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Abstract

The design of online algorithms for maximizing the achievable rate in a wireless communication

channel between a source and a destination over a fixed numberof slots is considered. The source

is assumed to be powered by a natural renewable source, and the most general case of arbitrarily

varying energy arrivals is considered, where neither the future energy arrival instants or amount, nor

their distribution is known. The fading coefficients are also assumed to be arbitrarily varying over time,

with only causal information available at the source. For a maximization problem, the utility of an online

algorithm is tested by finding its competitive ratio or competitiveness that is defined to be the maximum

of the ratio of the gain of the optimal offline algorithm and the gain of the online algorithm over all

input sequences. We show that the lower bound on the optimal competitive ratio for maximizing the

achievable rate is arbitrarily close to the number of slots.Conversely, we propose a simple strategy that

invests available energy uniformly over all remaining slots until the next energy arrival, and show that

its competitive ratio is equal to the number of slots, to conclude that it is an optimal online algorithm.

I. INTRODUCTION

We consider the energy harvesting paradigm for powering wireless communication, where

the source harvests energy from natural renewable sources,such as solar cells, windmills, etc.

for transmitting its data to the destination. Using energy from nature not only improves the

lifetime of wireless devices, which are otherwise battery powered, but also provides a means
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of green communication. Harvesting energy from natural sources, however, makes the future

available energy levels at the source unpredictable and thesource has to adaptively choose the

transmission power for maximizing its utility function without knowing the future energy arrivals.

Another important constraint dictated by harvesting energy from nature is the energy neutrality

constraint, i.e. energy spent by any time instant cannot be more than the energy harvested until

that time. Energy neutrality and unpredictable energy availability makes the design of optimal

algorithms in the energy harvesting paradigm a challengingproblem.

In this paper, we consider a wireless communication channelbetween a single source-destination

pair. The source is assumed to harvest energy from renewablesources, and the problem is to

maximize the mutual information or the achievable rate between the source and the destination

over a fixed number of slots. Each slot corresponds to a coherence interval; time for which

the fading coefficients remain constant. The source is assumed to have only causal information

about the energy arrivals and fading coefficients. To model the most general energy harvesting

paradigm, we assume that the energy arrivals are arbitrarily varying and the source is not assumed

to have any information about the future energy arrivals or its distribution. This assumption is

valid for the case when energy is harvested from a combination of heterogenous sources such

as wind, vibrational source, body strapped devices, for which the distribution of energy arrivals

may be time varying and potentially hard to compute.

We consider the scenario when the wireless fading channel isan arbitrarily varying channel

(AVC), where the fading coefficients do not follow any distribution and vary arbitrarily over

time. AVCs in wireless communication are motivated from thenon-stationarities in propagation

environment because of mobility, presence/absence of lineof sight, Doppler effects etc. In prior

work, AVCs have been studied from an information theoretic point of view [1]–[3], however,

to the best of our knowledge, AVCs in the energy harvesting paradigm have not been explored

before. In any case, assuming arbitrarily varying energy arrivals and fading coefficients, provides

a worst case guarantee on the system performance. Therefore, the problem we consider in this

paper is to findonline algorithms(that have access to only causal information about energy

arrivals and fading coefficients with no distribution information) that maximize the achievable

rate over a fixed number of slots.

In prior work, optimal offline algorithms (that have access to all future energy arrivals instants

and amounts) have been derived for maximizing the achievable rate in energy harvesting systems
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for the wireline Gaussian channel [4]–[6], and for the wireless fading channel [7], [8]. Similar

results are available for many other communication channels, e.g. interference channel [9],

broadcast channel [10], relay channel [11]. The scope of these algorithms, however, is limited

because of unrealistic assumption of non-causal information. Some properties of stochastic online

algorithms, where the source has the knowledge of the distribution of energy harvest instants

and amounts, have been derived in [12], [13] using results from stochastic control theory. To

the best of our knowledge, however, no analysis is known for online algorithms with unknown

energy harvest distribution for maximizing the achievablerate.

