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Participatory budgeting is an exciting new challenge in social choice theory, where members of a community

directly vote and determine how a �xed budget should be distributed among candidates. Participatory bud-

geting mechanisms need to balance between many di�erent considerations, including e�ciency, complexity

of information elicited from agents, and manipulability. We consider the utilitarian social welfare of mecha-

nisms for participatory budgeting, measured by the distortion. We show that for a particular input format

called threshold approval voting, if the thresholds for agents are chosen independently, there is a mechanism

with nearly optimal distortion when the number of voters is large. �reshold mechanisms are potentially

manipulable, but place low informational burden on voters.

We then consider truthful mechanisms. For the widely-studied class of ordinal mechanisms which elicit the

rankings of candidates from each agent, we show that truthfulness essentially imposes no additional loss of

welfare. We give truthful mechanisms with distortion O(
√
m logm) when all alternatives have the same cost,

and O(
√
m logm) distortion in the general case, where m is the number of candidates. �ese results nearly

match known lower bounds on distortion for ordinal mechanisms that ignore strategic behaviour. Further, we

show that for a natural class of truthful mechanisms, our �rst upper bound is tight. Lastly, for the case where

agents decide between two candidates, we give tight bounds on the distortion for truthful mechanisms, both

randomized as well as deterministic.

1 INTRODUCTION
How should a group of agents, presented with a set of candidates, collectively decide which

candidates to select? �is problem of deciding how to aggregate the preferences of multiple rational

agents is the fundamental challenge in social choice theory, and has implications for diverse �elds,

including government formation, recommendation systems, scheduling, and resource allocation.

A recent and appealing application of preference aggregation is participatory budgeting. �is

is an example of direct democracy, and enables voters and those directly a�ected to decide how

budgets available to their local government should be spent. In the US, funds worth more than

$250 million have been allocated via participatory budgeting in more than 440 community projects.

Cities as diverse as Porto Alegre in Brazil to Chicago in the US use participatory budgeting to

fund projects. Researchers in computational social choice have contributed signi�cantly to this

e�ort, both in the design and theoretical analysis of mechanisms, as well as building systems for

participatory budgeting (see, e.g., [Caragiannis et al., 2017, Goel et al., 2016]).

�e classical approach for designing mechanisms for preference aggregation is axiomatic: We

identify properties that are intuitively fair and appealing, and then design mechanisms that satisfy

these properties. Typical properties that are studied include Pareto-optimality, truthfulness, and

monotonicity
1
. Many of these results require that the agents possess, in addition to ordinal

preferences over the candidates, cardinal utilities for the candidates. �is is particularly true for

randomized mechanisms — a prominent example being the characterization of truthful randomized

mechanisms [Gibbard, 1977].

1
Informally, a mechanism is Pareto-optimal if no other outcome increases the welfare of all the agents, it is truthful if every

agent maximizes its utility by reporting preferences truthfully, and monotone if increasing the preference by an agent for a

candidate does not decrease the probability that the candidate is selected.
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In many applications, the utilities of di�erent agents have a common measure and may be

compared to each other. �is is a standard assumption, e.g., in mechanism design, where preferences

of an agent can be expressed as money. In transportation systems, the time spent in transit is o�en

used as a measure of utility, and the aggregate time spent as a measure of e�ciency (e.g., [Mclean,

2016]). When interpersonal comparisons of utility are meaningful, the aggregate utility, or utilitarian

welfare, is a commonly used measure to design and evaluate mechanisms. Good utilitarian welfare

does not substitute for other properties, but a mechanism with bad utilitarian welfare arguably has

li�le use in most practical applications.

Our work focuses on the utilitarian welfare of mechanisms. We use the concept of distortion,

de�ned by Procaccia and Rosenschein [2006] approximately as the ratio of the maximum welfare

obtained by a budget-feasible set, to the welfare obtained by the mechanism, in the worst case over

all possible inputs
2
. �e de�nition naturally extends to randomized mechanisms by considering

the expected welfare obtained by the mechanism. Distortion is a particularly appealing measure

since it is similar to the approximation ratio studied in theoretical computer science as a measure

of the e�ciency of algorithms. While the approximation ratio measures the loss in e�ciency due

to computational complexity, the distortion measures the loss due to other constraints such as

truthfulness, incomplete information obtained from the agents, or computational complexity.

In fact, if our objective is solely to maximize the utilitarian welfare (equivalently, to minimize

the distortion), this is easily achieved once we elicit the cardinal utility each agent obtains from the

candidates. However, this approach is very problematic for many reasons. Firstly, agents in many

se�ings are strategic, and may report their utilities falsely to the mechanism if doing so would

increase their actual utility. Strategic voting in elections is a signi�cant problem, when candidates

supporting a less-popular third candidates may actually vote for one of the other candidates, to

prevent their least desirable candidate ge�ing elected. Secondly, even assuming that agents are

truthful, the elicitation of cardinal utilities is a complex task: the human agent needs to be explained

the scale being used, and must convert the implicit utilities for all the candidates to explicit values on

this scale. �e problem of utility elicitation is itself an active area of research (e.g., see [Chajewska

et al., 2000, Wakker and Dene�e, 1996].

�us, our objective in this paper is to design mechanisms for preference aggregation, and

particularly for participatory budgeting, that maximize utilitarian welfare in the presence of these

constraints — truthfulness and the complexity of information elicited from the agents.

1.1 Our Contribution
Our �rst result is a randomized mechanism that obtains distortion close to 1, when the number

of agents is large. In this mechanism, we elicit from each agent the subset of candidates with

utility above a given threshold. �is particular format for preference elicitation (or input format) is

studied by Benade et al. [2017]; for the mechanism they study, however, they give upper and lower

bounds ofO(log
2m) and Ω(logm/log logm) on the distortion wherem is the number of candidates.

We show that a subtle modi�cation to the mechanism — when the threshold for the agents is

i.i.d., rather than identical — allows us to beat the previous lower bound and give a near-optimal

mechanism when the number of agents is large. �e informational load on each agent is the same

as the earlier mechanism.

In fact, our mechanism can be modi�ed to further reduce the informational load on agents to

a binary input. Instead of eliciting all candidates above a given threshold, we present each agent

with a threshold and a single candidate, and ask if the agent’s utility for the candidate is above

2
Note that the distortion of any mechanism is at least 1, and the closer it is to 1 the be�er.
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the threshold. We give a mechanism that, even with this severely limited information, obtains

distortion close to 1, again when the number of agents is large.

�reshold mechanisms, despite our near-optimal results, su�er from two weaknesses: they

depend on an explicit expression of cardinal utilities, and they are not truthful. While much of the

literature in social choice theory relies on the existence of implicit cardinal utilities, especially when

considering randomized mechanisms, mechanisms that require expression of these cardinal utilities

are few. We therefore next consider the extensively-studied class of ordinal mechanisms, where

agents order the candidates according to their preference
3
. For these mechanisms, we consider the

e�ect of imposing truthfulness on the e�ciency, measured as in previous work by the distortion.

For ordinal mechanisms, we show that insisting on truthfulness imposes essentially no loss on

the distortion. Prior work by Boutilier et al. [2015] shows that any ordinal mechanism has distortion

Ω(
√
m), even when a single candidate is to be selected and ignoring strategic behaviour. We show

that for the k-selection problem, when a subset of candidates of size k is to be selected, there is a

truthful ordinal mechanism with distortion O(
√
m logm). Given the strong characterizations of

truthful mechanisms, we �nd this to be quite surprising [Gibbard, 1977]. We further extend this

mechanism to the participatory budgeting problem, when candidates have costs and a budget-

feasible subset is to be selected. For this, we give a truthful ordinal O(
√
m logm) mechanism. �us,

while measuring worst-case e�ciency, truthfulness comes nearly for free. We note that Benade

et al. [2017] give an ordinal mechanism with O(
√
m logm) distortion ignoring strategic behaviour.

Our result shows this upper bound can be obtained even by truthful mechanisms.

