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1 Introduction
In the first part of this book, starting with this chapter, we focus on the single hop model
for wireless networks, where each source has a destination at a fixed distance from it,
and each source transmits its information directly to its destination without the help of
any other node in the network.

For the single hop model, in this chapter, we begin by introducing the concept of
transmission capacity of wireless networks, that measures the largest number of simul-
taneously allowed transmissions across space, satisfying a per-user outage probability
constraint. To facilitate the analysis of transmission capacity, we assume that the nodes
of the wireless network are distributed uniformly randomly in space as a Poisson point
process. Then we present some tools from stochastic geometry that are necessary for
analysis, with some relevant examples of applications of these tools.

Using these tools/results from stochastic geometry, we then present an exact char-
acterization of the transmission capacity of a wireless network under the Rayleigh fad-
ing model, when each node has a single antenna and uses an ALOHA protocol. The
derived results reveal the dependence of several important parameters on the transmis-
sion capacity, such as outage probability constraint, path-loss exponent, rate of trans-
mission per node, ALOHA transmission probability etc. Using the exact expression
for the transmission capacity, we also find the optimal transmission probability for the
ALOHA protocol that maximizes the transmission capacity. For the path-loss model,
where the effects of multi-path fading are ignored, we also present a lower and upper
bound on the transmission capacity that are tight in the parameters of interest. The
technique used in finding the lower and upper bound has wider ramifications for cases
where exact expressions on the transmission capacity cannot be found.

We then present a surprising result that even when each node transmits indepen-
dently using an ALOHA protocol in a wireless network, where nodes are located uni-
formly randomly, the interference received from all nodes at any point in space has
spatial as well as temporal correlation. The inherent randomness arising out of location
of nodes gives rise to this correlation. Temporal correlation impacts the performance
of ARQ type protocols and the results presented in this chapter help in analyzing the
performance of ARQ type protocols in wireless networks in Chapter ??.

Finally, we consider guard-zone based and CSMA scheduling protocols, that are
smarter than ALOHA protocol in choosing which transmitters should be active simul-
taneously to maximize the transmission capacity. With the guard-zone based strategy,
only those nodes that are at a distance greater than a threshold from any receiver are
allowed to transmit, thus restricting the interference seen by any receiver. With CSMA
protocol, each node measures the channel, and transmits depending on a function of the
channel measurement. Guard-zone based strategy or CSMA protocol, however, do not
lend themselves to exact analysis because of correlations across different node trans-
missions, and we present only an approximate characterization of their performance
that is known to be accurate by extensive simulations.
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2 Transmission Capacity Formulation
We begin by defining a homogenous Poisson point process (PPP) as follows, that will
be used to model the location of the nodes of the wireless network.

Definition 2.1 For compact setsA ⊂ R2, B ⊂ R2, with finite area ν(A) <∞, ν(B) <
∞, a homogenous PPP Φ with density λ is a random point process with

PΦ(#(A) = k) =
(λν(A))k

k!
e−λν(A), (1)

and
PΦ(#(A) = k,#(B) = m) = PΦ(#(A) = k)PΦ(#(B) = m), (2)

for A ∩ B = φ. The specific case of A containing no nodes k = 0 is called the void
probability of the PPP,

PΦ(#(A) = 0) = e−λν(A). (3)

The first condition (1) requires that the number of points of a PPP lying in a finite region
is a Poisson random variable with mean λ times the area of the region, where λ is the
density or the expected number of points of PPP in an unit area. The second condition
(2) states that the number of points in non-overlapping regions should be independent.

Consider the following example that shows the correspondence between PPP dis-
tributed node locations and nodes that are located uniformly randomly in a given area
of interest.

Example 2.2 Let n nodes be distributed uniformly in region A with area ν(A). Then
the probability that there are k nodes in region B ⊆ A is binomial with parameters(
n, ν(B)

ν(A)

)
. Taking the limit in the number of nodes n → ∞ while fixing the density

of nodes n
ν(A) = λ, the probability that there are k nodes in region B is Poisson

distributed with λν(B).

To understand the fundamental throughput limits (capacity) of a wireless network,
we model the location of nodes of a wireless network to be distributed according to
a Poisson point process (PPP). The PPP assumption corresponds to having nodes dis-
tributed uniformly random in a given area of interest. Even though this is not en-
tirely accurate, assuming that nodes are distributed uniformly randomly is reasonable
for some of the main examples of wireless networks such as sensor networks, where
sensors are thrown randomly in a given area, or military or vehicular networks where
nodes are mobile and there locations are close to being symmetrically distributed across
the network. The uniformly distributed node locations assumption serves as a reason-
able approximation to a realistic wireless network scenario as well as allows analytical
tractability.

To be specific, we consider a wireless network located in R2 with the location of
nodes distributed as a homogenous PPP with density λ, i.e. the expected number of
nodes per unit area is λ. A PPP is characterized by two properties; the probability of
the number of nodes in any area A with Lebegue measure ν(A) is Poisson distributed
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with parameter λν(A), and the number of nodes lying in non-overlapping areas are
independent.

To avoid the overload of notation, whenever required, we let Tn and Rn denote
both the node and the location of the nth transmitter and receiver, respectively. Let
ΦT = {Tn} be the transmitter location PPP process, and ΦR = {Rn} be the receiver
location process. We assume that the receiver Rn corresponding to the transmitter Tn
is at a fixed distance d away in a random orientation. This assumption is not really
binding but made for purposes of simple exposition. Results could be extended to
random distances between transmitters and receivers by taking an expectation with
respect to the distance distribution.

In this chapter, we assume each transmitter and receiver to have a single antenna.
Extension to multiple antennas is the subject matter of Chapter ??. We start by con-
sidering the ALOHA protocol, where each transmitter is active with probability p in-
dependently of all other transmitters. Since an independent thinning of a PPP is also a
PPP (Prop. 3.2), the active set of nodes of a wireless network with the ALOHA pro-
tocol also form a PPP, allowing analytical tractability. More sophisticated scheduling
policies provide better performance, however, they entail correlation among different
transmitters breaking the PPP assumption on the transmitter locations leading to more
complicated analysis. We consider two such protocols in Sections 8.1 and 8.2.

Under this ALOHA protocol model, the received signal at receiver Rn is

yn =
√
Pd−α/2hnnxn +

∑
m:Tm∈ΦT \{Tn}

√
Pd−α/2mn 1mhmnxm + w, (4)

where xn is the signal transmitted from transmitter Tn with power P , dmn and hmn are
the distance and the channel coefficient between Tm and receiver Rn, respectively, 1m
is an indicator function that represents if Tm is active or not, and w is the AWGN with
zero mean and unit variance. With the ALOHA protocol, 1m = 1 with probability
p, and 0 with probability 1 − p. In (4), Pd−αmn|hmn|2 is the interference power of
transmitter Tm at receiver Rn, and

I =
∑

m:Tm∈ΦT \{Tn}

Pd−αmn|hmn|2 (5)

is the total interference power seen at R0.
As stated in Assumption ??, throughout this book, we consider the path-loss func-

tion to be d−α for ease of exposition. Most of analysis presented in this book is ap-
plicable for more general path-loss functions such as 1

1+dα , which compared to d−α

model does not have a singularity at 0. The d−α path-loss function models the far field
communication fairly well, but results in unbounded signal power at extremely close
distances.

From (4), the signal-to-interference-plus-noise ratio ( SINR) at receiver Rn is

SINRn =
Pd−α|hnn|2∑

m:Tm∈ΦT \{Tn} Pd
−α
mn1m|hmn|2 + 1

, (6)
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and the outage probability Pnout(B) at receiver Rn is defined to be the event that the
SINR is below a threshold β(B) that is a function of rate of transmissionB bits/sec/Hz,

Pnout(B) = P(SINR ≤ β). (7)

Remark 2.3 With PPP distributed transmitter locations, the SINR is identically dis-
tributed for all receivers, hence we drop the index n from outage probability definition
(7), and represent it as Pout(B).

With mutual information to be equal to log(1 + SINR), for B bits/sec/Hz transmis-
sion rate, β(B) = 2B − 1. For ease of notation, we just write β in place of β(B).
We consider the quality of service (QoS) requirement as the constraint on the outage
probability. In particular, we assume an outage probability constraint of ε with trans-
mission rate B bits/sec/Hz. The outage probability constraint of ε, allows on average
(1 − ε)B bits/sec/Hz of successful transmission rate between any transmitter-receiver
pair. Since the transmitter density is λ nodes/m2, on average, (1−ε)Bλ bits/sec/Hz/m2

can be transmitted in the wireless network. This is essentially the idea behind the con-
cept of transmission capacity defined in [1] that captures the spatial capacity of the
network or the number of simultaneously allowed transmissions under an outage prob-
ability constraint. The formal definition of transmission capacity is as follows.

