graph with one source and one sink. �e vertices of this graph are partitioned into levels
labelled 0 to d, where edges may go from level i to level i + 1. �e parameter d is called the
degree of the ABP. �e source is the only vertex at level 0 and the sink is the only vertex at
level d. Each edge is labelled with a homogeneous linear function of x1, . . . , xn (i.e. a function
of the form ∑i cixi). �e width of the ABP is the maximum number of vertices in any level,
and the size is the total number of vertices.

An ABP computes a function in the obvious way; sum over all paths from source to sink,
the product of all linear functions by which the edges of the path are labelled.

�e following argument shows how Corollary 1.6 follows easily from�eorem 1.5.

Corollary 1.6. (restated) Identity testing of depth 3 circuits is equivalent to identity testing
of width-2 ABPs with polynomially many paths from source to sink.

Proof. It is �rstly trivial to see that if the number of paths from source to sink is small, then
we one can easily construct a depth 3 circuit that computes the same polynomial.�us, we
only need to show that PIT on depth 3 circuits reduces to that on such restricted ABP’s.
�eorem 1.5 constructs a depth 2 circuit D that computes a product of the form

P =

⎡
⎢
⎢
⎢
⎢
⎣

L11 L12
L13

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

L21 L22
L23

⎤
⎥
⎥
⎥
⎥
⎦

⋯

⎡
⎢
⎢
⎢
⎢
⎣

Lm1 Lm2

Lm3

⎤
⎥
⎥
⎥
⎥
⎦

where each Li j is a linear function over the variables. We canmake sure that all linear func-
tions are homogeneous by introducing an extra variable x0, such that a0 + a1x1 +⋯anxn is
transformed to a0x0 + a1x1 + . . . + anxn. It is now straightforward to construct a width-2
ABP by making the jth linear matrix in the sequence act as the adjacency matrix between
level j and j + 1 of the ABP.

●

●

●
L13

L12

●
L11

●
L23

L22

●
L21

●

●

●
Lm3

Lm2

●
Lm1

It is clear that the branching program has only polynomially many paths from source to
sink.
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As a matter of fact, the above argument actually shows that PIT of depth 2 circuits over
Mk(F) is equivalent to PIT of width-k ABPs.

5.2 Identity testing over commutative algebras

We would now prove�eorem 1.7.�e main idea behind this proof is a structure theorem
for �nite dimensional commutative algebras over a �eld. To state the theorem we need the
following de�nition.

De�nition 5.3. A ringR is local if it has a unique maximal ideal.

An element u in a ringR is said to be a unit if there exist an element u′ such that uu′ = 1,
where 1 is the identity element ofR. An element m ∈R is nilpotent if there exist a positive
integer n withmn = 0. In a local ring the unique maximal ideal consists of all non-units in
R.

�e following theorem shows how a commutative algebra decomposes into local sub-
algebras. �e theorem is quite well known in the theory of commutative algebras. But
since we need an e�ective version of this theorem, we present the proof here for the sake
of completion and clarity.

Ceorem 5.4. A �nite dimensional commutative algebra R over F is isomorphic to a direct
sum of local rings i.e.

R ≅R1 ⊕ . . . ⊕Rℓ

where eachRi is a local ring contained inR and any non-unit inRi is nilpotent.

Proof. If all non-units in R are nilpotents then R is a local ring and the set of nilpotents
forms the unique maximal ideal. �erefore, suppose that there is a non-nilpotent zero-
divisor z inR. (Any non-unit z in a �nite dimensional algebra is a zero-divisor i.e. ∃y ∈R
and y ≠ 0 such that yz = 0.) We would argue that using z we can �nd an idempotent
v /∈ {0, 1} inR i.e. v2 = v.
Assume that we do have a non-trivial idempotent v ∈ R. Let Rv be the sub-algebra

of R generated by multiplying elements of R with v. Since any a = av + a(1 − v) and
Rv∩R(1−v) = {0}, we getR ≅Rv⊕R(1−v) as a non-trivial decomposition ofR. (Note
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that R is a direct sum of the two sub-algebras because for any a ∈ Rv and b ∈ R(1 − v),
a ⋅ b = 0. �is is the place where we use commutativity of R.) By repeating the splitting
process on the sub-algebras we can eventually prove the theorem. We now show how to
�nd an idempotent from the zero-divisor z.