Procaccia [2010] studies how well truthful ordinal mechanisms can approximate mechanisms

based on positional scoring rules
4
, such as Borda, measured by the approximation ratio. Our result

for the 1-selection problem has an interesting corollary: our mechanism, based on the harmonic

scoring function [Boutilier et al., 2015], is in fact a universal approximation for mechanisms based

on scoring rules. �at is, our mechanism does not require the scoring rule as input. However in

expectation, the candidate selected by the mechanism has score that is within an O(
√
m logm)

factor of the candidate with maximum score, for every scoring rule. �is follows by viewing the

positional score of a candidate as the utility every agent has for the candidate. Procaccia shows that

for truthful mechanisms and the Borda scoring rule, Ω(
√
m) is a lower bound on the approximation

ratio.

In fact, we show that for a class of truthful mechanisms that are unilaterally neutral between

candidates, i.e. are not biased in favour of particular candidates in a strong sense, the bound of

O(
√
m logm) we obtain for the 1-selection problem above is tight. �e class of truthful unilaterally-

neutral mechanisms includes all truthful mechanisms with distortion o(m) previously studied that

we are aware of. To obtain this lower bound, we extend a characterization of truthful ordinal

mechanisms to unilaterally neutral mechanisms. We then give a series of instances, each of which

gives a lower bound on one parameter of the characterization, and shows that only mechanisms

based on the harmonic scoring functions of Boutilier et al. [2015] can obtainO(
√
m logm) distortion.

Finally, we show that even such mechanisms have lower bound Ω(
√
m logm) on the distortion.

Lastly, we consider mechanisms when agents are presented with two candidates. A large amount

of work has focused on this case when the agents’ utilities are drawn from known distributions; we

discuss these results in the next section. For the worst-case se�ing, with no prior information about

agent utilities, it is easy to see that any truthful mechanism must be ordinal. We give a truthful

randomized mechanism with distortion 1.5, and show this is a lower bound on any ordinal (and

3
E.g., in order of decreasing implicit cardinal utility.

4
A positional scoring rule is given by a vector ®α = (α1, α2, . . . , αm ) of nonnegative integer values. A candidate ranked r

by an agent is awarded αr points. �e candidate with the maximum total points is selected by the mechanism.
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hence truthful) mechanism as well. Interestingly, the randomized version of majority, which picks

each candidate with probability proportional to the number agents that prefer it, can be shown

to have distortion strictly greater than 1.5. Instead, our mechanism applies a transformation to

the number of agents that prefer a candidate, to obtain the probability with which the candidate

is picked. For truthful deterministic mechanisms, we show that the lower and upper bound on

distortion is 3.

1.2 Related Work
Distortion as a measure of loss of welfare due to the input format is introduced by Procaccia and

Rosenschein [2006], who show that no mechanism has unit distortion, even in simple instances,

and for many popular ordinal mechanisms such as Borda and Veto, the distortion is unbounded.

�ey de�ne a related measure called misrepresentation that restricts the cardinal utilities, and

obtain positive results for this measure.

Boutilier et al. [2015] consider randomized ordinal mechanisms for the unit-cost case, when

a single alternative is to be selected, and show a lower bound of Ω(
√
m) and an upper bound of

O(
√
m log

∗m) on the distortion. �ey give a randomized mechanism which uses a harmonic scoring

function with distortion O(
√
m logm). We use this scoring function in our work as well. Further,

they show that the ordinal mechanism that obtains least distortion in an instance can be computed

in polynomial time. Boutilier et al. also consider a distributional model for utilities, and show

that for neutral distributions, the optimal ordinal mechanism is a scoring function. Finally, they

develop a learning-theoretical model, and analyse the sample as well as computational complexity

of optimal mechanisms.

For participatory budgeting, when candidates have costs and a budget-feasible subset of items is

to be selected, Benade et al. [2017] analyse the distortion for di�erent mechanisms. For ordinal

mechanisms they show that the distortion is bounded from above by O(
√
m logm), and below

by Ω(
√
m). �ey also introduce a new input format called threshold approval voting, where a

real-valued threshold is �xed and each agent reports the candidates with utility above the threshold.

For this input format, the distortion is shown to be bounded by O(log
2m) and Ω(logm/log logm).

If a single candidate is to be selected, a mechanism with distortion O(logm) is given.

Caragiannis et al. [2017] study the distortion of ordinal mechanisms when a size-k subset of

candidates is to be selected, and the welfare of a subset for an agent is the maximum utility of a

candidate in the subset. �is is in contrast to our problem, when the welfare of a subset for an

agent is the sum of utilities of candidates in the subset. In this se�ing, Caragiannis et al. provide

nearly tight bounds on the distortion for both deterministic and randomized mechanisms.

�e previous papers did not consider the e�ect of strategic misreporting by agents. Truthful

ordinal mechanisms are characterized by Gibbard and Sa�erthwaite [Gibbard, 1973, 1977, Sa�erth-

waite, 1975]. Procaccia [2010] studies the use of truthful randomized mechanisms to approximate

mechanisms obtained from prominent scoring rules. A randomized mechanism is said to be a

γ -approximation of a scoring rule if the candidate chosen by the mechanism has expected score

within 1/γ fraction of the maximum score. Procaccia shows that a class of mechanisms called

positional scoring rules, which includes Plurality, can be approximated within O(
√
m), and this is

tight. Borda, in particular can be approximated to within almost a factor of 2. He shows similar

results for Copeland and Lull, and a lower bound of Ω(m) for Maximin.

�e mechanism used in many applications of participatory budgeting is k-approval voting, where

agents select a subset of the candidates of size k , and the mechanism selects the candidates with

most votes that are also feasible given the budget. In k-approval voting, voters may not consider the

costs of the candidate. In an e�ort to be�er align the constraints faced by the voters with those faced
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by the mechanism, Goel et al. [2015, 2016] introduce knapsack voting, where each voter selects a

budget-feasible subset of candidates of arbitrary size. In di�erent models of utility, and assuming

that a candidate can be allocated fractionally, the authors show that knapsack voting is truthful

and welfare-maximizing. �ey also show that empirically, knapsack voting appears to outperform

k-approval voting. When a single candidate is to be selected, and agent costs (rather than utilities)

form a metric, constant upper and lower bounds on the distortion are known [Anshelevich et al.,

2015, Anshelevich and Postl, 2016], including for truthful mechanisms [Feldman et al., 2016].

A number of papers consider ordinal mechanisms that obtain optimal welfare under distributional

assumptions on the utility functions of agents. For two candidates, Rae [1969] considers mechanisms

when each agent prefers one candidate to the other with equal and independent probability [Rae,

1969]. Rae shows that among threshold mechanisms, which select a candidate if the number of

votes for the candidate exceed a threshold, simple majority maximizes the expected welfare. If a

candidate is preferred with greater probability than the other, simple majority may not maximize

welfare. �ese results were extended to more general distributions in later work [Badger, 1972,

Curtis, 1972, Scho�eld, 1972]. Schmitz and Tröger show that if utilities are i.i.d. across agents and

candidates, majority rules and variants of these rules maximize the welfare among all truthful

mechanisms [Schmitz and Tröger, 2012]. �is may not be true if agent utilities are correlated.

�ey also characterize truthful mechanisms in this se�ing, showing in particular that truthful

mechanisms must ignore the utilities agents have for candidates, and consider as input only

the preference order. �ese results are further extended to independently (but not identically)

distributed utilities [Azrieli and Kim, 2014].

If agents’ utilities for candidates are i.i.d., the optimal ordinal mechanisms for more than two

candidates and for three di�erent notions of welfare — utilitarian social welfare, maximin, and

maximax — are known to be scoring rules [Apesteguia et al., 2011]. �is work ignores strategic

behaviour. Later work by Kim et al. [2012] shows that the social welfare obtained by any ordinal

ex-ante Pareto-e�cient mechanism, including the previous mechanisms, is also obtained by an

ordinal Bayesian incentive-compatible (BIC) mechanism [Kim et al., 2012]. �is is more generally

true when each agent’s utilities are neutral with regard to candidates, i.e., for an agent and vector

u ∈ Rm , any permutation of u is equally likely to be the utility vector for the agent. Kim also shows

that ordinal mechanisms may not maximize social welfare among BIC mechanisms. Speci�cally, he

gives an example with three alternatives, where a BIC mechanism that considers agent utilities has

strictly greater social welfare than any ordinal BIC mechanism.