Definition 2.4 Assuming B bits/sec/Hz of transmission rate between any transmitter-
receiver pair, and an outage probability constraint of ε at each receiver, let

λ? = sup{λ : Pout(B) ≤ ε, ∀n}.

The transmission capacity of a wireless network with PPP distributed nodes with den-
sity λ? is defined as

C := λ?(1− ε)B bits/sec/Hz/m2.

Assumption 2.5 To keep the problem non-trivial, we assume that the power transmit-
ted P by each transmitter is sufficient to satisfy the outage probability constraint of ε
in the absence of interference. In the absence of interference,

SINR = SNR = Pd−α|hnn|2.

Thus, if hnn’s are Rayleigh distributed, i.e. |hnn|2 ∼ exp(1), then the outage proba-
bility without interference (I = 0 in (5)) is

Pout(B) = P(SNR ≤ β) = P
(
d−α|hnn|2 ≤ β

)
= 1− exp

(
−βd

α

P

)
.

Thus, we assume that power P is such that 1− exp
(
−βd

α

P

)
≤ ε.

To find the transmission capacity, we first need to derive an expression for the out-
age probability Pout(B) in terms of λ and B. Then optimizing over the constraint
Pout(B) ≤ ε, we can obtain λ?. To find the outage probability expression, we need
tools from stochastic geometry which are detailed as follows.
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3 Basics of Stochastic Geometry
Proposition 3.1 A homogenous PPP is stationary, i.e. if Φ = {x1, x2, . . . } is any
homogenous PPP with density λ, then Φx = {x1+x, x2+x, . . . } is also a homogenous
PPP with density λ.

Proof: Follows easily from Definition 2.1, since for a PPP, the probability for any
number of nodes to lie in any region only depends on its Lebesgue measure/area in R2.
�

Proposition 3.2 If the points of a homogenous PPP are independently retained with
probability p and removed with probability 1 − p, the resulting process is also a ho-
mogenous PPP with density λp. This is called the random thinning property of a PPP.

Proof: Left as an excercise. �

Theorem 3.3 Slivnyak’s Theorem: Let Φ be any homogenous PPP. Then conditioned
on x ∈ Φ, P(f(Φ)|x ∈ Φ) = P(f(Φ ∪ {x})) for any function f .

Slivnyak’s theorem is an important result that allows us to compute probabilities of
events conditioned on the event that there is a point of Φ at location x, which is a zero
probability event. It essentially says that conditioned on the event that there is a point
of Φ at location x, the distribution is equivalent to a new process that is a union of Φ
and an extra point at x.

The utility of Slivnyak’s theorem is illustrated by the following example.

Example 3.4 Let B ⊆ R2 be a compact set containing the origin o. Let Φ be a PPP,
and let o ∈ Φ, i.e. there is a point of the PPP at the origin. Then

P(#Φ(B) = k|o ∈ Φ) = P(#Φ∪{o}(B) = k) = P(#Φ(B) = k − 1).

Note that without Slivnyak’s theorem, the same answer can be derived by conditioning
on the event that a point of Φ is in B(o, r) and letting r → 0.

Definition 3.5 Let G be the family of all non-negative, bounded measurable functions
g : Rd → R on Rd whose support {x ∈ Rd : g(x) > 0} is bounded. Let F be
the family of all functions f = 1 − g, for g ∈ G, 0 ≤ g ≤ 1. Then the probability
generating functional for a point process Φ = {xn} is defined as

PGF (f) = E

{ ∏
xn∈Φ

f(xn)

}
.

Theorem 3.6 For a homogenous PPP Φ with density λ, the probability generating
functional is given by

PGF (f) = exp−
R

(1−f(x))λdx .

Theorem 3.6 is very useful for deriving the outage probability in a PPP distributed
wireless network by allowing us to compute the expectation of a product of functions
over the entire PPP. We will make use of Theorem 3.6 quite frequently in this book.



CHAPTER X. Transmission Capacity of ad hoc Networks 6

Theorem 3.7 Campbell’s Theorem : For any measurable function f : Rd → R and
for a homogenous PPP Φ with density λ,

E

{ ∑
n:xn∈Φ

f(xn)

}
=
∫

Rd
f(x)λdx.

Using Campbell’s Theorem one can show that the interference received at the origin
(or any other point using stationarity) from all points of the PPP with the path-loss
model of x−α is unbounded for any α as follows.

Example 3.8 Let I =
∑
n:xn∈Φ x

−α
n |hn|2 be the inteferfence received at the origin

from all points of the PPP, where the fading gains |hn|2 are i.i.d. with mean 1. Then
from Campbell’s Theorem

E {I} = E

{ ∑
n:xn∈Φ

x−αn |hn|2
}

= E

{ ∑
n:xn∈Φ

x−αn

}
=
∫

R2
x−αλdx, (8)

since E{|hn|2} = 1. Since the path-loss function x−α has a singularity at 0, the
expected interference E {I} is unbounded for any value of α. However, if we can
avoid interference coming from a small disc of radius ε around the origin, B(0, ε), i.e.
somehow inhibit all points of the PPP within B(0, ε), then E {I} will be finite. We
will use this technique of inhibition to compute the expected interference for finding
meaningful bounds on the transmission capacity.

Definition 3.9 Marked Poisson Process: A marked PPP ΦM is obtained by attaching a
markmn to each point of xn ∈ Φ, where Φ is a PPP, and ΦM = {(xn,mn) : xn ∈ Φ}.
Marks could represent the power transmitted by point xn, its color, shape of any other
characterstic. The marks mn belong to set M with distributionM, such that for any
bounded set A ⊂ R2, # (ΦM (A×M)) < ∞ almost surely, i.e. the number of points
of ΦM lying in a bounded region are finite.

Next Theorem allows us to make a correspondence between a marked PPP ΦM and a
PPP defined over R2 ×M.

Theorem 3.10 Marking Theorem : The following statements are equivalent

• a marked PPP ΦM , where if conditioned on the points {xn} of the PPP Φ,
the marks mn of the marked PPP ΦM with marks in M, are independent, with
probability distributionM on M,

• a PPP on R2 ×M with measure Λ(A × B) = λν(A) ×M(B), where ν(A) is
the Lebesgue measure of A.

We next present three examples to illustrate how Marking Theorem is useful for ana-
lyzing PPP distributed ad hoc networks.



CHAPTER X. Transmission Capacity of ad hoc Networks 7

Example 3.11 Finding the distribution of the Lth strongest interferer in a PPP. Let Φ
be a PPP, and let In = x−αn |hn|2 be the interference power of the nth (unordered)
transmitter xn ∈ Φ at the origin, where |hn|2 are i.i.d. We want to find the distribution
of the Lth largest interference power.

Let us define In to be mark corresponding to xn ∈ Φ, and consider the marked
PPP as

ΦM = {(xn, In) : xn ∈ Φ}.
Note that In ∈ R+ are independent given xn, since |hn|2 are independent. Thus, from
the Marking Theorem, ΦM is equivalent to a PPP Ψ on R2 × R+ with an appropriate
density measure Λ(B) on subsets B of R2 × R+. Let us define

B(g) = {(xn, In) : In > g},

to be the set of points xn of Φ such that the interference they cause at the origin is
more than some threshold g. Note that B(g) ⊂ Ψ is the set of points lying in a subset
of R2 × R+, and hence the number of points in B(g) is Poisson distributed with mean
equal to the density measure of the subset corresponding to B(g), i.e.

Λ(B(g)) = λP(x−α|h|2 > g),

= λE|h|2

{∫ (|h|2/g)1/α

0,x∈R2
dx

}
,

(a)
= λE|h|2

{∫ (|h|2/g)1/α

0,x∈R
2πxdx

}
,

= λ

∫ ∞
0

∫ (|h|2/g)1/α

0,x∈R
2πxdxfh(h)dh,

where we get the term 2πr in (a) by changing the integration from R2 to R1. Hence
the cumulative distribution function FL(g) of the Lth strongest interferer is equal to
the probability that there are less than or equal to L− 1 points in B(g).

Marking Theorem can also be used to obtain many other interesting results as de-
scribed in the next two examples.

Example 3.12 Consider a random disc process on R2 whose centers form a PPP Φ
with density λ, and where for each point xn ∈ Φ an independent random radius rn
(mark) is selected with distribution FR(r) = P(R ≤ r). From the Marking Theorem,
this process is equivalent to a PPP on R2 ×R+ with density measure Λ(A× [0, r]) =
λν(A)FR(r) for compact A ⊂ R2 and r > 0.

A disc B(x, r) contains the origin o if and only if (x, r) belongs to set S = {(x, r) :
x ∈ B(o, r)}, i.e. x lies in the circle with center as origin and radius r. Since S is a
subset of R2×R+, the number of points lying in S (also the number of discs containing
the origin) are Poisson distributed with mean that is equal to the density measure of S.
From the Marking Theorem the density measure of S is

Λ(S) = λ

∫
S

FR(dr)dx = λ

∫ ∞
0

ν(B(o, r))FR(dr)dx = λE(πR2).
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Example 3.12 is taken from the lecture notes of Gustavo De Veciana, ECE Dept., The
University of Texas at Austin. Next, we present an application of the Marking Theorem
to prove the random thinning property of the PPP (Prop. 3.2).