An element a ∈ R can be expressed equivalently as a matrix inMk(F), where k =

dimF(R), by treating a as the linear transformation onR that takes b ∈R to a⋅b.�erefore,
z is a zero-divisor if and only if z as a matrix is singular. Consider the Jordan normal form
of z. Since it is merely a change of basis we would assume, without loss of generality, that
z is already in Jordan normal form. (We won’t compute the Jordan normal form in our
algorithm, it is used only for the sake of argument.) Let,

z =
⎡
⎢
⎢
⎢
⎢
⎣

A 0
0 N

⎤
⎥
⎥
⎥
⎥
⎦

whereA,N are block diagonalmatrices andA is non-singular andN is nilpotent.�erefore
there exits a positive integer t < k such that,

w = zt =
⎡
⎢
⎢
⎢
⎢
⎣

B 0
0 0

⎤
⎥
⎥
⎥
⎥
⎦

where B = At is non-singular.�e claim is, there is an identity element in the sub-algebra
Rw which can be taken to be the idempotent that splits R. To see this �rst observe that
the minimum polynomial of w over F is m(x) = x ⋅m′(x), where m′(x) is the minimum
polynomial of B. Also if m(x) = ∑k

i=1 αix i then α1 ≠ 0 as it is the constant term of m′(x)
and B is non-singular.�erefore, there exists an a ∈ R such that w ⋅ (aw − 1) = 0. We can
take v = aw as the identity element in the sub-algebra Rw. �is v /∈ {0, 1} is the required
idempotent inR.

We are now ready to prove�eorem 1.7.

Ceorem 1.7 (restated.) Given an expression,

P =
d

∏
i=1

(Ai0 + Ai1x1 + . . . + Ainxn)

where Ai j ∈ R, a commutative algebra of constant dimension over F that is given in basis
form, there is a deterministic polynomial time algorithm to test if P is zero.
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Proof. Suppose, the elements e1, . . . , ek form a basis of R over F. Since any element in R
can be equivalently expressed as a k × k matrix over F (by treating it as a linear transfor-
mation), we will assume that Ai j ∈Mk(F), for all i and j. Further, sinceR is given in basis
form, we can �nd these matrix representations of Ai j’s e�ciently.
If every Ai j is non-singular, then surely P ≠ 0. (�is can be argued by �xing an ordering

x1 ≻ x2 ≻ . . . ≻ xn among the variables.�e coe�cient of the leading monomial of P, with
respect to this ordering, is a product of invertible matrices and hence P ≠ 0.) �erefore,
assume that ∃Ai j = z such that z is a zero-divisor i.e. singular. From the proof of�eorem
5.4 it follows that there exists a t < k such that the sub-algebraRw, where w = zt , contains
an identity element v which is an idempotent. To �nd the rightw we can simply go through
all 1 ≤ t < k. We now argue that for the correct choice of w, v can be found by solving a
system of linear equations over F. Let b1, . . . , bk′ be a basis ofRw, which we can �nd easily
from the elements e1w , . . . , ekw. In order to solve for v write it as,

v = ν1b1 + . . . + νk′bk′

where ν j ∈ F are unknowns. Since v is an identity inRw we have the following equations,

(ν1b1 + . . . + νk′bk′) ⋅ bi = bi for 1 ≤ i ≤ k′.

Expressing each bi in terms of e1, . . . , ek, we get a set of linear equations in ν j’s. �us for
the right choice of w (i.e. for the right choice of t) there is a solution for v. On the other
hand, a solution for v for any w gives us an idempotent, which is all that we need.
SinceR ≅Rv⊕R(1−v)we can now split the identity testing problem into two similar

problems, i.e. P is zero if and only if,

Pv =
d

∏
i=1

(Ai0v + Ai1v ⋅ x1 + . . . + Ainv ⋅ xn) and

P(1 − v) =
d

∏
i=1

(Ai0(1 − v) + Ai1(1 − v) ⋅ x1 + . . . + Ain(1 − v) ⋅ xn)

are both zero. What we just did with P ∈ R we can repeat for Pv ∈ Rv and P(1 − v) ∈

R(1− v). By decomposing the algebra each time an Ai j is a non-nilpotent zero-divisor, we
have reduced the problem to the following easier problem of checking if

P =
d

∏
i=1

(Ai0 + Ai1x1 + . . . + Ainxn)
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is zero, where the coe�cients Ai j’s are either nilpotent or invertible matrices.
Let Ti = (Ai0 + Ai1x1 + . . . + Ainxn) be a term such that the coe�cient of x j in Ti , i.e.