With arbitrarily varying energy arrivals and fading coefficients, we turn to the competitive

ratio analysis of online algorithms that is popular in computer science community [14] to

derive ”good” online algorithms for maximizing the achievable rate. With online algorithms,

no knowledge of future inputs (energy arrivals and fading coefficients in our case) is assumed

and the input can even be generated by an adversary that creates new input portions based on the

systems reactions to previous ones. The goal is to derive algorithms that have a provably good

performance even against adversarial inputs. The performance of online algorithms is usually

evaluated using competitive analysis [14], where an onlinealgorithm A is compared with an

optimal offline algorithmO that knows the entire request sequenceσ in advance and can serve

it with maximum profit/minimum cost. In the dynamic programming literature, this framework

is known as theminimaxor maxmincontrol [15], where the objective of the algorithm is to

maximize the utility while the nature is assumed to choose parameters to minimize the utility.

In prior work, competitive analysis has been used to design online algorithms for several

communication systems, e.g. [16]–[20]. The most related papers to this work are [18], [19],

where the problem of dynamic power allocation in an arbitrarily varying wireless fading channel

(AVC) under a sum-power constraint is considered. The two fundamental differences between

the problem studied in this paper and prior work are : i) future energy availability is unknown,

and ii) energy neutrality constraint, and to the best of our knowledge these issues have not been

addressed in the literature.

To state our results formally, we define an online algorithm and its competitiveness as follows.

Definition 1: Let P be an optimization problem that depends on request sequenceσ =

(σi), i = 1, 2, . . . ,. An online algorithmA for solving P is presented with requestsσ =

(σi), i = 1, 2, . . . , and it has to serve each request without knowing the future requests. In our
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caseσ is the sequence of energy arrivals and fading coefficients. Formally, when processingσi

to solveP, A does not know any requestsσt, t > i. Let the profit of the online algorithmA for

servingσ be PA(σ). An optimal offline algorithmO knows the entire request sequenceσ in

advance and serves it with maximum profitPO(σ).

Definition 2: Let A be any online algorithm for solving a maximization problemP. ThenA

is calledrA-competitive or has a competitive ratio ofrA if for all input sequencesσ,

max
σ

PO(σ)

PA(σ)
≤ rA,

and the optimal competitive ratior is defined as

r = min
A

max
σ

PO(σ)

PA(σ)
.

The contributions of this paper are as follows.

• We first consider the special case when all the energy arrivesat the start of transmission,

and only the fading coefficients are arbitrarily varying. For this special case, we show that

the optimal competitive ratio for solving the achievable rate maximization problem overN

slots, isN , and a simple online algorithm that divides the energy equally in all N slots

is optimal. This special case setting is equivalent to achievable rate maximization in an

AVC with a sum-energy/power constraint [18], where non-matching bounds on the optimal

competitive ratio have been derived as a function of the ratio of the maximum and the

minimum value of the fading coefficients. The bounds derivedin [18], however, are valid

for the case when the number of slotsN is allowed to be a function of the available energy,

and the maximum and the minimum value of the fading coefficients. The bounds [18] are

discussed in detail in Remark 3. Our results apply to any fixednumber of slotsN , where

N need not be a function of any other system parameter.

• For the general case of arbitrarily varying energy arrivalsand fading coefficients, we show

that the optimal competitive ratio isN , and an online algorithm that invests available energy

uniformly over all the remaining slots until the next energyarrival is optimal.

• We also consider the problem of minimizing the transmissiontime of a fixed number of bits

when both the energy arrivals and fading coefficients are arbitrarily varying, that is related

to the achievable rate maximization problem. We show that the competitive ratio of any

online algorithm for minimizing the transmission time of a fixed number of bits is lower
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bounded by infinity. This is a negative result that shows thatthere exist input sequences

for which an optimal offline algorithm can finish transmission in finite time, however, no

online algorithm can. For the case of minimizing the transmission time of a fixed number

of bits under a wireline Gaussian channel, where all fading coefficients are equal to unity,

a simple online algorithm has been proposed in [21] whose competitive ratio is less than2.

Thus, the problem of minimizing the transmission time of a fixed number of bits critically

depends on the arbitrarily varying nature of fading coefficients.