Example 3.13 Random Thinning: With each point xn of a PPP Φ on R2 associate a
mark mn ∈ {0, 1} with P(mn = 1) = p independently of all other points xm,m 6=
n. Then from the Marking Theorem, this marked PPP is a equivalent to a PPP on
R2 × {0, 1}, with density measure

Λ(A× {y}) = λν(A)[yp+ (1− y)(1− p)]

for compact A ⊂ R2 and y ∈ {0, 1}. Define a subset

S = {(A,mn) : mn = 1} ⊂ R2 × {0, 1}

that corresponds to the thinned version of the original PPP Φ. The number of points
in S is Poisson distributed with density measure Λ(S) = λν(A)p.

Now with relevant background of stochastic geometry tools at hand, we proceed to-
wards analyzing the outage probability (7), and consequently the transmission capacity.
Note that the outage probability (7) is invariant to the choice of any transmitter-receiver
pair because of the stationarity of the PPP. Thus, without any loss of generality, we con-
sider the pair (T0, R0) for the transmission capacity analysis. From (6), the SINR for
the (T0, R0) pair is

SINR =
Pdα|h00|2∑

m:Tm∈ΦT \{T0} Pd
−α
m01m|hm0|2 + 1

.

Remark 3.14 Since we have considered a typical transmitter-receiver pair (T0, R0),
to derive the outage probability P(SINR ≤ β), we need to know the distribution of
interference I received by R0, where

I :=
∑

m:Tm∈ΦT \{T0}

Pd−αm01m|hm0|2,

conditioned on a transmitter being located at T0.
From Slivnyak’s Theorem (Theorem 3.3), we know that conditioned on the event

that there is a transmitter at T0, the equivalent point process is Φ0
T = ΦT ∪ {T0}.

Thus, now working with Φ0
T , for communication between transmitter T0 and receiver

R0, all transmitters belonging to Φ0
T \{T0} = ΦT are interferers. Thus, the conditional

interference seen at the receiver R0 is I0 :=
∑
m:Tm∈ΦT

Pd−αm01m|hm0|2.
Therefore, the conditional distribution of interference I0 seen at receiver R0, is

the sum of interferences from all points of the homogenous PPP with density λ, which
is also called as the shot-noise process [2]. Thus, the conditional outage probability
Pout(B) is equal to

P(SINR ≤ β) = P

(
Pdα|h00|2∑

m:Tm∈ΦT \{T0} Pd
−α
m01m|hm0|2 + 1

∣∣∣∣∣ T0 is a transmitter

)
,

= P

(
Pdα|h00|2∑

m:Tm∈ΦT
Pd−αm01m|hm0|2 + 1

)
. (9)
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Now we are ready to derive a closed form expression for the outage probability,
and consequently the transmission capacity, as described in the next section.

4 Rayleigh Fading Model
In this section, we consider the received signal model of (4), when the fading channel
magnitudes hnm are i.i.d. exponentially distributed (Rayleigh fading) across different
users n,m. Rayleigh fading is the most popular fading model for analyzing wireless
communication systems, and represents the scenario of richly scattered fading envi-
ronment. In Section 5, we will consider just the path-loss model with no fading, i.e.
hnm = 1, that models the line-of-sight communication, and find tight bounds on the
transmission capacity.

4.1 Derivation of Transmission Capacity
Theorem 4.1 The outage probability at a typical receiver R0 with PPP distributed
transmitter locations with density λ is

Pout(B) = 1− exp
(
−d

αβ

P

)
exp

(
−λpcβ 2

α d2
)
,

where c = 2πΓ( 2
α )Γ(1− 2

α )

α , and Γ is the Gamma function. Hence, under an outage
probability constraint of ε, the transmission capacity is

C =
− ln(1− ε)− dαβ

P

cβ
2
α d2

(1− ε)B bits/sec/Hz/m2.

Remark 4.2 Recall from Assumption 2.5, − ln(1− ε) > dαβ
P . Thus, the transmission

capacity is always non-negative.

Proof: From the outage probability definition (7) and conditional SINR distribution
with a transmitter located at T0 (9),

Pout(B) = P

(
Pd−α|h00|2∑

m: Tm∈Φ P1md−αm0 |hm0|2 + 1
≤ β

)
,

(a)
= 1− E

{
exp

(
−d

αβ

P

( ∑
m: Tm∈Φ

P1md−αm0 |hm0|2 + 1

))}
,

= 1− exp
(
−d

αβ

P

)
E

{
exp

(
−dαβ

∑
m: Tm∈Φ

1md−αm0 |hm0|2
)}

,

where (a) follows by taking the expectation with respect to |h00|2, where |h00|2 ∼
exp(1). We have to take expectation with respect to |hm0|2 ∼ exp(1), and ALOHA
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protocol’s indicator variable 1m that is 1 with probability p and 0 otherwise. We first
take the expectation with respect to |hm0|2 that are i.i.d. ∀m, and obtain

Pout(B) = 1− exp
(
−d

αβ

P

)
E

{ ∏
m: Tm∈Φ

(
1

1 + 1mdαβd−αm0

)}

Now we take the expectation with respect to the ALOHA protocol indicator func-
tion 1m. Note that

1
1 + 1mdαβd−αm0

=
1m

1 + dαβd−αm0

+ 1− 1m.

Thus,

E
{

1
1 + 1mdαβx−α

}
=

p

1 + dαβd−αm0

+ 1− p. (10)

Hence,

Pout(B)
(b)
= 1− exp

(
−d

αβ

P

)
E

{∏
x∈Φ

(
p

1 + dαβx−α
+ 1− p

)}
,

(c)
= 1− exp

(
−d

αβ

P

)
exp

(
−λ
∫

R2
1−

(
p

1 + dαβx−α
+ 1− p

)
dx

)
,

= 1− exp
(
−d

αβ

P

)
exp

(
−λ
∫

R2

pdαβx−α

1 + dαβx−α
dx

)
,

= 1− exp
(
−d

αβ

P

)
exp

(
−2πλ

∫ ∞
0

pdαβx−α

1 + dαβx−α
xdx

)
,

(d)
= 1− exp

(
−d

αβ

P

)
exp

(
−λpcβ 2

α d2
)
,

where (b) follows by replacing the distance of the mth interferer dm0 by x, (c) follows
by using the probability generating function of the PPP (Theorem 3.6), and finally
in (d) c = 2πΓ( 2

α )Γ(1− 2
α )

β and Γ is the Gamma function. The transmission capacity
expression follows easily by using the outage probability constraint of Pout(B) ≤ ε.

�
In Theorem 4.1, we derived the exact expression for the transmission capacity using

the probability generating functional of the PPP. The probability generating functional
allowed us to compute the expectation of a product of functions over the entire PPP.
Also the fact that the channel coefficients are Rayleigh distribution was instrumental
in allowing us to derive the closed form distribution using the probability generating
functional. Instead of using the probability generating functional, an alternate way to
compute an exact expression for the transmission capacity is via the use of the Laplace
transform of the shot-noise process as described in [2].

The derived expression reveals the exact dependence of critical parameters such
as the outage probability constraint ε, rate B, and distance between transmitter and
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receiver d on the transmission capacity. To see how does the transmission capacity
scales with the outage probability constraint ε, it is useful to look at the regime of small
values of ε that corresponds to an extremely strict outage probability constraint. For
small values of ε, using the Taylor series expansion of log, the transmission capacity is
seen to be directly proportional to the outage probability constraint of ε. So tightening
the outage probability constraint leads to a linear fall in the transmission capacity.

To reveal the interplay between distance d between any transmitter-receiver pair
and the transmission capacity, we look at the interference limited regime, where the
interference power at any receiver is much large than the AWGN power i.e.

I =
∑
Tm∈φ

Pd−αm0 |hm0|2 >> 1,

and we can ignore the AWGN contribution safely without losing accuracy. Ignoring
the AWGN term that gives rise to −dαβ term in the numerator of the transmission ca-
pacity expression in Theorem 4.1, the transmission capacity scales as Θ(d−2). Thus,
Theorem 4.1 reveals an interesting spatial packing relationship, where the transmission
capacity can be interpreted as the packing of as many simultaneous spatial transmis-
sions where each transmission occupies an area of Θ(d2). This packing relationship
is similar to the

√
n scaling of throughput capacity result of [3] (discussed in Chap-

ter ??), where n nodes are distributed uniformly in an unit area. Throughput capacity
measures the sum of the rate of successful transmissions achievable between all pairs
of nodes simultaneously with high probability. In this section’s model, n corresponds
to the density λ and each communication happens over a fixed distance d, while in the
throughput capacity model, the expected distance between each source-destination pair
is a constant. Thus, the transport capacity, i.e. capacity multiplied with the distance is
same for the transmission capacity and throughput capacity metric, since from Theo-
rem 4.1, λ ∝ 1

d2 , and transport capacity is λd =
√
n, similar to the transport capacity

of order
√
n with the transport capacity metric.