Ai j is invertible. And suppose Q be the product of all terms other than Ti . �en P =

Ti ⋅ Q (since R is commutative). Fix an ordering among the variables so that x j gets the
highest priority.�e leading coe�cient of P, under this ordering, is Ai j times the leading
coe�cient of Q. Since Ai j is invertible this implies that P = 0 if and only if Q = 0. (If Ai0

is invertible, we can arrive at the same conclusion by arguing with the coe�cients of the
least monomials of P and Q under some ordering.) In other words, P = 0 if and only if
the product of all those terms for which all the coe�cients are nilpotent matrices is zero.
But this is easy to check since the dimension of the algebra, k is a constant. (In fact, this is
the only step where we use that k is a constant.) If number of such terms is greater than k
then P is automatically zero (this follows easily from the fact that the commuting nilpotent
matrices can be simultaneously triangularized with zeroes in the diagonal). Otherwise,
simplymultiply those terms and check if it is zero.�is takesO(nk) operations overF.

It is clear from the above discussion that identity testing of depth 2 (ΠΣ) circuits over
commutative algebras reduces in polynomial time to that over local rings. As long as the
dimensions of these local rings are constant we are through. But what happens for non-
constant dimensions?�e following result justi�es the hardness of this problem.

Ceorem 5.5. Given a depth 3 (ΣΠΣ) circuit C of degree d and top level fan-in s, it is possible
to construct in polynomial time a depth 2 (ΠΣ) circuit C̃ over a local ring of dimension
s(d − 1) + 2 over F such that C̃ computes a zero polynomial if and only if C does so.

Proof. �e proof is relatively straightforward. Consider a depth 3 (ΣΠΣ) circuit com-
puting a polynomial f = ∑

s
i=1∏

d
j=1 li j, where li j’s are linear functions. Consider the ring

R = F[y1, . . . , ys]/I , where I is an ideal generated by the elements {yi y j}1≤i< j≤s and {yd1 −
ydi }1<i≤s. Observe that R is a local ring, as yd+1i = 0 for all 1 ≤ i ≤ s. Also the elements
{1, y1, . . . , yd1 , y2, . . . , yd−12 , . . . , ys , . . . , yd−1s } form an F-basis of R. Now notice that the
polynomial,

P =
d

∏
j=1

(l j1y1 + . . . + l js ys)

= f ⋅ yd1
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is zero if and only if f is zero. Polynomial P can indeed be computed by a depth 2 (ΠΣ)
circuit overR.

5.3 Weakness of the depth 2model

In Lemma 5.1, we saw that the depth 2 circuit over U2(F) computes L ⋅ f instead of f . Is it
possible to drop the factor L and simply compute f ? In this section, we show that inmany
cases it is impossible to �nd a depth 2 circuit over U2(F) that computes f .

5.3.1 Depth 2model over U2(F)

We will now prove�eorem 1.8. In the following discussion we use the notation (l1, l2) to
mean the ideal generated by two linear functions l1 and l2. Further, we say that l1 is inde-
pendent of l2 if 1 /∈ (l1, l2).

Ceorem 1.8 (restated.) Let f ∈ F[x1, . . . , xn] be a polynomial such that there are no two
linear functions l1 and l2 (with 1 /∈ (l1, l2)) which make f mod (l1, l2) also a linear function.
�en f is not computable by a depth 2 circuit over U2(F).

Proof. Assume on the contrary that f can be computed by a depth 2 circuit over U2(F). In
other words, there is a product sequenceM1⋯Mt of 2× 2 upper-triangular linear matrices

such that f appears as the top-right entry of the �nal product. LetMi =

⎡
⎢
⎢
⎢
⎢
⎣

li1 li2
li3

⎤
⎥
⎥
⎥
⎥
⎦

, then

f = [ 1 0 ]

⎡
⎢
⎢
⎢
⎢
⎣

l11 l12
l13

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

l21 l22
l23

⎤
⎥
⎥
⎥
⎥
⎦

⋯

⎡
⎢
⎢
⎢
⎢
⎣

lt1 lt2
lt3

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

0
1

⎤
⎥
⎥
⎥
⎥
⎦

(5.3)

Case 1: Not all the li1’s are constants.