Notation: Let f(n) andg(n) be two function defined on some subset of real numbers. Then

we write f(n) = Ω(g(n)) if ∃ k > 0, n0, ∀ n > n0, |g(n)|k ≤ |f(n)|, f(n) = O(g(n)) if

∃ k > 0, n0, ∀ n > n0, |f(n)| ≤ |g(n)|k, andf(n) = Θ(g(n)) if ∃ k1, k2 > 0, n0, ∀ n > n0,

|g(n)|k1 ≤ |f(n)| ≤ |g(n)|k2. We use the symbol:= to define a variable.

II. SYSTEM MODEL

Consider a wireless communication channel between a sourceand a destination, where the

received signal at the destination at timet is given by

yt =
√

Pthtxt + nt, (1)

wherext is the signal transmitted by the source with powerPt, ht is the fading coefficient, and

nt is the additive white Gaussian noise, that is assumed to havezero mean and unit variance, and

is independent across timet. We assume a block fading model [22], where the fading coefficients

ht remain constant forw time units. We call each such block as aslot of width w, where in the

nth time slot, the fading coefficient is denoted ashn for n = 1, 2, . . . , N , whereN is the total

number of slots of interest. Throughout the rest of this paper we work with slots rather than

actual time instants. We assume that the source is powered bya renewable energy source and

receivesEn amount of energy at the start of thenth slot.

As discussed before, we consider an arbitrarily varying fading channel and energy arrivals,

where at slotn no information (not even the distribution) about the fadingcoefficients or the

energy arrivals of the future slotshm, Em, m > n is known. We assume that at the beginning

of each slotn, the source obtains the information about fading coefficient hn of slot n, and

the energyEn that arrives at slotn. The source at slotn can use information about the fading



6

coefficients and energy arrivals till slotn, i.e. hi, Ei, i ≤ n for making transmission decisions

(e.g. power to transmit) to maximize its utility. We call this thecausal information.

In this paper, we consider that the source is interested in maximizing the mutual information

or the achievable rate. Let the source use energyUEn in slot n, then from (1), the achievable

rate in slotn is given by [23],

Rn = w log2

(

1 +
|hn|

2UEn

w

)

, (2)

since throughout the slotn of width w, the fading coefficient ishn, and for which equally

distributing the energy over allw time units maximizes the achievable rate [23]. Throughout the

rest of the paper we considerlog with base2, and drop the subscript2 from here onwards. The

overall rate accumulated overN slots is

R =

N∑

n=1

Rn, (3)

and the total energy consumed is
∑N

n=1 UEn.

The optimization problemR of interest is

maxUEn,n=1,...,N R =
∑N

n=1 w log
(

1 + |hn|2UEn

w

)

s.t.
∑m

n=1 UEn ≤
∑m

n=1 En, ∀ m ≤ N,

(4)

with only causal information abouthn and En. The constraint in (4)
∑m

n=1 UEn ≤
∑m

n=1 En

represents the fact that the energy used by slotm is less than the energy arrived till slotm,

which is popularly known as theenergy neutrality constraint. We are interested in finding the

optimal online algorithmA⋆ that achieves the best competitive ratio, i.e.

A⋆ = arg min
A

max
σ

RO(σ)

RA(σ)
, (5)

whereσ = ((|h1|
2, E1), (|h2|

2, E2), . . . , (|hN |
2, EN)) is the sequence of fading coefficients and

energy arrivals forN slots, and the optimal competitive ratio is

r = min
A

max
σ

RO(σ)

RA(σ)
. (6)

A related problem to (4) is, given a fixed number of bitsB at the beginning of communication,

minimize the time by which allB bits are sent to the destination with causal information about

hn andEn. Note that here we do not have any restriction on the number ofslots, i.e. the total
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slots used to transmitB bits need not be less thanN . With the previous definition ofUEn

being the energy spent in slotn, andRn as the bits transmitted in slotn using energyUEn, the

number of bits transmitted until slotm is

B(m) =

m∑

n=1

Rn.

Then the optimization problemT to find the optimal total transmission time is

T ⋆ = min

UEn

B(T ) ≥ B,
∑m

n=1 UEn ≤
∑m

n=1 En, ∀ m

T. (7)

Similar to (4), we are interested in finding online algorithms to solveT with the best competitive

ratio

r = min
A

max
σ

TA(σ)

TO(σ)
,

where we have inverted the ratio in comparison to (6), because (7) is a minimization problem.