After deriving the transmission capacity with the Rayleigh fading model, next, we
consider the path-loss model, where the multi-path fading component is ignored. At
first, this might appear futile, and to make it appear even more ridiculous, we will
only obtain bounds on the transmission in contrast to an exact expression. The real
advantage of the presented bounding techniques is that they are extremely useful in
analyzing the transmission capacity of many advanced signal processing techniques,
where exact expressions for transmission capacity cannot be found.

5 Path-Loss Model
In this section, we consider a slightly restrictive path-loss model , that does not account
for multi-path fading, and where the received signal at a receiver Rn is given by

yn =
√
Pd−α/2xn +

∑
m:Tm∈ΦT \{Tn}

√
Pd−α/2mn xm + w, (11)

where compared to (4), hnm = 1, ∀, n,m, and we have absorbed the ALOHA param-
eter 1m into the density of the PPP ΦT which is now equal to pλ (Prop. 3.2). Generally,
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with a simplified model, the analysis becomes easier. Finding an exact expression for
the transmission capacity is one exception, where it is known only for the Rayleigh
fading model and not for the path-loss model. Tight lower and upper bounds on the
transmission capacity [1] are however known with the path-loss model, and described
in this section.

From (11), the SINR at receiver Rn is

SINR =
Pd−α∑

m:Tm∈ΦT \{Tn} Pd
−α
mn1m + 1

. (12)

As before, we consider a typical transmitter-receiver pair (T0, R0) and similar to
(9), the outage probability conditioned on the event that there is a transmitter at T0 is
given by

Pout(B) = P

(
Pd−α∑

m:Tm∈ΦT \{Tn} Pd
−α
mn + 1

≤ β

∣∣∣∣∣ T0 ∈ ΦT

)
,

(a)
= P

(
Pd−α∑

m:Tm∈ΦT
Pd−αmn + 1

≤ β

)
,

(b)
= P

(
I ≥ d−α

β
− 1
P

)
, (13)

where (a) follows from the Slivnyak’s Theorem, and (b) follows by defining the total
interference from ΦT , as I :=

∑
m:Tm∈ΦT

d−αmn.

5.1 Upper Bound on the Transmission Capacity
Theorem 5.1 The transmission capacity with the path-loss model is upper bounded by

Cub =
ε

π
κ

2
α (1− ε)R+ Θ

(
ε2
)

bits/sec/Hz/m2,

as ε→ 0, where κ = d−α

β −
1
P .

Proof: Let κ = d−α

β − 1
P . Then the interference power received from transmitter

Tm located at a distance of κ−
1
α from R0 is κ, which by definition of κ is sufficient to

cause outage from (13), since I > κ.
To lower bound the outage probability (upper bound the transmission capacity), we

assume that there is at least one transmitter from ΦT in the disc with radius κ−
1
α cen-

tered at R0. Consequently, the total interference I > κ, and the outage is guaranteed.
Thus, Pout(B) ≥ P

(
#(B(R0, κ

− 1
α )) > 0

)
. From the void probability of the PPP,

we know that
P
(

#(B(R0, κ
− 1
α )) > 0

)
= 1− exp−λπκ

2
α .

With the given outage probability constraint of Pout(B) ≤ ε, we find an upper bound
on the largest permissible λ to be λub = − ln(1− ε) 1

πκ
− 2
α . Expanding, we get

λub =
ε

π
κ

2
α + Θ

(
ε2
)
. (14)
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Corresponding upper bound on the transmission capacity follows immediately by
noting that Cub = λub(1− ε)R. �

Keeping ALOHA probability p separately in (13), we get λub = ε
πpκ

2
α+Θ

(
ε2
)

and
the upper bound on the transmission capacity identical to (14), since Cub = pλub(1−
ε)R.

5.2 Lower Bound on the Transmission Capacity
Theorem 5.2 The transmission capacity with the path-loss model is lower bounded by

Clb =
(

1− 1
α

)
ε

π
κ

2
α (1− ε)R+ Θ

(
ε2
)

bits/sec/Hz/m2.

Proof: Finding this lower bound is slightly more involved than the upper bound. We
divide R2 into two regions, near field B(R0, s) and far field R2\B(R0, s) for some s
that will be chosen later. Let us define two events

EN = {#(B(R0, s) > 0)} ,

that corresponds to having at least one transmitter in disc B(R0, s), and

EF =

 ∑
m:Tm∈ΦT ,Tm∈R2\B(R0,s)

d−αmn > κ

 ,

that corresponds to the case that the interference received from transmitters lying out-
side of B(R0, s) is more than κ, and hence sufficient to cause outage.

Let E = EN ∪ EF . Then note that for s ≤ κ
−1
α , if outage happens (13), i.e. I > κ,

then either there is a transmitter in B(R0, s) or the interference from transmitters lying
outside B(R0, s) is more than κ. Thus, outage implies either of the two events EN or
EF are true. Hence we have

Pout(B) ≤ P(E).

Moreover, because of the PPP property, events EN and EF are independent since they
are defined over non-overlapping regions. Thus, we bound P(E) to get a lower bound
on the transmission capacity.

P(E) = P(EN ∪ EF ),
= P(EN ) + P(EF )− P(EN )P(EF ),

where we have used the independence of EN and EF . Now we work under the con-
straint P(E) ≤ ε that implies Pout(B) ≤ ε. We can write P(E) ≤ ε equivalently as
P(EN ) ≤ ε1 and P(EF ) ≤ ε2 such that ε1 + ε2 − ε1ε2 ≤ ε. Defining

λN = sup{λ|P(EN ) ≤ ε1},

and
λF = sup{λ|P(EF ) ≤ ε2},
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we get the lower bound on the optimal density λ? to be

λ? ≥ sup
ε1≥0,ε2≥0,ε1+ε2−ε1ε2≤ε

{inf{λN , λF }}. (15)

From (14), we know that

λN =
ε

π
s−

2
α + Θ

(
ε2
)
. (16)

For computing λF , we make use of the Chebyeshev’s inequality and get

P(EF ) = P

 ∑
m:Tm∈ΦT ,Tm∈R2\B(R0,s)

d−αmn > κ

 ≤ var

(κ−m)2
, (17)

where

var = V ar

 ∑
m:Tm∈ΦT ,Tm∈R2\B(R0,s)

Pd−αmn

 =
π

α− 1
s2(1−α)λ,

and

m = E

 ∑
m:Tm∈ΦT ,Tm∈R2\B(R0,s)

Pd−αmn

 =
π

α− 2
s2−αλ,

computed directly using the Campbell’s Theorem (Theorem 3.7).
By equating the bound on P(EF ) (17) to ε2, and keeping the dominant terms, we

get

λF =
(α− 1)κ2

π2
s2(α− 1)ε2 + Θ(ε22) (18)

From (15), we know that for a given ε1, ε2 pair, the optimal solution satisfies λN = λF .
Equating λN = λF from (16) and (18), we get

s =
(
ε1
ε2

) 1
2α

((α− 1)κ)
−1
2α .

Thus, for a given ε1, ε2 pair, by substituting for s, we get

λN = λF = (α− 1)
1
ακ

2
α

1
π
ε
1− 1

α
1 ε

1
α
2 . (19)

Moreover, for small outage probability constraint ε, ε2 = ε − ε1 + Θ(ε2), and to get
the lower bound we need to solve,

max
ε=ε1+ε2

λN .

Using (19), the optimum is ε?1 =
(
1− 1

α

)
ε and ε?2 = ε

α , and we get the required
lower bound (15) on λ? as

λN = λlb =
(

1− 1
α

)
κ

2
α

1
π
ε+ Θ(ε2). (20)
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Figure 1: Transmission Capacity with Rayleigh fading and path-loss model with
ALOHA protocol.

Required lower bound on the transmission capacity Clb = λlb(1− ε)R. �
The derived upper and lower bound on the transmission capacity for the path-loss

model have the exact same scaling in terms of the parameters κ (that depends on d,
and β) and ε (the outage probability constraint), and only differ in constants. Thus,
this technique of dividing the overall interference into two regions, and using simple
void probability expressions and Chebyeshev’s inequality is powerful enough to de-
rive meaningful expressions for the transmission capacity. These bounding technique
will come handy, when we analyze more complicated protocols and techniques such
multiple antennas, ARQ protocol etc.