2 NOTATION AND PRELIMINARIES
In the participatory budgeting problem, a population of agents N of size n is faced with the problem

of selecting candidates from a set C of sizem. We will use i , j , k for agents, and x , y, z for candidates.

Each candidate x has nonnegative cost cx . �ere is a �xed budget B = 1, and the set of candidates

selected must have total cost at most 1; we say that such a set of candidates is feasible. In the

unit-cost case, each candidate has cost 1, and hence at most one candidate is to be selected. In the

k-selection problem for k ∈ Z+, each candidate has cost 1/k .

Each agent has a utility function ui : C → R+ so that the sum of utilities

∑
x ∈C ui (x) for each

agent is exactly 1. �is is a standard normalization assumption to ensure that all agents have equal

in�uence. For technical reasons we will assume that if x , y, then ui (x) , ui (y) for any agent i . Let

®u := (ui )i ∈N be a vector of utility functions, or a utility pro�le, for the agents. For a candidate x , we

de�ne the utilitarian social welfare (or simply welfare) uw(x) to be

∑
i ui (x), the sum of utilities of

agents for that candidate. �e welfare of a set of candidates is the sum of welfare of the candidates

in the set. Agent i’s utility for a subset S ⊆ C is ui (S) :=
∑

x ∈S ui (x).
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We use λ = ((ui )i ∈N , (cx )x ∈C) to refer to an instance of participatory budgeting, and Λ as the set

of all possible instances. For an instance λ, let F (λ) be the set of all feasible subsets of C. De�ne

S∗(λ) as the feasible subset with maximum welfare, and OPT(λ) as the welfare of this set. If the

instance λ is clear, we use S∗ and OPT to simplify notation.

Input formats and distortion. Our objective is to design mechanisms, possibly randomized, to

select feasible subsets of maximum welfare. If the utility functions of the agents were available to

the mechanism, this would be a simple problem
5
. However, keeping in mind that human agents �nd

it burdensome to accurately report their utility functions, we consider mechanisms with di�ering

input formats, that describe what information is elicited from the agents.

• Independent threshold approval votes: Each agent i is given a real-valued threshold Ti and

returns a subset Si ⊆ C. We say a utility pro�le ®u = (ui )i ∈N and the subsets ®S = (Si )i ∈N
are consistent, wri�en ®u � ®S , if Si = {x ∈ C : ui (x) ≥ Ti }, i.e., Si is the set of candidates

with utility greater than or equal to agent i’s threshold for all i .
• Binary threshold approval votes: Each agent i is given a real-valued threshold Ti and a

candidate xi , and returns a bit bi . We say a utility pro�le ®u = (ui )i ∈N and the vector

(®b, ®S) = (bi , Si )i ∈N are consistent, wri�en ®u � (®b, ®S), if bi = 1 implies ui (xi ) ≥ Ti .
• Ordinal votes: Each agent i returns a linear order ≺i of C. Let

#»≺ := (≺i )i ∈N . We say that
#»≺

is consistent with utility pro�le ®u = (ui )i ∈N , wri�en
#»≺ � ®u, if for each agent i , ui (x) > u(y)

implies x ≺i y. A mechanism with this input format is called an ordinal mechanism.

We note that there is thus a di�erence between an instance of participatory budgeting and an

input to a mechanism. While the former includes the utility function for each agent, the la�er

may not, depending on the input format. Further, the costs for candidates (cx )c ∈C will always be

implicit inputs to the mechanism.

Given an input format, a mechanism µ is de�ned as a map, possibly randomized, from possible

inputs to distributions over feasible subsets of C. We consider as our primary measure of e�ciency

of a mechanism its distortion [Benade et al., 2017, Procaccia and Rosenschein, 2006]. To de�ne

distortion formally, consider the ordinal votes input format. �en for a mechanism µ and input

I =
(

#»≺ , (cx )x ∈C
)
, the distortion is de�ned as the worst case ratio over all possible utility functions

consistent with
#»≺ of the maximum utility of a feasible subset, to the expected utility obtained by

the mechanism.

dist(µ, I ) := sup

®u� #»≺

max{∑i ∈N , x ∈S ui (x) :

∑
x ∈S cx ≤ 1}

ES∼µ( #»≺ )
∑

i ∈N , x ∈S
∑

i ∈N ui (x)
.

Correspondingly, the distortion of a mechanism is de�ned as the maximum distortion over all

possible inputs.

dist(µ) := sup

I
dist(µ, I ) .

For mechanisms where the inputs are obtained deterministically, even when the mechanism is

randomized, taking the supremum over all utility functions consistent with the mechanism input is

appropriate. However, in Section 3 we will consider mechanisms for the threshold approval input

formats when the thresholds are chosen randomly, and hence, the inputs themselves are random

variables. For these mechanisms, we show that for any instance, in expectation over the input to

5
Ignoring computational considerations. Since the problem is NP-hard even for the case of a single agent when we are

given the utility function, we will mostly ignore computational considerations. Note however that the mechanisms we

describe in Sections 4 and 5 run in polynomial time.
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the mechanism, the welfare obtained is large. Here, taking the supremum over all utility functions

consistent with the mechanism input would in e�ect remove the randomization and we would be

doing a worst-case analysis — not just over inputs, but also over the random bits, which defeats the

purpose of randomization.

For mechanisms where the input is itself randomized, we therefore propose and use the following

simpler de�nition of distortion
6
:

dist(µ) := sup

λ∈Λ

OPT(λ)
ES∼µ(λ)[uw(S)]

�e de�nition is particularly appealing because it corresponds to the approximation ratio studied

for randomized algorithms. �e di�erence is that for the approximation ratio, typically the constraint

is computational complexity, whereas for us there are many constraints, including the input format,

computational complexity, and truthfulness.

Truthfulness. Truthful ordinal mechanisms are our focus in Section 4, and we de�ne truthfulness

with respect to these mechanisms. We say a mechanism is truthful if in any instance, each agent

obtains maximum utility in expectation by reporting the linear order ≺i consistent with its utility

function. Formally, for any instance λ = ((ui )i ∈N , (cx )x ∈C), let
#»≺ ′ be an arbitrary vector of linear

orders over C, and let
#»≺ be

#»≺ ′ with the ith component replaced by the linear order consistent with

ui . �en mechanism µ is truthful if:

ES∼µ( #»≺ )[ui (S)] ≥ ES∼µ( #»≺ ′)[ui (S)]
where we assume that the costs cx are implicit inputs to the mechanism. Note that we do not insist

that the components of
#»≺ ,

#»≺ ′ other than the ith are consistent with the utility functions of the

other agents, hence we require truthfulness to be a dominant strategy.

For a nonnegative integer n, we use [n] to denote the set {1, . . . ,n}. Hn =
∑

i ∈[n] 1/i is the nth

Harmonic number, and log(n + 1) ≤ Hn ≤ 1 + logn. For a set S of candidates, we de�ne Sc as the

complement C \ S .

3 INDEPENDENT THRESHOLD MECHANISMS
We start with a mechanism that, when the number of agents is large, gives nearly optimal distortion.

Our mechanism uses the idea of randomized thresholds as in Benade et al. [2017]. but presents

each agent with a di�erent randomized threshold, and for large enough agents obtains a solution

with distortion is close to 1. We note that if the same threshold were presented to all the agents,

Benade et al. show a lower bound of Ω(logm/log logm) on the distortion. Our mechanism thus

places the same informational load on each agent, but obtains a signi�cantly lower distortion.

Theorem 3.1. Let δ = m2

√
18 log(2mn)

n . Mechanism 1 returns set S so that uw(S) ≥ OPT(1 − δ )
with probability at least (1 − 1/n).