Let k be the least index such that lk1 is not a constant and li1 = ci for all i < k. To simplify
Equation 5.3, let

⎡
⎢
⎢
⎢
⎢
⎣

B
L

⎤
⎥
⎥
⎥
⎥
⎦

= Mk+1⋯Mt

⎡
⎢
⎢
⎢
⎢
⎣

0
1

⎤
⎥
⎥
⎥
⎥
⎦

[ di Di ] = [ 1 0 ] ⋅M1⋯Mi−1
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Observe that L is just a product of linear functions, and for all 1 ≤ i < k, we have the
following relations.

di+1 =
i

∏
j=1

c j

Di+1 = di li2 + li3Di

Hence, Equation 5.3 simpli�es as

f = [ dk Dk ]

⎡
⎢
⎢
⎢
⎢
⎣

lk1 lk2
lk3

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

B
L

⎤
⎥
⎥
⎥
⎥
⎦

= dk lk1B + (dk lk2 + lk3Dk) L

Suppose there is some factor l of L with 1 /∈ (lk1, l). �en f = 0 mod (lk1, l), which is
not possible. Hence, L must be a constant modulo lk1. For appropriate constants α, β, we
have

f = α lk2 + βlk3Dk (mod lk1) (5.4)

We argue that the above equation cannot be true by inducting on k. If lk3 was inde-
pendent of lk1, then f = α lk2 mod (lk1, lk3) which is not possible. �erefore, lk3 must be a
constant modulo lk1. We then have the following (reusing α and β to denote appropriate
constants):

f = α lk2 + βDk (mod lk1)

= α lk2 + β (dk−1 l(k−1)2 + l(k−1)3Dk−1) (mod lk1)

Ô⇒ f = (α lk2 + βdk−1 l(k−1)2) + βl(k−1)3Dk−1 (mod lk1)

�e last equation can be rewritten in the form of Equation 5.4 with βlk3Dk replaced by
βl(k−1)3Dk−1. Notice that the expression (α lk2 + βdk−1 l(k−1)2) is linear just like α lk2. Hence
by using the argument iteratively we eventually get a contradiction at D1.

Case 2: All the li1’s are constants.

In this case, Equation 5.3 can be rewritten as

f = [ dt Dt ]

⎡
⎢
⎢
⎢
⎢
⎣

ct lt2
lt3

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

0
1

⎤
⎥
⎥
⎥
⎥
⎦

= dt lt2 + lt3Dt
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�e last equation is again of the form in Equation 5.4 (without the mod term) and hence
the same argument can be repeated here as well to give the desired contradiction.

�e following corollary provides some explicit examples of functions that cannot be
computed.

Corollary 5.6. A depth 2 circuit over U2(F) cannot compute the polynomial x1x2 + x3x4 +
x5x6. Other examples include well known functions like detn and permn, the determinant
and permanent polynomials, for n ≥ 3.

Proof. It su�ces to show that f = x1x2+x3x4+x5x6 satisfy the requirement in�eorem 1.8.
To obtain a contradiction, let us assume that there does exist two linear functions l1

and l2 (with 1 /∈ (l1, l2)) such that f mod (l1, l2) is linear. We can evaluate f mod (l1, l2) by
substituting a pair of the variables in f by linear functions in the rest of the variables (as
dictated by the equations l1 = l2 = 0). By the symmetry of f , we can assume that the pair is
either {x1, x2} or {x1, x3}.
If x1 = l ′1 and x3 = l ′2 are the substitutions, then l ′1x2 + ł′2x4 can never contribute a term

to cancel o� x5x6 and hence f mod (l1, l2) cannot be linear.
Otherwise, let x1 = l ′1 and x2 = l ′2 be the substitutions. If f mod (l1, l2) = l ′1 l ′2+x3x4+x5x6

is linear, there cannot be a common xi with non-zero coe�cient in both l ′1 and l ′2. Without
loss of generality, assume that l ′1 involves x3 and x5 and l ′2 involves x4 and x6. But then the
product l ′1 l ′2 would involve terms like x3x6 that cannot be cancelled, contradicting linearity
again.