Similar to the Rayleigh fading model, comparing the upper and lower bounds de-
rived in Theorems 5.1 and 5.2, using the definition of κ, it is clear that the transmission
capacity is inversely proportional to d2, where d is the distance between each transmit-
ter and receiver. So operationally, the transmission capacity exhibits the same spatial
packing behavior with or without taking fading into account.

In Fig. 1, we plot the transmission capacity with respect to the outage probabil-
ity constraint ε for both the Rayleigh fading and path-loss models. For the path-loss
model, we plot both the derived upper and lower bound in addition to the simulated
performance. We see that the upper bound is very close to the simulated performance.
We can also see that there is some performance degradation in transmission capacity
while including the multi-path fading that is Rayleigh distributed.

For both the Rayleigh fading and path-loss model, the transmission capacity ex-
pressions (in Theorem 4.1, Theorem 5.1, and Theorem 5.2 ) are independent of the
ALOHA probability of access p. This happens since we have constrained the outage
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probability to be below ε, which in turn gives an upper bound on the effective density
of the PPP λp, and the transmission capacity loses its dependence on p. If we define
the transmission capacity as the product of the density of the PPP and the success prob-
ability of any node, which we call as goodput, then we can unravel the dependence of
p on network performance which is presented in next section.

6 Optimal ALOHA Transmission Probability
Let the network goodput of a wireless network be defined as

G = λ(1− Pout(B))B bits/sec/Hz/m2,

by accounting for λ concurrent transmissions per meter square at rate B bits/sec/Hz
with outage probability Pout(B).

Then from Theorem 4.1 using the expression for Pout(B), we have

G = λp exp
(
−d

αβ

P

)
exp

(
−λpcβ 2

α d2
)
, (21)

where c = 2πΓ( 2
α )Γ(1− 2

α )

β . Ignoring, the AWGN contribution exp
(
−d

αβ
P

)
, we get

G = λp exp
(
−λpcβ 2

α d2
)
. (22)

Differentiating G with respect to p and equating it to 0, the optimal ALOHA access

probability is p? = min
{

1, 1

λcβ
2
α d2

}
, and

G∗ =


1

ecβ
2
α d2

if λcβ
2
α d2 > 1,

λ exp
(
−λcβ 2

α d2
)

o.w.
(23)

Thus, even without an outage probability constraint, we see that the good put
expression (23) is independent of both λ and p, similar to Theorem 4.1 whenever
λcβ

2
α d2 > 1, since the product of the density λ and the optimal ALOHA probabil-

ity p is a constant. This is a result of a underlying fundamental limit on the maximum
density of successful transmissions in a wireless network, which in case of the ALOHA
protocol is equal to λp.

In Fig. 2, we plot the network goodput as a function of the ALOHA access proba-
bility p. As derived, we can see that the optimal p = .63 for λ = 10−3 with d = 10m,
α = 3 for B = 2 bits/sec/Hz transmission rate.

After analyzing the transmission capacity of wireless network with ALOHA proto-
col in detail, we next highlight a surprising feature of the ALOHA protocol of having
both spatial and temporal correlation in interference received at any point in space.
With ALOHA protocol, at each time slot, each node transmits independently of all
other nodes, but the shared randomness between node locations due to PPP assump-
tion gives rise to counter-intuitive correlations across time and space. We capture this
critical phenomenon in the next section, and which will be useful for analyzing the
performance of ARQ type protocols in Chapter ??.
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Figure 2: Network goodput G with Rayleigh fading as a function of ALOHA access
probability p.

7 Correlations with ALOHA protocol
In this section, we show a counter-intuitive result from [4] that shows that interference
received at any point in space in a PPP network is both temporally and spatially corre-
lated while using the ALOHA protocol. One would assume that given that the locations
of nodes in a PPP network are uniformly random in any given area, and with ALOHA
protocol each node transmits independently across space and time, the interference re-
ceived at different locations or time instants would be independent, however, that is
shown to be incorrect as follows.

To be concrete, in a PPP distributed wireless network with the ALOHA protocol,
we fix the transmitter locations drawn from a single realization of PPP, while at each
time slot, each node decides to transmit with probability p independently of all other
nodes. Finally, the averaging is taken with respect to the PPP. Thus, the shared ran-
domness of transmitter locations gives rise to spatial and temporal correlation.

From (9), we know that conditioned on a transmitter being at T0, the conditional
outage probability at R0 is

P(SINR ≤ β) = P

(
Pdα|h00|2∑

m:Tm∈ΦT
Pd−αm01m|hm0|2 + 1

≤ β

)
.
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In the above expression, the only stochastic quantity is the interference (shot noise)

I0 =
∑

m:Tm∈ΦT

Pd−αm01m|hm0|2

seen at receiver R0.
To unravel these correlations of interference, let the interference seen at location

u ∈ R2 at time k be

Iu(k) :=
∑
x∈ΦT

Pg(x− u)1p(x, k)|hxu(k)|2,

where g(.) be the path-loss function that only depends on the distance. Throughout this
book, we use g(x − u) = |x − u|−α. The indicator function 1p(x, k) means that the
transmitter at x ∈ ΦT transmits with probability p using the ALOHA protocol at time
k.

The spatio-temporal correlation coefficient between Iu(k) and Iv(`) is

corrxy(k, l) =
E {(Iu(k)− E{Iu(k)}) (Iv(`)− E{Iv(`)})}

V ar(Iu(k))
1
2V ar(Iv(`))

1
2

=
E{Iu(k)Iv(`)} − (E{Iu(k)})2

E{Iu(k)2} − (E{Iu(k)})2
, (24)

since Iu(k) and Iv(`) are identically distributed. We now compute the three expecta-
tions in (24) using the Campbell’s Theorem and second-order product density (corre-
lation) of the PPP as follows.

First the expected value of Iu(k), which is

E{Iu(k)} (a)
= E{Io(k)},

= E

{∑
x∈ΦT

Pg(x)1p(x, k)|hxo(k)|2
}
,

(b)
= E

 ∑
x∈Φ(k)

Pg(x)1p(x, k)

 ,

(c)
= pλ

∫
R2
g(x)dx, (25)

where (a) follows since the distribution of Iu(k) is invariant to location of u and o is
the origin, (b) follows since the |hxo|2 is Rayleigh distributed with E{|hxo|2} = 1, and
finally, (c) follows from the Campbell’s Theorem for PPP.
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Next, we derive the expression for second moment of the interference, as follows.

E{Iu(k)2} = E{Io(k)2},

= E


(∑
x∈ΦT

Pg(x)1p(x, k)|hxo(k)|2
)2
 ,

= E

{∑
x∈ΦT

Pg2(x)1p(x, k)|hxo(k)|4
}

+E

 ∑
x,y∈ΦT ,x 6=y

Pg(x)g(y)1p(x, k)1p(y, k)|hxo(k)|2|hyo(k)|2
 ,

= pE{h4}λ
∫

R2
g2(x)dx,

+p2
(
E{h2}

)2
λ2

∫
R2

∫
R2
g(x)g(y)dxdy, (26)

where the first term in the last equality follows from Campbell’s Theorem (Theorem
3.7) for PPP, and the second term from the fact that |hxo|2 and |hy0|2 are independent,
and second-order product density of the PPP [5] which states that

E

 ∑
x,y∈Φ(k),x 6=y

f(x)f(y)

 = λ2

∫ ∫
f(x)f(y)dxdy.

Finally, by exactly following the same procedure as above, the cross-correlation of
the interference is given by

E{Iu(k)Iv(`)} = p2λ

∫
R2
g(x− u)g(x− v)dx,

+p2λ2

(∫
R2
g(x)dx

)2

, (27)

where we have used E{|h|2} = 1.
Thus, using (25), (26), and (27), the spatio-temporal correlation of the interference

from (24) is

corru,v(k, `) =
p
∫

R2 g(x− u)g(x− v)dx
E{|h|4}

∫
R2 g2(x)dx

. (28)

For the x−α path-loss function, that we use throughout this book, we next show
that the spatial correlation coefficient is zero.

Example 7.1 For the special case of g(x) = x−α, the spatial correlation coefficient
is zero. For the purposes of analysis, we let gψ(x) = 1

ψ+xα and let ψ → 0, since
otherwise

∫
x−αdx =∞. From (28), the spatial correlation coefficient with path-loss
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function gψ(x) is

corru,v(k, `) =
p
∫

R2 gψ(x− u)gψ(x− v)dx
E{|h|4}

∫
R2 g2

ψ(x)dx
,

=
p
∫

R2
1

ψ+(x−u)α
1

ψ+(x−v)α dx

E{|h|4}
∫

R2
1

ψ+xα dx
.

Taking the limit as ψ → 0, it follows that limψ→0 corru,v(k, `) = 0. This result is an
artifact of the path-loss model of x−α, where the nearest interferers are the dominant
interferers. Thus, for two distinct receivers, most of the interference comes from small
discs around them that are non-overlapping, and since the number of points of PPP
lying in non-overlapping discs are independent, the result follows.