Proof. We note that for each agent i and candidate x , since the threshold Ti is drawn from the

uniform distribution over [0, 1],

E[Vi,x |x ∈ Si ] = E[2Ti |ui (x) ≥ Ti ] = ui (x)
and similarly,

6
Benade et al. [2017] also analyse a version of independent threshold approval votes when each agent gets the same

threshold. �eir mechanism input is thus also randomized, and in communication with the authors it appears the distortion

bounds they obtain hold under the simpler de�nition of distortion.
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Mechanism 1 Independent �resholds Mechanism

1: for each agent i do
2: Ti ∼ U[0, 1] . Randomized threshold for agent i
3: Si ← {x ∈ C : ui (x) ≥ Ti } . agent i returns all candidates with value above the threshold

4: for each candidate x ∈ C do
5: if x ∈ Si then
6: Vi,x ← 2Ti
7: else
8: Vi,x ← 2Ti − 1

9: V̄x ← 1

n
∑

i Vi,x for each candidate x
10: return S ← arg maxT ⊆C:

∑
x∈T cx ≤1{

∑
x ∈T V̄x }

E[Vi,x |x < Si ] = E[2Ti − 1|ui (x) < Ti ] = 2

(
ui (x) +

1 − ui (x)
2

)
− 1 = ui (x) .

Hence the random variablesVi,x each have expected value ui (x), and are independent across agents.

Further, each Vi,x lies in the interval [−1, 2]. Let Ūx = uw(x)/n. Using Hoe�ding’s inequality, we

see that for each candidate x ,

P[|V̄x − Ūx | ≥ ν ] ≤ 2 exp

(
−2nν2

9

)
Choose ν =

√
9 log(2mn)

2n . �en for each x , P[|V̄x − Ūx | ≥ ν ] ≤ 1/(mn) and using the union bound,

we obtain that with probability at least 1 − 1/n,

|Ūx − V̄x | ≤ ν =
δ

2m2
(1)

holds simultaneously for all candidates. We assume this is the case for the remainder of the proof.

Noting that the sets S and S∗ contain at mostm candidates,

OPT = n
∑
x ∈S∗

Ūx ≤ n
∑
x ∈S∗

V̄x + nmν ≤ n
∑
x ∈S

V̄x + nmν ≤
∑
x ∈S

Ūx + 2nmν = uw(S) + 2nmν

where the second inequality follows from the choice of the set S and the �rst and third come

from Eqn. (1). Since ν = δ/(2m2), OPT ≤ uw(S) + nδ/m. Since OPT ≥ n/m, we get that uw(S) ≥
OPT − δOPT, completing the proof. �

Corollary 3.2. Given any ϵ > 0 for �xedm and su�ciently large n, the distortion of Mechanism 1

is less than 1 + ϵ .

Proof. By �eorem 3.1 the distortion of Mechanism 1 is at most
n

(n−1)(1−δ ) which, for �xedm,

tends to 1 as n →∞. �

An independent threshold mechanism with binary inputs
As in Mechanism 1, in Mechanism 2 we select an independent random threshold for each agent.

However, instead of asking them about all the candidates, we ask them about only one candidate.

Which particular candidate we ask about is e�ectively random because we implement it by randomly

equipartitioning N intom random sets of agents, one for each candidate. We will show that when

the number of agents is large enough, with high probability this is arbitrarily close to optimal.
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Mechanism 2 Independent �resholds and Candidates Mechanism

1: LetA1,A2, . . . ,Am be a uniformly random partition of N intom subsets of size dn/me or bn/mc.
2: for each candidate x ∈ [m] do
3: for each agent i ∈ Ax do
4: Ti ∼ U[0, 1] . Randomized threshold for agent i
5: bi ← 1 if ui (x) ≥ Ti , else bi ← 0 . agent i returns if he values candidate x above

threshold Ti
6: if bi = 1 then
7: Vi,x ← 2Ti
8: else
9: Vi,x ← 2Ti − 1

10: V̄x ← 1

|Ax |
∑

i ∈Ax Vi,x

11: S ← arg maxT ⊆C:

∑
x∈T cx ≤1{

∑
x ∈T V̄x }

12: return S

Theorem 3.3. Let δ =m5/2
√

72 log(4mn)
n . Mechanism 2 returns set S so that uw(S) ≥ OPT(1 − δ )

with probability at least (1 − 1/n).

�e proof of �eorem 3.3 is moved to the appendix. As with �eorem 3.1, the following corollary

is an immediate consequence.

Corollary 3.4. Given ϵ > 0 for �xedm and su�ciently large n, the distortion of Mechanism 1 is

less than 1 + ϵ .

4 TRUTHFUL ORDINAL MECHANISMS
We now consider ordinal mechanisms, and show that the lower bound of Ω(logm) on the distortion

of ordinal mechanisms [Boutilier et al., 2015] can in fact nearly be achieved by truthful ordinal

mechanisms.

Recall that in an ordinal mechanism, each agent i returns a linear order ≺i of C. Let
#»≺ := (≺i )i ∈N .

We say that
#»≺ is consistent with a utility pro�le ®u = (ui )i ∈N , wri�en

#»≺ � ®u, if for each agent i ,
ui (x) > u(y) implies x ≺i y. Given a linear order ≺i for agent i and a candidate x , rki (x) is the

number of candidates that i prefers to x (including x ), i.e., |{y : y �i x}|. For S ⊆ C, and candidate

x ∈ S , we de�ne rki (x |S) := |{y ∈ S : y �i x}| as the number of candidates in S that i prefers to x ,

including x . De�ne the score score(x |S) = ∑
i ∈N 1/rki (x |S), and score(x) := score(x |C). As before,

S∗ is the feasible set of candidates with maximum welfare, and OPT = uw(S∗).
We �rst give a randomized mechanism with distortion O(

√
m logm) for the k-selection problem,

where each candidate has cost 1/k for k ∈ Z+, and hence k candidates are to be chosen. Our

mechanism runs the Harmonic Scoring mechanism [Boutilier et al., 2015] as the sampling subroutine,

and outputs either the resulting single candidate with probability 1/2, or a randomly chosen subset

of size k7
. We will use this mechanism as a subroutine later on with subsets of C as possible

candidates, and hence explicitly give the set of candidates as an input.

We note that if S = Z in Mechanism 3, a single candidate is chosen. Further, for any candidate i ,
the sum of ranks of candidates

∑
x ∈A 1/rki (x) = Hm . Hence, for any candidate x ,

7
If it is important that a subset of candidates of size k be returned, in the �rst case, we can always add k − 1 randomly

chosen candidates. �is a�ects neither the truthfulness nor the upper bound on the distortion.
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Mechanism 3 k-Selection

Input: Set A ofm candidates, k
1: Let i be a randomly chosen agent. Sample z at random from A with probability proportional to

1/rki (z). Let Z ← z.

2: Y is a set of size k , sampled uniformly from A.

3: S is chosen from {Y ,Z } with equal probability

4: return S

P[x ∈ Z ] =
∑
i ∈N

1

n

1

Hmrki (x)
=

score(x)
nHm

. (2)

We �rst show that the mechanism is truthful.

Theorem 4.1. �e k-Selection Mechanism is truthful.

Proof. Fix an agent i . In the rest of the proof, we condition on i being chosen in Step 1, since

otherwise i’s expected utility is independent of its input to the mechanism, and it has no reason

to be untruthful. For r ∈ [m], de�ne pr = 1/(r Hm), and note that this is exactly the probability

that a candidate ranked r by agent i is selected. �at is, for any candidate x , if rki (x) = r , then

P[x ∈ Z ] = pr .

Letui be agent i’s utility function, let ≺i be the ordering consistent withui and ≺̂i be an arbitrary

ordering not equal to ≺i . We will show that i’s utility is maximized in expectation if it reports ≺i
to the mechanism. We index the candidates so that x1 ≺i x2 ≺i . . . xm . Let π be a permutation of

[m] so that xr ’s rank in ≺̂i is π (r ) for r ∈ [m].
�e change in expected utilities for agent i if it reports ≺̂i is given by

m∑
r=1

ui (xr )pπ (r ) −
m∑
r=1

ui (xr )pr

which is nonpositive by the rearrangement inequality, since both ui (xr ) and pr are decreasing in r .