For both the optimization problems (4) and (7), the optimal offline algorithm has been

characterized in [4]. However, the structure of the optimaloffline algorithm does not directly

lead to the evaluation ofRO(σ) or TO(σ) that is required for computing the competitive ratio.

For analytical tractability of the competitive ratio, we will typically use an upper bound (lower

bound) onRO(σ) (TO(σ)).

Remark 1:A typical strategy to find the optimal competitive ratio (e.g. (6)) involves two

steps. In the first step, we construct a set of adversarial sequencesσ1, . . . , σM (typically M

finite for analytical tractability) to lower bound the optimal competitive ratior by rLB(M),

whererLB(M) := minA max
σ∈{σ1,...,σM}

RO(σ)
RA(σ)

. In the second step, we find an online algorithm

A and upper boundr by rA := maxσ

RO(σ)
RA(σ)

. Then if rLB(M) = rA, the optimal solution is

found. Finding the choice of sequences such thatrLB(M) = rA, however, is often quite difficult.

Before going to the competitive ratio analysis of online algorithms where both energy arrivals

and fading coefficients are arbitrarily varying and are onlyknown causally (4), in the next section

we consider the case when energy arrives only at the beginning of communication, and only the

fading coefficients are arbitrarily varying and known causally. This restricted case is equivalent

to sum-rate maximization in an arbitrarily varying fading channel with a sum-power constraint

(energy available at the beginning of the communication), that has received recent attention in
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[18], from the competitive ratio point of view. Moreover, the competitive ratio analysis of this

restricted case acts as a building block for the competitiveratio analysis of the general case.

III. F IXED ENERGY WITH ARBITRARY FADING COEFFICIENTS

Consider the case when energy only arrives at the beginning of transmission at slot1 given

by E1, and no energy arrives after that, while the fading coefficients are arbitrarily varying and

only causally known. In this case, any input sequence is of the form

σ =
(
(|h1|

2, E1), (|h2|
2, 0, ), . . . , (|hN |

2, 0)
)
.

With this model, the optimization problem (4) specializes to Rs

maxUEn,n=1,...,N Rs =
∑N

n=1 w log
(

1 + |hn|2UEn

w

)

s.t.
∑N

n=1 UEn ≤ E1,

(8)

where compared to (4), the energy constraint is only a sum-energy constraint ofE1 throughout

the N slots.

Remark 2:Under a sum-energy/power constraint, the optimal offline strategy (if the source

knows the sequenceσ at the beginning of transmission) to solve (8) is the well known water-

filling strategy [23]. For the special case, when all the fading coefficients are identical, the

water-filling strategy is to transmit equal energy/power ineach slot. We will use this fact at

multiple instances to upper bound the rate achieved by the optimal offline algorithm.

Remark 3: In prior work, bounds on the competitive ratio ofRs (8) have been derived in

[18] as a function ofhmax and hmin, wherehmin ≤ |hn|
2 ≤ hmax, ∀ n. Assuming that the

number of slotsN are a function of initial energyE1, hmax, andhmin, a lower bound on the

competitive ratio of any online algorithmA has been shown to ber = Ω
(

log
(

hmax

hmin

))

, and an

online algorithmA is proposed for which the competitive ratio isrA = O

((
hmax

hmin

)2
)

. Thus,

there is a large gap between the lower and upper bound on the competitive ratio.

In this section, we consider the general case, where the number of slotsN is fixed, and is not

a function of any other system parameter, and show that the optimal competitive ratior = N .
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A. Lower Bound on the Competitive Ratio

In this section, we show that the competitive ratio of any online algorithm solvingRs is lower

bounded byN − ǫ for arbitrarily small ǫ > 0. We first discuss the simple case ofN = 2 to

illustrate the proof idea, and then generalize it for anyN .