Thus, even though the interferences seen at different receivers are not independent,
however, they are uncorrelated. Consequently, assuming independence of interference
for ease of analysis is not too limiting.

Example 7.2 From (28), we can get the temporal correlation coefficient as a special
case of corru,v(k, `) by specializing v = u as corr(k, `) = p

E{|h|4} .

Clearly from (28), the temporal correlation coefficient is non-zero, and hence re-
peated transmissions (SINR at different times) between a transmitter-receiver pair are
not independent. Direct impact of this observation is encountered in the analysis of
ARQ protocols, where repeated transmission attempts are made till the packet is suc-
cessfully received. Typically, for the ease of exposition, SINRs at repeated attempts
are assumed independent, which is inaccurate as shown in the next example. We next
present a simple example to derive the joint success probability at a receiver from [4].
A more general exact derivation for ARQ protocols will be described in Chapter ??
under a maximum retransmissions/delay constraint.

Example 7.3 We consider a receiver located at origin o, and for simplicity drop the
AWGN contribution and define the success to be the event that

SINR(k) =
d−α|h(k)|2

Io(k)
> β.

Then
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P (SINR(k) > β,SINR(`) > β) = P
(
|h(k)|2 > dαIo(k)β, |h(`)|2 > dαIo(`)β

)
,

(a)
= E

{
exp−d

αIo(k)β exp−d
αIo(`)β

}
,

= E
{

exp−d
αβ
P
x∈Φ Pg(x)1p(x,k)|hxo(k)|2

exp−d
αβ
P
x∈Φ Pg(x)1p(x,`)|hxo(`)|2

}
(b)
= E

{∏
x∈Φ

(
p

1 + dαx−αβ
+ 1− p

)2
}
,

(c)
= exp

„
−λ
R

R2 1−
“

p

1+dαx−αβ
+1−p

”2
dx

«
,

where (a) follows from the fact that |h(`)|2, |h(k)|2 ∼ exp(1) and are independent,
(b) follows by taking the expectation with respect to ALOHA (similar to (10)) and
|hxo(k)|2, |hxo(`)|2 that are i.i.d. ∼ exp(1), and finally (c) follows from the probability
generating functional of the PPP (Theorem 3.6).

Solving for this integral we get

P (SINR(k) > β,SINR(`) > β)
P (SINR(k) > β)2 = exp(2λp2β2/αd2π2 α−2

α2 csc( 2π
α )) > 1.

Thus, link success probabilities are positively correlated. Hence, if the transmis-
sion between a transmitter and receiver is successful at a given instant, it is more likely
to be successful again. Thus, the analysis of ARQ type strategies, where a packet is
repeatedly sent until it is successfully received is complicated, since the probability of
success or failure in successive slots is not independent. Most works assume the inde-
pendence and make an inaccurate prediction on the performance of ARQ protocols. In
Chapter ??, we will illustrate the exact performance of a ARQ protocol in a wireless
network.

Until now in this chapter we have concentrated on analyzing the performance of
wireless network when each transmitter uses an ALOHA protocol. However, clearly,
one can choose the set of simultaneously active transmitters better than the ALOHA
protocol by considering received SINRs, neighbor distance etc. to reduce interference
and improve the transmission capacity. In the next section, we present two such proto-
cols and analyze their performance.

8 Transmission Capacity with Scheduling in Ad Hoc
Networks

In a PPP network, the most significant contributor of interference at each receiver is its
nearest interferer. The expected interference from the nearest interferer is of the same
order as the expectation of the sum of the interference from all other interferers. With
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the ALOHA protocol, each node transmits independently and there is no restriction on
the set of simultaneously transmitting nodes. Thus, the nearest interferer is active with
a fixed probability, and limits the performance of the ALOHA protocol. To improve the
outage probability at any receiver, thus there is a case for inhibiting transmission from
some of the nearest interferers. This is turn, however, reduces the number of simul-
taneous transmissions (spatial capacity) in the network. Thus, an efficient scheduling
strategy (transmitter inhibition strategy) has to find which transmitters to turn off such
that the improvement in the outage probability compensates for the spatial capacity
loss.

One such strategy is based on guard zones, where any transmitter within a distance
of dgz from a receiver is not allowed to transmit [6]. Other class of strategies includes
various versions of CSMA, where each trasnmitter measures the channel and decides to
transmit depending on a function of its measurement. Intuitively, both these strategies,
should improve the transmission capacity with respect to ALOHA, however, exactly
quantifying the improvement analytically is complicated. The challenge is that with
guard zone strategy or CSMA, the set of active transmitters is correlated (not PPP
anymore) and the distribution of interference seen at any receiver does not have a closed
form expression or known Laplace transform or probability generating functionals.
To overcome this difficulty, typically, approximations are made on the interference
distributions to get some analytical tractability. In this section, we first discuss the
guard zone based strategy and then follow it up with analyzing two variants of CSMA.

8.1 Guard zone strategy
Consider a PPP network Φ with density λ nodes per unit area as described in Section
2, where each transmitter has a corresponding receiver at distance d. With a guard
zone, only those transmitters that are not within a distance of dgz from any receiver
are allowed to transmit, see Fig. 3. For the typical transmitter-receiver pair (T0, R0),
where R0 is at the origin, let the active set of interferers be denoted by Φgz = {Tm :
Tm ∈ Φ\B(0, dgz)}. Then, the outage probability at receiver R0 is

P gzout(B) = P

(
Pd−α|h00|2∑

m:Tm∈Φgz
Pd−αm0 |hm0|2 + 1

≤ β

)
. (29)

Then with an outage probability constraint of ε, the maximum density of successful
transmissions is

λ1
gz = sup{λ : P gzout(B) ≤ ε}.

Since the distribution of interference Igz =
∑
m:Tm∈Φgz

Pd−αm0 |hm0|2 received at any
receiver is not known, deriving exact expression for the outage probability is not possi-
ble. To facilitate the analysis, Igz is assumed to follow a Gaussian distribution. Similar
to the computation of mean and variance in (17), the exact mean mgz and variance
vargz of Igz can be computed using the Campbell’s Theorem (Theorem 3.7) (proof is
left as an excercise) as

mgz =
4πdαd2−α

gz

α2 − 4
λ, (30)



CHAPTER X. Transmission Capacity of ad hoc Networks 23

prohibited transmitter

exclusion region

dgz

Figure 3: Black dots are transmitters and blue dots are receivers. Only those transmit-
ters are allowed to transmit that lie outside of discs of radius dgz centered at all the
receivers.
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vargz =
πd2αd

2(1−α)
gz

α2 − 1
λ. (31)

Thus, using the Gaussian distribution approximation on Igz with mean mgz and
variance vargz , we have that

P gzout(B) = P

(
Pd−α|h00|2∑

m:Tm∈Φgz
Pd−αm0 |hm0|2 + 1

≤ β

)
,

(a)
= exp

n
− d

αβ
P

o
exp{−d

αβIgz},

(b)
= exp

n
− d

αβ
P

o
exp


−dαβmgz+

d2αβ2vargz
2

ff
, (32)

where (a) follows since |h00|2 ∼ exp(1), and (b) follows from using the moment
generating function of the Gaussian distribution. Thus, (32) reveals how the outage
probability decreases with increasing the guard zone distance dgz , and we can get λ1

g

by equating it to the outage probability constraint ε.
The probability for any receiver to not have any transmitter in a disc of radius

of dgz around it is equal to the void probability of transmitter PPP Φ in a disc of
radius dgz , which is given by exp−λπd

2
gz . Thus, with the inhibition criterion of the

guard zone based policy, the density of the active transmitter process is paλ, where
pa = exp−λπd

2
gz . Hence the operational density of transmitters is λ2

gz = λ exp−λπd
2
gz .

Note that this separate analysis of λ1
gz and λ2

gz is not completely accurate since they
depend on each other, however, acts as a reasonable approximation.

There is inherent tension between inhibition radius dgz and the transmission ca-
pacity; increasing dgz decreases the interference and the outage probability (increases
λ1
g), but at the same time decreases the number of active transmitters (decreases λ2

g).
Note λ1

g is the maximum density that can be supported given an outage probability
constraint of ε, and considering only the interference coming from outside the disc of
radius dgz , under the guard-zone based strategy. Hence we want to find the best dgz
and λ such that λ2

g (density corresponding to inhibition) is equal to λ1
g (corresponding

to the outage probability constraint). Equivalently, one can also write the optimization
problem as

λ?(dgz) = max
dgz,λ

[
min{λ1

gz, λ
2
gz}
]
. (33)

Corresponding transmission capacity is λ?(dgz)(1− ε)B bits/sec/Hz/m2.
Problem (33) is a non-linear optimization problem which can solved using numer-

ical computations. In Fig. 4, we plot the transmission capacity as a function of dgz for
outage probability constraint of 10% (ε = .1). We can see that that transmission capac-
ity increases with dgz for dgz ≤ d?gz and decreases thereafter, since the decrease in the
number of concurrent transmissions for dgz > d?gz overtakes the improvement in the
outage probability. We can also see that there is significant improvement by employing
a guard-zone based inhibition policy over uninhibited transmissions (dgz = 0).