Hence, agent i’s expected utility is maximized by correctly reporting its true linear order. �

We now prove the bound on the social welfare.

Theorem 4.2. �e expected social welfare of S is at least OPT/4
√
m logm.

Proof. Let S∗ = {x∗
1
,x∗

2
, . . . ,x∗k } be the optimal set of candidates. Further, let S∗

1
be the set of

candidates in S∗ with score at least n
√

logm/m, and S∗
2
= S∗ \ S∗

1
.

Note that for any candidate x , score(x) is at least uw(x). �is is because for any agent i the sum

of utilities over the candidates sums to 1, and for any candidate x there are rki (x) candidates with

at least as much utility. �us for any candidate x , ui (x) ≤ 1/rki (x). �en

uw(x) =
∑
i ∈N

ui (x) ≤
∑
i ∈N

1

rki (x)
= score(x) . (3)

We �rst show that in expectation, the social welfare of Z is at least 1/
√
m logm times the social

welfare of S∗
1
. Intuitively, the reason that a single candidate in Z has good social welfare compared

to S∗
1

is that the size of S∗
1

is at most

√
m logm. �is is because, as mentioned above, the sum of

scores of candidates is nHm , while each candidate in S∗
1

by de�nition has score n
√

logm/m. More

formally, the expected social welfare of Z is:
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E[uw(Z )] ≥
∑
x ∈S∗

1

uw(x)P[x ∈ Z ] =
∑
x ∈S∗

1

uw(x) score(x)
nHm

≥
n
√

logm/m
nHm

∑
x ∈S∗

1

uw(x) ≥
uw(S∗

1
)

2

√
m logm

.

Above, the �rst equality follows from (2), and the second inequality by de�nition of S∗
1
.

We now show that the same inequality holds for sets Y and S∗
2

as well. By de�nition, the expected

social welfare of Y is exactly kn/m, since it is a subset of size k chosen uniformly at random, and

the welfare of a randomly chosen candidate is n/m. Further, we can obtain the following upper

bound on the social welfare of S∗
2

:∑
x ∈S∗

2

uw(x) ≤
∑
x ∈S∗

2

score(x) ≤ |S∗
2
|n
√

logm/m ≤ kn
√

logm/m .

�e �rst inequality is from (3), and the second by de�nition of S∗
2
. �en comparing the two, we

obtain ∑
x ∈S∗

2

uw(x) ≤ kn
√

logm/m = k n

m

√
m logm = E[uw(Y )]

√
m logm .

�e expected welfare of Y + Z is then at least OPT/2
√
m logm. Since E[uw(S)] = (E[uw(Y ) +

uw(Z )])/2, the proof follows. �

We now adapt the k-Selection Mechanism to general costs. Our mechanism uses the Ranking-by-

Value Mechanism from Benade et al. [2017], except that we use the above k-selection mechanism

in place of Mechanism A by Benade et al. to recover truthfulness.

Mechanism 4 Truthful Ranking-by-Value

1: For s ∈ [logm], de�ne ls = 2
s−1/m, us = 2

s/m
2: Let T0 := {x : cx ≤ 1/m}, and Ts = {x : ls < cx ≤ us } for s ∈ [logm]. Let ms = |Ts |,

s ∈ [logm] ∪ {0} . 1/us candidates can be chosen from Ts within the budget.

3: Choose r ∈ [logm] ∪ {0}, where P[r = s] ∝
√
ms logms

4: Run the k-Selection Mechanism with inputs Tr and k = 1/ur . Let U be the set of candidates

returned.

5: returnU

For truthfulness of the mechanism, note that the sets Ts as well as r are decided independent of

the reported linear orders. Given Tr , we can restrict a�ention to the valuations given by an agent

j to candidates in Tr . �e proof of �eorem 4.1 then shows that the expected utility of agent j is

maximized by reporting the true linear orders for these candidates, and the proof of truthfulness

follows.

Theorem 4.3. �e Truthful Ranking-by-Value Mechanism has distortion O
(√
m logm

)
.

Proof. For s ∈ [logm] ∪ {0}, let T ∗s be the set of candidates in Ts that are budget-feasible and

maximize the social welfare. �en since cx ≥ ls for x ∈ Ts and the budget is 1, |T ∗s | ≤ 1/ls = 2/us .
Let T ′s ⊆ Ts be the set of candidates of size 1/us with maximum social welfare. �en

uw(T ′s ) ≥
1

2

uw(T ∗s ) ≥
1

2

uw(S∗ ∩Ts ) .
By �eorem 4, if r = s , then for the set U returned by the k-selection mechanism,
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E[uw(U )] ≥ 1

4

uw(S∗ ∩Ts )√
ms logms

.

�e expected social welfare of the set U returned is thus

logm∑
s=0

P[r = s]1
4

uw(S∗ ∩Ts )√
ms logms

=
1

4

∑
logm
s=0

√
ms logms

uw(S∗) .

Since

∑
sms =m and

√
x logx is concave, the expression on the right is maximized when thems ’s

are all equal, in which case the expected social welfare is OPT/
(√
m logm

)
. �

A tight lower bound for unilaterally-neutral truthful ordinal mechanisms
Recall that for an ordinal mechanism µ, the input consists of linear orders

#»≺ = (≺i )i ∈N reported

by the agents, and costs of the candidates (cx )x ∈A for the given instance. �e la�er is implicit,

and is not part of the notation. We present lower bounds for the unit-cost problem, when a single

candidate is to be selected.

Our proof relies on the characterization of truthful randomized mechanisms by Gibbard. We

�rst give the necessary de�nitions, followed by Gibbard’s characterization.

De�nition 4.4 ([Gibbard, 1977]). A mechanism µ is duple if there exist candidates x1, x2 such that

for any input
#»≺ , if candidate x < {x1,x2}, the probability that x is chosen is zero. In this case, we

say that x1 and x2 are the choices for duple mechanism µ. �e mechanism is unilateral if it depends

on a single agent, i.e., there exists i ∈ N such that for all
#»≺ ,

#»≺ ′, if ≺i=≺′i , then µ( #»≺) = µ( #»≺ ′). In

this case, we say the mechanism depends on voter i .

Gibbard’s characterization requires any truthful mechanism to be localized and non-perverse.

Informally, a mechanism is localized if changing the relative ordering of two candidates by an

agent does not a�ect the probability that any other candidate is selected by the mechanism. A

mechanism is non-perverse if increasing the rank of a candidate by an agent cannot decrease the

probability that the candidate is selected. We will use non-perversity in our proof, and hence de�ne

it formally here.

De�nition 4.5 ([Gibbard, 1977]). Consider linear orders
#»≺ ,

#»≺ ′ and agent i so that ≺j=≺′j for every

agent j , i . Further, x and y are candidates so that x ≺i y and for any z < {x ,y}, either y ≺i z
or z ≺i x . In ≺′i , candidates x and y are switched , so that y ≺′i x and the relative order of other

candidates does not change. Mechanism µ is non-perverse if P[µ( #»≺ ′) = y] ≥ P[µ( #»≺) = y].
Theorem 4.6 ([Gibbard, 1977]). A mechanism µ is truthful if and only if it is a probability

distribution over mechanisms, each of which is localized, non-perverse, and either unilateral or duple.

We will use the following notation. Let ≺ be a linear order over the candidates, and let the

candidates be indexed in this order, so that x1 ≺ x2 ≺ · · · ≺ xm . Let π ∈ Sm be a permutation of

[m]. We de�ne ≺π as the linear order where xr has rank π (r ). We de�ne
#»≺π = (≺πi )i ∈N . �us

#»≺π
is obtained by relabeling each candidate xr as xπ −1(r ).

De�nition 4.7. A unilateral mechanism is neutral if for any
#»≺ , π ∈ Sm , and candidate xr ,

P(µ( #»≺) = xr ) = P
(
µ( #»≺π ) = xπ −1(r )

)
. A truthful mechanism is unilaterally neutral if each unilateral

mechanism in its support is neutral.