5.3.2 Depth 2model overM2(F)

In this section we show that the power of depth 2 circuits is very restrictive even if we take
the underlying algebra to beM2(F) instead of U2(F). In the following discussion, we will
refer to a homogeneous linear function as a linear form.

De�nition 5.7. A polynomial f of degree n is said to be r-robust if f does not belong to any
ideal generated by r linear forms.

For instance, it can be checked that detn and permn, the symbolic determinant and per-
manent of an n × n matrix, are (n − 1)-robust polynomials. For any polynomial f , we
will denote the d th homogeneous part of f by [ f ]d . And let (h1,⋯, hk) denote the ideal
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generated by h1,⋯, hk. For the following theorem recall the de�nition of degree restriction
(De�nition 1.9) given in the introduction.

Ceorem 5.8. A polynomial f of degree n, such that [ f ]n is 5-robust, cannot be computed
by a depth 2 circuit overM2(F) under a degree restriction of n.

We prove this with the help of the following lemma, which basically applies Gaussian col-
umn operations to simplify matrices.

Lemma 5.9. Let f1 be a polynomial of degree n such that [ f1]n is 4-robust. Suppose there is
a linear matrix M and polynomials f2, g1, g2 of degree at most n satisfying

⎡
⎢
⎢
⎢
⎢
⎣

f1
f2

⎤
⎥
⎥
⎥
⎥
⎦

= M
⎡
⎢
⎢
⎢
⎢
⎣

g1
g2

⎤
⎥
⎥
⎥
⎥
⎦

�en, there is an appropriate invertible column operation A such that

M ⋅ A =

⎡
⎢
⎢
⎢
⎢
⎣

1 h2
c3 h4 + c4

⎤
⎥
⎥
⎥
⎥
⎦

where c3, c4 are constants and h2, h4 are linear forms.

We will defer the proof of this lemma to the end of this section, and shall use it to prove
�eorem 5.8.

Proof of�eorem 5.8. Assume, on the contrary, that we do have such a sequence of ma-
trices computing f . Since only one entry is of interest to us, we shall assume that the �rst
matrix is a row vector and the last matrix is a column vector. Let the sequence of minimum
length computing f be the following:

f = v̄ ⋅M1M2⋯Md ⋅ w̄

UsingLemma5.9we shall repeatedly transform the above sequence by replacingMiMi+1

by (MiA)(A−1Mi+1) for an appropriate invertible column transformation A. Since Awould
consist of just constant entries,MiA and A−1Mi+1 continue to be linear matrices.

To begin, let v̄ = [l1, l2] for two linear functions l1 and l2. And let [ f1, f2]
T
= M1⋯Mdw̄.

�en we have,
⎡
⎢
⎢
⎢
⎢
⎣

f
0

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

l1 l2
0 0

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

f1
f2

⎤
⎥
⎥
⎥
⎥
⎦
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Hence, by Lemma 5.9, we can assume v̄ = [1, h] and hence f = f1+h f2. By theminimality of
the sequence, h ≠ 0.�is forces f1 to be 4-robust and the degree restrictionmakes [ f2]n = 0.
Let [g1, g2]T = M2⋯Mdw̄. �e goal is to translate the properties that [ f1]n is 4-robust

and [ f2]n = 0 to the polynomials g1 and g2. Translating these properties would show each
Mi is of the form described in Lemma 5.9.�us, inducting on the length of the sequence,
we would arrive at the required contradiction. In general, we have an equation of the form

⎡
⎢
⎢
⎢
⎢
⎣

f1
f2

⎤
⎥
⎥
⎥
⎥
⎦

= Mi

⎡
⎢
⎢
⎢
⎢
⎣

g1
g2

⎤
⎥
⎥
⎥
⎥
⎦

Since [ f1]n is 4-robust, using Lemma 5.9 again, we can assume that

⎡
⎢
⎢
⎢
⎢
⎣

f1
f2

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

1 h2
c3 c4 + h4

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

g1
g2

⎤
⎥
⎥
⎥
⎥
⎦

(5.5)

by reusing the variables g1, g2 and others. Observe that in the above equation if h4 = 0 then
Mi−1Mi still continues to be a linear matrix (since, by induction,Mi−1 is of the form as dic-
tated by Lemma 5.9) and that would contradict the minimality of the sequence.�erefore
h4 ≠ 0.