An alternative to guard-zone based scheduling strategy, is the CSMA protocol,
where each node monitors the channels and follows a contention resolution strategy.
We discuss two versions of CSMA protocols in the next section for wireless networks
and analyze their performance.
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Figure 4: Transmission Capacity with Rayleigh fading as a function of guard zone dgz .

8.2 CSMA
8.2.1 Channel Gain Based

We consider the same signal model as in Section 2, where the location of transmitters
Tn is assumed to follows a PPP Φ with density λ. Each transmitter Tn is defined to be
qualified to transmit if its channel gain with its associated receiver Rn, |hnn|2, exceeds
a threshold τh. Thus, this protocol requires channel feedback from each Rn to Tn. Let

ΦQ = {Tn ∈ Φ : |hnn|2 ≥ τh}

denote the set of qualified nodes or contenders. Note that ΦQ is a randomly thinned
version of ΦT , since |hnn|2 are i.i.d., and therefore ΦQ is also a homogenous PPP with
density λpτh , where pτh = P(|hnn|2 ≥ τh).

We define that two transmitters Tn and Tm contend with each other if the received
interference power they see from each other, |hnm|2d−α, is greater than the CSMA
threshold τc, |hnm|2d−α > τc. For a transmitter Tn, its contention neighborhood is the
set of nodes that contend with it,

ΦCN (n) = {Tm ∈ ΦQ : |hmn|2|Tm − Tn|−α ≥ τc}.

The inhibition module of the CSMA protocol allows only one of the transmitters from
ΦCN (n) to transmit at any time to suppress interference.
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To decide which node of ΦCN (n) gets to transmit in a decentralized manner, each
node of ΦCN (n) is equipped with a timer value clkn that is a uniformly distributed
random variable between [0, 1]. Thus, the node with the minimum timer value transmits
in each slot, and if any node in ΦN hears a transmission from node Tn? , it does not
transmit in that entire slot and resets its timer value. For each slot, the node n? ∈
ΦCN (n) transmits at time clkn? , where n? = arg minn:Tn∈ΦCN (n) clkn.

Remark 8.1 There are two modules in this CSMA protocol, the first that finds qualified
nodes that have sufficient channel gains to their respective receivers, and the second
that chooses one node among the set of qualified nodes to minimize interference. Al-
lowing only qualified nodes to contend increases the chance of success, however, limits
the number of simultaneously spatial transmissions, thus the choice of τh, (parameter
controlling the qualification) is critical. Similar tradeoff exists as a function of τc that
controls the size of the neighborhood, since only one node in each neighborhood is
allowed to transmit.

Let En = 1{|h00|2≥τh,clkn≤minTm∈ΦCN (n) clkn} represent the event that transmitter
Tn is qualified, and has the least timer in its neighborhood and gets to transmit. Then
a typical transmitter T0 located at the origin gets to transmit with the above CSMA
protocol if E0 = 1. Thus, the probability that a typical transmitter T0 transmits is
pcsma = E{E0}. Note that events {|h00|2 ≥ τh} and {clkn ≤ minTm∈ΦCN (n) clkn}
are independent.

Next, we show that the cardinality of set Φ0
N (the neighborhood set of T0 located

at origin), #(Φ0
N ), is Poisson distributed with mean pτhN̄ , where

N̄ = λπE

{(
τc
|hm0|2

) 2
α

}
.

By definition, the set Φ0
N consists of all nodes of ΦQ that lie in a disc B

(
o,
(

τc
|hm0|2

) 1
α

)
.

Since ΦQ is a PPP with density λpτh , the number of nodes of ΦQ lying in B
(
o,
(

τc
|hm0|2

) 1
α

)
are Poisson distributed with mean λpτhπE

{(
τc
|hm0|2

) 2
α

}
.

Thus,

pcsma = pτhE{clk0 ≤ min
Tm∈Φ0

N

clkn}},

(a)
= pτhE

{
1

1 + #(Φ0
N )

}
,

(b)
= pτh

1− exp−pτh N̄

pτhN̄
,

=
1− exp−pτh N̄

N̄
,

where (a) follows since T0 has the least timer among its #(Φ0
N ) neighbors and (b)

follows since #(ΦCN (n)) is Poisson distributed with mean pτhN̄ .
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Next, we compute the outage probability for the typical transmitter-receiver pair
(T0, R0). The set of active users Φa = {Tm ∈ ΦQ : Em = 1} and the interference
received at R0 from active users is

Ia0 =
∑

Tm∈Φa\{T0}

d−αm0 |hm0|2.

Hence, the outage probability is given by

Pout(B) = P
(
|h00|2 < βdαIa0

∣∣ |h00|2 > τh
)
,

Deriving the outage probability with this CSMA protocol is challenging since the
set of active transmitters is no longer a homogenous PPP, and there are correlations
among the active node locations.

To facilitate the analysis, following [7], we will approximate Ia0 by the interference
from another non-homogenous PPP Φh with density pτhλh(x, pτhλ), as a function of
x > 0. The function h(x, pτhλ) is the conditional probability that T0 at origin is active
and in addition there is another active transmitter Tm with Em = 1 at a distance x
from the origin, and where the density of qualified nodes ΦQ is pτhλ. The difference
between a homogenous and non-homogenous PPP is that in the non-homogenous case,
the density is not constant, and depends on the location x ∈ R2.

By using the non-homogenous PPP Φh, we are trying to model the inhibition in-
duced by the CSMA among transmitters of the PPP Φ. Note that h(x, pτhλ) → 0 as
x→ 0. Thus, the density of PPP Φh goes to zero for short distance x, and correspond-
ingly there is large scale inhibition induced by the CSMA protocol at distances close
to origin where T0 is located, allowing only very few nodes to transmit at the same
time as T0. On the other hand, as x → ∞, h(x, pτhλ) → P

(
clkm ≤ minTn∈ΦmN

clkn
)

for some Tm ∈ ΦQ, since as x increases, the effect of conditioning (having an active
transmitter T0 at the origin) over the event that there is an active transmitter at distance
x from the origin diminishes. Eventually at x = ∞, having an active transmitter T0

at the origin has no effect on having an active transmitter at distance x from the ori-
gin, leading to h(x, pτhλ) being equal to the unconditional probability of having an
active node among the qualified nodes, which is equal to P

(
clkm ≤ minTn∈ΦmN

clkn
)

for some Tm ∈ ΦQ. Thus, at large distances x, the density of process Φh is equal to
λpcsma having no inhibition effect from the transmitter located at the origin.

Thus, as a function of distance x from the origin, PPP Φh essentially models the
inhibiting nature of the CSMA with respect to the typical node at the origin, having
increasing number of active transmitters with increasing x. We illustrate the PPP Φh

pictorially in Fig. 5.
The utility of this new process Φh is that its Laplace transform is known to be

LΦh\{T0}(s) = exp

„
−pτhλ

R∞
0

R 2π
0

h(x,pτhλ)xdθdx
1+f(x,d,θ)/s

«
, (34)

where f(x, d, θ) = (x2 + d2 − 2xr cos(θ))−α/2, and d is the distance between each
transmitter-receiver pair [7]. This can also be derived from first principles similar to
Laplace transform of a homogenous PPP.



CHAPTER X. Transmission Capacity of ad hoc Networks 28

Non-homogenous Process Φh

R0 R0

Original Process Φ

Figure 5: A pictorial description of PPP Φh in comparison to original process Φ, where
the density increases with increasing distance from the origin.

Using (34), by approximating Ia0 with interference from nodes in Φh, we can write

Pout(B) = 1− LΦh\{T0}(2iπr
−αts)

1
1−2iπs exp2iπsτh −1

2iπs
, (35)

using the Plancerel-Parseval Theorem, [8]. The details of this derivation are intention-
ally deleted because of being laborious and too technical.

Thus, using (35), we can numerically compute the outage probability and conse-
quently the transmission capacity, that is the density of successful transmissions mul-
tiplied with rate of transmission 2β − 1. In this inhibition based CSMA protocol, the
two key parameters are τh and τc, that control the number of qualified transmitters, and
the size of the neighborhood.

In Fig. 6, we plot the goodput (1−Pout(B))λR as a function of density λ for fixed
neighborhood contention threshold τc = 1, and different values of transmitter channel
access threshold τh. We see that for small values of λ, no CSMA (ALOHA with
access probability 1) is better than CSMA, since interference is very low and inhibition
provided by CSMA is unnecessary. On the other hand, as we increase the density,
the role of CSMA transmitter channel access threshold τh becomes more prominent,
since with sufficient interference it is important to control how many transmitters are
allowed to transmit. We see a similar performance comparison in Fig. 7, where we plot
the goodput as a function of density λ for fixed transmitter channel access threshold τh
and different values of neighborhood contention threshold τc = 1.