Lemma 4.8. If µ is a neutral unilateral mechanism that depends on agent i , there exists a probability
distribution (pi )i ∈[m] so that for any input

#»≺ , the probability that candidate x is selected is exactly

p
rki (x ).



Umang Bhaskar and Varsha Dani 13

Proof. Fix an input
#»≺ , assume the candidates are ordered so that x1 ≺i x2 ≺i · · · ≺i xm , and let

pi be the probability that xi is chosen by the mechanism. Now let ≺′i be a di�erent linear order for i ,
and π (r ) = rki (xr ) in ≺′i , i.e., the candidate ranked r in ≺i is ranked π (r ) in ≺′i . Since µ is a unilateral

mechanism, its output distribution is the same for inputs

(
≺−i ,≺πi

)
and

#»≺π . Now the probability

that µ chooses xr on input
#»≺π can be obtained from the de�nition of neutral mechanisms as:

P
(
µ( #»≺π ) = xr

)
= P(µ( #»≺) = xπ (r )) = pπ (r ) .

�us, if the rank of x(r ) is now π (r ), the probability that it is chosen is also pπ (r ), as required. �

We use this to simplify notation as follows. Any unilaterally neutral truthful mechanism µ is

a probability mixture of duple and neutral unilateral mechanisms. We assume that there are n
neutral unilateral mechanisms in its support µ1, . . . , µn , with µi depending on agent i . If multiple

unilateral mechanisms depend on agent i we combine them into a single distribution, and if µ does

not depend on agent i , we will assume the corresponding unilateral mechanism µi is selected with

probability zero.

µ =
n∑
i=1

αiµ
i +

o∑
j=1

βjν
j

where ν js are the duple mechanisms, and αi , βj are the probabilities that mechanisms µi , ν j are

picked. �us if µ does not depend on agent i , we will assume αi is zero.

Further, pir is the probability that unilateral mechanism µi selects the candidate ranked r by agent

i . By Lemma 4.8 these probabilities are well-de�ned. We now show that for unilateral mechanisms

in the support of a truthful mechanism, the pir s are decreasing with the rank of the candidates.

Lemma 4.9. Let µi be a neutral unilateral mechanism in the support of a truthful mechanism that

depends on agent i . Let pir be the probability that the candidate ranked r by agent i is selected by

mechanism µi . �en pi
1
≥ pi

2
≥ · · · ≥ pim .

�e proof is immediate from Gibbard’s characterization that any unilateral mechanism in the

support of a truthful mechanism must be non-perverse (�eorem 4.6). �en for any agent i ,
pim ≤ 1/m.

Theorem 4.10. Let µ be a truthful ordinal mechanism for unit-cost instances that is unilaterally

neutral. �en the distortion of µ is at least
√
m logm/12.

Proof. Let γ =
√
m logm. We prove this by contradiction: Let µ be such a mechanism with

distortion strictly be�er than γ/12. Our proof proceeds as follows. We �rst show that we can ignore

duple mechanisms in the support of µ, since there is at least one candidate x0 which they select with

very low probability. �is will be our optimal candidate. We then focus on unilateral mechanisms,

and recall that there is a correspondence between unilateral mechanisms in the support of µ and

agents. We de�ne p̂r as (approximately) the probability that the unilateral mechanism that is

selected by µ, selects the candidate ranked r by the corresponding agent. �e sum of p̂r over all r
should be 1. We will construct a series of instances, one for each r , to show that, in order to get

distortion be�er than γ/12, the probabilities p̂r must follow a roughly harmonic progression, i.e.,

p̂r ≥ c/(r logm) for some constant c . However, the constant c will be large enough that summing

over these lower bounds will give us something larger than 1, giving us a contradiction.

We start with some de�nitions that will simplify notation in the proof. For a set of agents D, we

de�ne α(D) = ∑
i ∈D αi as the probability that a unilateral mechanism corresponding to an agent in

D is selected. As before, pir is the probability that the unilateral mechanism for agent i selects the
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candidate ranked r by agent i . De�ne pr (D) =
∑

i ∈D αip
i
r /α(D) as the probability that an agent in

D selects the candidate it ranks r , conditioned on an agent in D being selected by µ. Note that for

any subset D, the sum

∑m
r=1

pr (D) = 1.

We will restrict our a�ention to unilateral mechanisms in the support of µ that are picked with

near-uniform probability. Let N ′ be a set of n/2 agents for so that αi ≤ 2/n for each i ∈ N ′. Such a

set must exist, since there can be at most n/2 agents for which αi > 2/n. Let p̂r = pr (N ′).
Note that for any D that is a subset of N ′, since αi ≤ 2/n for each i ∈ N ′, we get that

α(D) ≤ 2|D |/n . (4)

We show that there is a candidate x0 for which the probability that it is selected by a duple

mechanism is at most 2/m. �at is, if I (x) is the set of indices of duple mechanisms for which x is a

choice, then the probability that a duple mechanism from I (x0) is chosen is at most 4/m. To see

this, de�ne β(x) = ∑
j ∈I (x ) βj as the probability that a duple mechanism that has x as a choice is

chosen by µ. We want to show that β(x0) ≤ 4/m. Note that each duple mechanism has two choices,

and hence if we sum β(x) over all candidates, the sum is at most 2, since∑
x

β(x) =
∑
x

∑
j ∈I (x )

βj =
o∑
j=1

βj
∑

x :j ∈I (x )
1 ≤ 2

o∑
j=1

βj ≤ 2 .

Hence there must exist a candidate x0 with β(x0) ≤ 2/m.

For each r , we will construct a di�erent instance to show the lower bound p̂r ≥ c/(r logm). Let

us now describe the instance for a �xed r . De�ne βr = rγ/(2m) as a fraction less than 1, and note

that then r must be at most (2m)/γ . Let Nr ⊆ N ′ be a subset of agents of size βrn/2, and for which

pr (Nr ), the probability that a candidate at rank r is selected conditioned on a mechanism in Nr
being selected, is minimum among all such subsets. We note that for any larger subset of agents in

N ′, this conditional probability will be larger than it is for Nr . �us in particular, p̂r ≥ pr (Nr ).
�e instance we construct has utility functions and preference orders with the following proper-

ties:

(1) All agents in Nr have rank r for candidate x0, while all other agents place x0 at rankm.

(2) All agents in Nr have utility approximately 1/r for the �rst r candidates, and 0 for the

others. All other agents have utility approximately 1/m for all candidates.

(3) Restricted to agents in Nr , and for any rank s ∈ [m], each candidate other than x0 appears

with approximately the same frequency at rank s .

For such an instance, candidate x0 has utilitarian welfare at leastnβr /(2r ). For any other candidate

the utilitarian welfare over agents in Nr is at most 1/r · 1/(m − 1) · βrn/2, and at most n/(m − 1) for

agents outside Nr . Replacing the value of βr = rγ/(2m), we get that the welfare for any candidate

other than x0 is at most 2n/m.

Further, mechanism µ selects candidate x0 with the following probabilities:

(1) a duple mechanism is selected, and selects x0; this occurs with probability at most (1 −
α(N ))4/m ≤ 4/m.

(2) a unilateral mechanism from Nr is selected, and selects x0; this occurs with probability at

most α(Nr )pr (Nr ).
(3) a unilateral mechanism from N c

r is selected, and selects x0; this occurs with probability at

most α(N c
r )pm(N c

r ), and since pim ≤ 1/m for any unilateral mechanism i , this is at most

1/m.

�us the distortion for mechanism µ is at least
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nβr
2r
· 1

2n
m +

nβr
2r

(
5

m + α(Nr )pr (Nr )
) = 1/

(
r

mβr
+

5

m
+ α(Nr )pr (Nr )

)
≤ γ/12 ,

where the inequality is because by assumption, µ has distortion at most γ/12. Since Nr is a

subset of N ′, we get from (4) that α(Nr ) is at most 2|Nr |/n, and since Nr has size βrn/2, we get

that α(Nr ) ≤ βr . Further, substituting βr = γr/(2m), and inverting both sides of the inequality, we

get the following:

12

γ
≤ 2

γ
+

5

m
+

rγ

2m
pr (Nr ) .