Claim: c3 = 0 (by comparing the nth homogeneous parts of f1 and g1, as explained below).
Proof: As h4 ≠ 0, the degree restriction forces deg g2 < n. And since deg f2 < n, we have
the relation c3[g1]n = −h4[g2]n−1. If c3 ≠ 0, we have [g1]n ∈ (h4), contradicting robustness
of [ f1]n as then [ f1]n = [g1]n + h2[g2]n−1 ∈ (h2, h4).

�erefore Equation 5.5 gives,

⎡
⎢
⎢
⎢
⎢
⎣

f1
f2

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

1 h2
0 c4 + h4

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

g1
g2

⎤
⎥
⎥
⎥
⎥
⎦

with h4 ≠ 0. Also, since [ f2]n+1 = [ f2]n = 0 this implies that [g2]n = [g2]n−1 = 0. Hence,
[g1]n = [ f1]n is 4-robust. �is argument can be extended now to g1 and g2. Notice that
the degree of g1 remains n. However, since there are only �nitely many matrices in the
sequence, there must come a point when this degree drops below n. At this point we get a
contradiction as [g1]n = 0 (reusing symbol) which contradicts robustness.

We only need to �nish the proof of Lemma 5.9.
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Proof of Lemma 5.9. Suppose we have an equation of the form

⎡
⎢
⎢
⎢
⎢
⎣

f1
f2

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

h1 + c1 h2 + c2
h3 + c3 h4 + c4

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

g1
g2

⎤
⎥
⎥
⎥
⎥
⎦

(5.6)

On comparing degree n + 1 terms, we have

h1[g1]n + h2[g2]n = 0

h3[g1]n + h4[g2]n = 0

If h3 and h4 (a similar reasoning holds for h1 and h2)were not proportional (i.e. notmultiple
of each other), then the above equation would imply [g1]n , [g2]n ∈ (h3, h4).�en,

[ f1]n = h1[g1]n−1 + h2[g2]n−1 + c1[g1]n + c2[g2]n ∈ (h1, h2, h3, h4)

contradicting the robustness of [ f1]n.�us, h3 and h4 (aswell as h1 and h2) are proportional,
in the same ratio as [−g2]n and [g1]n. Using an appropriate column operation, Equation 5.6
simpli�es to

⎡
⎢
⎢
⎢
⎢
⎣

f1
f2

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

c1 h2 + c2
c3 h4 + c4

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

g1
g2

⎤
⎥
⎥
⎥
⎥
⎦

If c1 = 0, then together with [g2]n = 0 we get [ f1]n = h2[g2]n−1 contradicting robustness.
�erefore c1 ≠ 0 and another column transformation would get it to the form claimed.
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A deterministic algorithm for PIT continues to evade various attempts by researchers. Nu-
merous ideas have been employed for randomized algorithms and for deterministic algo-
rithms in restricted settings. Partial evidence for the problem’s hardness has also be pro-
vided. In this thesis, we shed some more light on the problem and a possible attack on
general ΣΠΣ circuits.

We give a new perspective to identity testing of depth 3 arithmetic circuits by showing
an equivalence to identity testing of depth 2 circuits over U2(F). �e reduction implies
that identity testing of a width-2 algebraic branching program is at least as hard as identity
testing of depth 3 circuits.

�e characterization in terms of depth 2 circuits overU2(F) seemmore vulnerable than
general depth 3 circuits. Can we obtain new (perhaps easier) proofs of known results using
the characterization in terms of linear matrices, or width 2-ABPs?

We also give a deterministic polynomial time identity testing algorithm for depth 2
circuits over any constant dimensional commutative algebra. Our algorithm crucially ex-
ploits an interesting structural result involving local rings. �is naturally poses the fol-
lowing question — Can we use more algebraic insight on non-commutative algebras to
solve the general problem? �e solution for the commutative case does not seem to give
any interesting insight into the non-commutative case. But we have a very speci�c non-
commutative case at hand.�e question is - Is it possible to use properties very speci�c to
the ring of 2 × 2 matrices to solve identity testing for depth 3 circuits?

We also show that PIT over depth 2 circuits over higher dimensional commutative al-
gebras capture ΣΠΣ circuits completely. Does this case falter to mathematics as well? Can
this approach be used to get a deterministic polynomial time PIT for depth 3 circuits.
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Hopefully, the new ideas outlined in this thesis renders useful to an algorithm for depth
3 circuits.
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