Remark 8.2 Recently, a more detailed analytical analysis of CSMA protocol with just
the neighborhood contention model, i.e., with τc = 0 (no qualification criteria) has
been done in [9] for small densities (λ) regime, to show that the transmission capac-
ity scales as Θ

(
ε

2
αψ

)
, for ε → 0, where ψ ≥ 1 depends on the fading coefficient

distribution. For Rayleigh fading, ψ = 1.
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Figure 6: Network goodput with Rayleigh fading as a function of CSMA transmitter
channel access threshold of τh for neighborhood contention threshold of τc = 1.

Next, we present an alternate SINR based CSMA protocol, where each node mon-
itors the SINR to its corresponding receiver, and transmits only if the SINR is larger
than a threshold. In all prior sections in this chapter, we have assumed that each node’s
data queue is backlogged, i.e. it always has packet to transmit. This is only an abstrac-
tion, and a more general data arrival process model is considered with the SINR based
CSMA protocol in the next section.

8.2.2 SINR-based

In this section, we consider a SINR based CSMA protocol, and consider that packets
arrive at each node according to a 1-dimensional PPP. In all earlier sections, we have
assumed that each node always has a packet to transmit which is only an abstraction.
To analyze the SINR based CSMA protocol with random packet arrivals, we consider
a slightly different network model compared to Section 2, that has been introduced in
[10]. We consider an areaA, and model the packet arrival process as a one-dimensional
PPP with arrival rate (A/L)λ, where L is the fixed packet duratio. Each packet after
arrival is assigned to a transmitter location that is uniformly distributed in area A,
and the receiver corresponding to a particular transmitter is located at a fixed distance
d away with a random orientation, as shown in Fig. 8. For A → ∞, this process
corresponds to a 2-dimensional PPP of transmitter locations with density λ (Section
2), where each transmitter has packet arrival rate of 1

L . Note that the performance of
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Figure 7: Network goodput with Rayleigh fading as a function of CSMA neighborhood
contention threshold τc with channel access threshold of τh = 1.

ALOHA protocol with data packet arrival process follows similar to what follows next
and omitted for brevity and can be found in [10].

Remark 8.3 If we use the model of Section 2, then we would first fix the transmitter
locations according to a 2-dimensional PPP, and then packet traffic is generated, and
each transmitting node receives packet according to 1-dimensional PPP over time.
The packets are then transmitted to the respective receivers that are located at a fixed
distance d. Thus, with the model of Section 2, one has to average over the spatial
(to fix locations) and temporal (packet arrivals) statistics, which is rather challenging.
Instead, by slightly altering the model, as described above, there is a single process,
that defines both the spatial location and temporal packet arrival process.

For simplicity, we ignore the AWGN contribution. Hence the SIR between trans-
mitter Tn and its receiver Rn at time t is given by

SIRn(t) :=
d−α|hnn|2∑

Ts∈Φ\{T0} 1Ts(t)d
−α
mn|hmn|2

, (36)

where 1Tm(t) = 1, if the transmitter Ts is not in back-off, and 0 otherwise. With
CSMA, transmitter Ts sends its packet at time t if the channel is sensed idle at time t,
which corresponds to SIRn(t) > β. Otherwise, the transmitter backs off and makes a
retransmission attempt after a random amount of time. If Tn transmits the packet, the
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Figure 8: Spatial model for CSMA with packet arrivals.

packet transmission can still fail if SIRn falls below β during the packet transmission
time L. Thus, the outage probability

Pout = Pb + (1− Pb)Pfail|no back-off,

where Pb is the back off probability, and Pfail|no back-off is the probability that the trans-
mission fails during transmission. Hence, the transmission capacity with CSMA is
defined as

C = λ(1− Pout)B bits/sec/Hz/m2.

Remark 8.4 CSMA introduces correlation among different transmitter’s back-off events,
and hence the number of simultaneously active transmitters no longer follow a PPP.
Nevertheless, for analytical tractability, as an approximation, we assume that the trans-
mitter back-off events are independent, and simultaneously active transmitter locations
are still PPP distributed. The simulation results show that this assumption is reason-
able [10].

In the following Theorem, we derive the back-off probability for any transmitter with
the SINR-based CSMA.

Theorem 8.5 The back-off probability follows a recursive relationship

Pb = 1− exp
(
−λ(1− Pb)cβ

2
α d2

)
,

which can be solved using Lambert’s function W0(.).

Proof: Under the independent back-off assumption, the set of active transmitters at
time 0 is a PPP with density

∑0
i=−L

λ
L (1− Pb) by counting for all active transmitters
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during the packet length of L time slots. Thus, the density of active transmitters at time
0 is

λa = λ(1− Pb).

Hence from Theorem 4.1, we get the recursive relation Pb = P(SIRn(0) < β) =
1− exp

(
−λ(1− Pb)cβ

2
α d2

)
. �

Next, we derive an explicit expression for the packet failure probability Pout(B)
with the CSMA protocol.

Theorem 8.6 Pfail|no back-off = 1−
PL+1
`=0 (−1)`(L+1

` )e
− λ
T

 R
R2 1−

„
(1−Pb)

1+dαβx−α
+1−(1−Pb)

«`
dx

!

1−Pb .

Proof: Note that Pfail|no back-off is the probability that at any time t, SIRn(t) < β
for 0 < t ≤ L given that SIRn(0) > β. Hence,

1− Pfail|no back-off = P(SIRn(1) > β, . . . , SIRn(L) > β|SIR0 > β),

=
P(SIR0 > β,SIRn(1) > β, . . . , SIRn(L) > β)

P(SIR0 > β)
,

and the desired expression for the joint probability in the numerator follows from
Proposition ??, using the probability generating functional of the PPP (Theorem 3.6),
similar to Example 7.3. The transmitters that become active at any time t between time
0 and L is a PPP with density λ

L (1− Pb).
�

Hence using Pout = Pb + (1− Pb)Pfail|no back-off, we get the transmission capacity
C = λ(1− Pout)R for CSMA by combining Theorem 8.5 and 8.6. Finding the closed
form expression for Pfail|no back-off derived in Theorem 8.6 is quite challenging. An
upper bound on the Pfail|no back-off, however, can be found using the FKG inequality as
follows.

Definition 8.7 Let (Υ,F ,P) be the probability space. Let A ∈ F , and 1A be the
indicator function of A. Event A ∈ F is called increasing if 1A(ω) ≤ 1A(ω′),
whenever ω ≤ ω′, ω, ω′ ∈ Υ for some partial ordering on ω. The event A is called
decreasing if its complement Ac is increasing.

Lemma 8.8 (FKG Inequality [11] If both A,B ∈ F are increasing or decreasing
events then P(AB) ≥ P(A)P(B).

Lemma 8.9 For CSMA Pout ≤ 1− (1− Pb)L+1.

Proof: Clearly, SIRn(t) is a decreasing function of the number of interferers, since
larger the number of interferers, less is the SIR. Therefore the success event {SIRn(t) >
β} is a decreasing event. Hence, from the FKG inequality,

P(SIRn(0) > β,SIRn(1) > β, . . . , SIRn(L) > β) ≥ P(SIR0 > β)L+1,

since SIRn(t) is identically distributed for any t. Hence, Pfail|no back-off ≤ 1−(1−Pb)L,
and Pout ≤ 1− (1− Pb)L+1.
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Figure 9: Outage probability comparison of ALOHA and SINR-based CSMA with
Rayleigh fading.

Consequently, we get a lower bound on the transmission capacity with CSMA as

C ≥ λ(1− Pb)L+1R.

�
Even though we have obtained closed form expression for the outage probability

and consequently the transmission capacity, it is not easy to directly compare the SINR
based CSMA protocol and the ALOHA protocol. We hence turn to numerical simula-
tion for comparing their performance.

In Fig. 9, we plot the outage probabilities of ALOHA and SINR-based CSMA.
For low densities λ, we see that the performance of ALOHA is better than CSMA,
because of un-necessary back-offs initiated by CSMA that are not required. However,
as the density λ increases, the back-off mechanism of CSMA kicks in and reduces the
interference and consequently outperforms the ALOHA protocol.

9 Reference Notes
The notion of transmission capacity was introduced in [1], where upper and lower
bounds for the path-loss model were presented. The exact transmission capacity ex-
pression presented in Section 4.1 for the Rayleigh fading model, and the optimal
ALOHA probability that maximizes the goodput is derived from [2]. The spatial and
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temporal correlations with the ALOHA model presented in Section 7 can be found
in [4]. Transmission capacity analysis with scheduling using guard-zone is derived
from [6], while the case of scheduling with CSMA can be found in [7, 10].
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