For large enoughm,
2

γ is much greater than
5

m , so we ignore this second term. Some manipulation

and using γ =
√
m logm then gives us the following lower bound for pr (Nr ):

pr (Nr ) ≥
10

γ
· 2m

γr
=

20

r logm
.

�us, p̂r ≥ pr (Nr ) ≥ 16/(r logm). Since βr is at most 1, this inequality only holds true for

r ≤ (2m)/γ . But this is enough to show a contradiction, since

2m/γ∑
r=1

p̂r ≥
20

logm

2m/γ∑
r=1

1

r
≥ 20

logm
log

(
1 +

2m

γ

)
≥ 20

logm

1

2

log

(
m

logm

)
For large enough m, m/logm ≥

√
m, and the expression on the right evaluates to 5. �is is a

contradiction, since the sum of conditional probabilities p̂r must equal 1. �

5 OPTIMAL TRUTHFUL MECHANISMS FOR TWO CANDIDATES
We will now study the case where there are two candidates, and present optimal truthful mechanisms

for this case. We will use a and b to denote the two candidates. If the sum of costs of both candidates

is at most the budget, we should just select both of them, and this is clearly optimal. Hence we

assume that each candidate has cost equal to the budget. As is in the rest of the paper, we assume

that the utilities of an agent for the two candidates are not equal.

We start by showing that any truthful mechanism for two candidates, whether randomized or

deterministic, must be ordinal. We note that similar results were earlier obtained in the se�ing

where the utilities of agents for the candidates are drawn from independent distributions [Azrieli

and Kim, 2014, Schmitz and Tröger, 2012].

Theorem 5.1. Let µ be a truthful mechanism for two candidates. If utility pro�les ®u, ®u ′ are consistent
with the same linear order

#»≺ , then µ(®u) = µ(®u ′).

Proof. We assume without loss of generality that ®u and ®u ′ di�er in the vote of a single agent.

�is is justi�ed by considering the output of the mechanism in steps, as each vote ui is changed to

u ′i . Since µ(®u) , µ(®u ′), the output must change at some step when agent i’s vote changes from ui to

u ′i . Let agent k be this pivotal agent. For a contradiction, assume µ(®u) , µ(®u ′), and that candidate a
is picked with strictly greater probability when agent k votes u ′k . Suppose that agent k has greater

utility for candidate b (in both uk and u ′k , since they correspond to the same linear order). Since b is

picked with greater probability when agent k votes uk , agent k should vote uk even when its utility

function is u ′k to maximize its expected utility, contradicting the truthfulness of the mechanism. �

Given this result, we focus on ordinal mechanisms in the remainder of the section. We �rst

consider deterministic mechanisms, and show that the majority mechanism that selects the
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candidate preferred by a majority of agents is truthful and has distortion 3, which is a lower bound

for all truthful mechanisms.

Theorem 5.2. majority is truthful, and has distortion 3. Any deterministic truthful mechanism

has distortion at least 3.

Our proof in the Appendix shows that majority is in fact input-optimal for ordinal inputs: for

any deterministic mechanism µ with ordinal inputs, and any preference order
#»≺ , the welfare of

µ is at most that obtained by majority in the worst-case, i.e., over all utility functions consistent

with
#»≺ .

We now consider randomized mechanisms. As the lower bound in the deterministic se�ing

illustrates, majority may achieve welfare that is only a third of the optimal. �e reason for this

comes from the case when the votes are nearly equal, but slightly biased towards candidate a.

However the agents that prefer a have nearly equal utility for the two candidates, while the agents

that prefer b have zero utility for a. One way to counteract this is to retain some probability of

choosing the minority candidate.

An obvious choice for the probability distribution is to bias according to the observed separation,

i.e., if an α fraction of the players prefer candidate a then we choose a with probability α . A

simple calculation (which we omit) shows that this algorithm achieves a worst-case distortion

of 1/(4
√

2 − 5) ≈ 1/0.6569 > 3/2, and is achieved when α =
√

2 − 1 fraction of agents prefer

the optimal candidate, say a; the agents that prefer a are single-minded, while those that prefer

b are ambivalent. In fact we can achieve a worst-case distortion of 3/2 by slightly altering the

distribution: a�er querying all the agents and seeing that αn of them prefer a while the rest prefer

b, choose candidate a with probability p(α) = 2α−α 2

1+2α−2α 2
. Note that p(α) = 1−p(1− α), hence a does

not have to be the majority candidate to apply this. We call this mechanism tempered-majority.

Theorem 5.3. tempered-majority is truthful.

Proof. Follows simply because p(α) is an increasing function of α . If an agent i votes for

candidate a, this increase the probability that a is selected, and hence this vote is utility-maximizing

only if i’s utility for a is greater than 1/2. �

Theorem 5.4. tempered-majority has a worst-case distortion of 3/2.

Proof. Let α be the fraction of agents who prefer candidate a, while a 1−α fraction prefer b. We

will show in �eorem 5.5 below that on any instance with an (α , 1 − α) split, tempered-majority

achieves a distortion of 1 + 2α − 2α2
. Maximizing this over α ∈ [0, 1] we see that the worst case is

when α = 1/2 where the distortion is 3/2, as claimed. �

Theorem 5.5. On any instance in which α fraction of the agents prefer one candidate a and (1 − α)
prefer the other, tempered-majority achieves a distortion of 1 + 2α − 2α2

.

Proof. Since the expression 1 + 2α − 2α2 = 1 + 2α(1 − α) is symmetric in α and 1 − α , without

loss of generality, α ≥ 1/2. LetV := uw(a) be the utilitarian welfare for candidate a and letv = V /n
be the average welare. �en

α

2

≤ v ≤ 1 + α

2

where the lower bound comes from the observation that each of the αn agents who prefer a must

have utility at least 1/2 for a, while upper bound comes from the corresponding observation about

1 − α and 1 −v .



Umang Bhaskar and Varsha Dani 17

Now consider a mechanism that chooses a with probability p and b with probability 1 − p.

�en it achieves an expected welfare of ALGp = pV + (1 − p)(n −V ) = (2pv + 1 − p − v)n. Also,

OPT = max{V ,n−V }. Let us consider ALGp/OPT as a function ofv on the domain [α
2
, 1+α

2
]. �us

fp (v) :=

{
2v−1

1−v p + 1 for
α
2
≤ v < 1

2

2p − 1 +
1−p
v for

1

2
≤ v ≤ 1+α

2

�en fp is increasing on [α
2
, 1

2
] and decreasing on [ 1

2
, 1+α

2
] and therefore has local minima at the

endpoints of its domain. �e corresponding minimum values are 1 +
2(α−1)

2−α p and
2αp+1−α

1+α , and the

smaller of these is the inverse of the distortion of any mechanism that selects candidate a with

probability p.

Now consider the behaviour of 1+
2(α−1)

2−α p and
2αp+1−α

1+α as p varies. We see that the former is 1 at

p = 0 and decreases therea�er, while the la�er is increasing on [0, 1] with a maximum value of 1 at

p = 1. It follows that the best choice of p is the one that makes these two local minima equal. �is

happens at p = 2α−α 2

1+2α−2α 2
, which is the value used by tempered-majority. Substituting this value

of p back into the expression for minimum of fp , we see that the distortion of tempered-majority

on any instance where an α fraction of the agents prefer a is 1 + 2α − 2α2
. �

We remark that since we explicitly optimized p(α) in the above proof, and since any truthful

mechanism must also be ordinal (�eorem 5.1) in fact we have also proved the following lower

bound:

Theorem 5.6. No truthful mechanism for two candidates can achieve a distortion be�er than 3/2.
Further, no ordinal mechanism has distortion be�er than 1 + 2α − 2α2

on an input where α fraction of

candidates prefer one candidate while (1 − α)-fraction prefer the other.

Similar to the deterministic case, the theorem shows that not only does tempered-majority have

optimal expected distortion over truthful mechanisms in the worst-case, but in fact is optimal (in

terms of expected distortion) for every ordinal input. �at is, let µ be any mechanism with ordinal

inputs. �en for every input, the expected welfare of µ in the worst-case (over utility functions

consistent with the input linear order vector) is at most the expected welfare of tempered-majority.

Since every truthful mechanism has ordinal inputs, on any input, tempered-majority has expected

welfare at least that of any truthful mechanism.
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APPENDIX
Proof of Theorem 3.3. Fix a candidate x and consider the following experiment: for each agent

i sample Ti,x uniformly from [0, 1] and ask i whether ui (x) ≥ Ti,x . Let

τi (x) =
{

2Ti,x if ui (x) ≥ Ti,x
2Ti,x − 1 otherwise .

We’ve created a new population Px = {τi (x)}i . Let τ̄ (x) be the population mean of Px . �en by

Hoe�ding’s inequality,

P[|τ̄ (x) − Ūx | ≥ ν ] ≤ 2 exp

(
−2nν2

9

)
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Se�ing ν =
√

9 log(4mn)
2n , we have

P[|τ̄ (x) − Ūx | ≥ ν ] ≤
1

2mn
.

Now suppose we randomly sample k times from Px without replacement. �at is, we choose a

random set Ax of size k , and observe the values {τi (x)}i ∈Ax . Let V̄x =
1

k
∑

i ∈Ax τi (x) be the sample

mean. Let Ūx = uw(x)/n. �en by Hoe�ding’s inequality (again!) and for the same ν

P[|V̄x − τ̄ (x)| ≥ ν
√
n/k] ≤ 2 exp

(
−2k(ν

√
n/k)2

9

)
≤ 2 exp

(
−2

9

nν2

)
≤ 1

2mn

We note that Hoe�ding’s inequality holds, and has been used here for non-independent random

variables obtained by sampling without replacement. See Section 6 of Hoe�ding’s paper for

details [Hoe�ding, 1963].

It follows from the union bound and the triangle inequality that with probability at least 1 − 1

mn

|V̄x − Ūx | ≤ ν (1 +
√
n/k)

Se�ing k = bn/mc (which gives a larger bound than k = dn/me) we have with probability at least

1 − 1

mn

|V̄x − Ūx | ≤ 2ν
√
m ≤ δ

2m2
(5)

Taking a union bound over all candidates, we see that with probability at least 1 − 1/n (5) holds

simultaneously for all x , which is analogous to (1). �us if S = arg maxT ⊆C:

∑
x∈T cx ≤1{

∑
x ∈T V̄x }

and S∗ is the optimal set of candidates, following along the same lines as the proof of �eorem 3.1,

we get that

uw(S) ≥ (1 − δ )OPT.
All that remains is to argue that Mechanism 2 actually simulates our experiment in which we �rst

created the m populations {Px }x and then sampled from them. However note that for a �xed

candidate x the only values that we need from Px are those corresponding to the agents in the

random set Ax , so by the principal of deferred decisions, we do not need to sample Ti,x except for

i ∈ Ax . Also, since the random sets Ax in the experiment are not required to be independent (since

we are only doing a union bound over them), we can choose them by a random equipartition as

in the mechanism. Finally, since this means that each i is in exactly one Ax = Ax (i), we are only

sampling one threshold Ti = Ti,x (i). �us Mechanism 2 simulates our experiment, completing the

proof. �

Proof of Claim �. �is can be seen by induction on S j , for j ∈ [m]. Let x , y be the candidates

ranked r and r + 1 by i . In the base case, when j = 1, P[x ∈ Z j ] ∝ 1/r , P[y ∈ Z j ] ∝ 1/(r + 1) (we

implicitly assume conditioning on i being chosen in Step 2), and the claim is true. In the inductive

step,

P[x ∈ Z j+1] = P[x ∈ Z j ] + P[x ∈ Z j+1 |x ,y < Z j ]P[x ,y < Z j ]
+ P[x ∈ Z j+1 |x < Z j ,y ∈ Z j ]P[x < Z j ,y ∈ Z j ] . (6)
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We note the following inequalities:

P[x ∈ Z j ] ≥ P[y ∈ Z j ] by induction (7)

P[x ∈ Z j+1 |x ,y < Z j ] ≥ P[y ∈ Z j+1 |x ,y < Z j ] since x has smaller rank than y (8)

P[x ∈ Z j+1 |x < Z j ,y ∈ Z j ] = P[y ∈ Z j+1 |x < Z j ,y ∈ Z j ] by symmetry (9)

�e proof then follows by applying the above inequalities and some manipulation. Firstly,

applying inequality (8) to the second summand of (6) we obtain:

P[x ∈ Z j+1 |x ,y < Z j ]P[x ,y < Z j ] ≥ P[y ∈ Z j+1 |x ,y < Z j ]P[x ,y < Z j ] (10)

Secondly, applying inequalities (7), (9) to the �rst and third summands of (6), we get:

P[x ∈ Z j ] + P[x ∈ Z j+1 |x < Z j ,y ∈ Z j ]P[x < Z j ,y ∈ Z j ]
= P[x ∈ Z j ] + P[y ∈ Z j+1 |y < Z j ,x ∈ Z j ]P[x < Z j ,y ∈ Z j ]
= P[x ∈ Z j ] + P[y ∈ Z j+1 |y < Z j ,x ∈ Z j ]

(
1 − P[x ∈ Z j ] − P[x ,y < Z j ]

)
= P[x ∈ Z j ]

(
1 − P[y ∈ Z j+1 |y < Z j ,x ∈ Z j ]

)
+ P[y ∈ Z j+1 |y < Z j ,x ∈ Z j ]

(
1 − P[x ,y < Z j ]

)
≥ P[y ∈ Z j ]

(
1 − P[y ∈ Z j+1 |y < Z j ,x ∈ Z j ]

)
+ P[y ∈ Z j+1 |y < Z j ,x ∈ Z j ]

(
1 − P[x ,y < Z j ]

)
= P[y ∈ Z j ] + P[y ∈ Z j+1 |y < Z j ,x ∈ Z j ]

(
1 − P[y ∈ Z j ] − P[x ,y < Z j ]

)
= P[y ∈ Z j ] + P[y ∈ Z j+1 |y < Z j ,x ∈ Z j ]P[y < Z j ,x ∈ Z j ] . (11)

Above, the �rst equality follows from (9), and the �rst inequality follows from (7). Finally, adding

equations (10) and (11), and observing that by (6) the right hand side thus obtained is P[y ∈ Z j+1],
we get the required result, completing the induction. �

Proof of Theorem 5.2. �e truthfulness of majority follows simply because if the number of

agents that prefer candidate a increases, so does the likelihood that a is selected. Hence a candidate

that votes a over b must have greater utility for a as well.

For the upper bound on distortion, for a �xed utility pro�le ®u w.l.o.g. let a be the candidate

chosen by majority, and b be optimal candidate. Let ALG :=
∑

i ui (a), and OPT :=
∑

i ui (b). Let S
be the set of agents that voted for candidate a, then |S | ≥ n/2. We obtain the following bounds on

OPT and ALG:

OPT =
∑
i

ui (b) = n −
∑
i

ui (a) ≤ n −
∑
i ∈S

ui (a)

≤ n − |S |/2 ≤ 3n/4

where the second inequality follows because, assuming truthfulness, if i ∈ S then ui (a) ≥ 1/2. �is

also completes the proof, since

ALG =
∑
i

ui (a) ≥
∑
i ∈S

ui (a) ≥ n/4 .

For the lower bound, we consider just two agents, whom we call A and B. Suppose A votes

a ≺A b, and B votes b ≺B a. By �eorem 5.1, this is all the input to any truthful mechanism.

Suppose the mechanism selects A. �en for utilities uA(a) = 1/2 + ϵ , uB (a) = 0, the optimal welfare

is 3/2 − ϵ , while the mechanism gets welfare 1/2 + ϵ . �
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