As discussed in Remark 1, to lower bound the optimal competitive ratio it is sufficient to

consider anyM input sequences. In this section, we consider only two inputsequences (M =

N = 2), σ1 = ((1, E1), (0, 0)), andσ2 = ((1, E1), (β, 0)), whereβ is the parameter that we will

choose to get the largest lower bound on the competitive ratio, andE1 = e. We choosee to be

small enough such that for any|hn|
2 ∈ σi, i = 1, 2 we consider, the achievable rate obtained in

any slotn using energŷe ≤ e is w log
(

1 + |hn|2ê

w

)

≈ |hn|
2ê (linear approximation), similar to

[18]. Since we are looking for the worst possible input sequence for deriving the lower bound,

we can choose any value ofe, and in particulare to be small enough. Note that we will prove

the upper bound on the competitive ratio for any value ofE1 andw in Subsection III-B.

Following Remark 1, we have the following lower bound on the competitive ratio

r ≥ min
A

max
σ∈{σ1,σ2}

RO(σ)

RA(σ)
.

With the linear rate approximation in each slot, it immediately follows that the optimal offline

algorithm will invest all itse amount of energy in one slot that has the highest fading coefficient.

Thus, withE1 = e, RO(σ1) = e, while RO(σ2) = βe.

Now, consider an online algorithmA. Note that the input sequence in slot1 for both σ1 and

σ2 is identical, and thus without the knowledge of future fading coefficients of slot2, A cannot

adapt the energy it spends in slot1 depending onσi, i = 1, 2. Thus, letA spendα fraction of its

energyE1 = e in slot 1 for bothσ1 andσ2, and use the rest(1−α) fraction in slot2. Thus, with

parameterα we can index all online algorithms. Note that any online algorithm with choose that

α that minimizes the competitive ratio (penalty with respectto an optimal offline algorithm).

Next, we show that no matter whatα is, the competitive ratio of any online algorithm is at least

2.

With A spendingα fraction of its energyE1 = e in slot 1 for bothσ1 andσ2, RA(σ1) = αe,
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while RA(σ2) = (α + (1 − α)β)e. Thus,

r ≥ min
A

max
σ∈{σ1,σ2}

RO(σ)

RA(σ)
,

= min
α∈[0,1]

max

{
1

α
,

β

α + (1 − α)β

}

At the optimal value ofα, α⋆, the two terms inside the maximum are equal. Thus,α⋆ satisfies
1

α⋆ = β

α⋆+(1−α⋆)β
. Therefore,α⋆ = 1

2− 1

β

, and hence

min
α∈[0,1]

max

{
1

α
,

β

α + (1 − α)β

}

= 2 −
1

β
,

and consequently,r ≥ 2 − 1
β
. Note thatr ≥ minα∈[0,1] max

{
1
α
, β

α+(1−α)β

}

for any value ofβ.

Thereforer ≥ limβ→∞ minα∈[0,1] max
{

1
α
, β

α+(1−α)β

}

. Clearly,

lim
β→∞

min
α∈[0,1]

max

{
1

α
,

β

α + (1 − α)β

}

= 2.

Thus,r > 2 − ǫ for any arbitrarily smallǫ > 0.

Working backwards, what we have essentially done is as follows. Lets say we want to show

that r > 2 − ǫ for someǫ > 0. Then we pickβ large enough so thatr > 2 − ǫ using the linear

approximation thatw log
(
1 + βê

w

)
≈ βê for any ê ≤ e. Then picke small enough so that the

linear approximation on achievable ratew log
(
1 + βê

w

)
≈ βê for any ê ≤ e is tight. The same

technique is applied for obtaining a lower bound for any number of slotsN in the following

Theorem.

Theorem 1:Let any online algorithm berA-competitive for solvingRs. ThenrA > N − ǫ for

any arbitrarily smallǫ > 0.

Proof: ConsiderN input sequences of lengthN ,

σi = ((1, E1), (β, 0), (β2, 0), . . . , (βi−1, 0), (0, 0), . . . , (0, 0)
︸ ︷︷ ︸

N−i

),

i = 1, 2, . . . , N , whereβ >> 1. We also fix the total energy available that arrives at slot1

to E1 = e. As in the case ofN = 2, we let e small enough such thatw log(1 + |hn|2ê

w
) ≈

|hn|
2e, ∀ n, ê ≤ e, |hn|

2 ∈ σi, i = 1, 2, . . . , N . With E1 = e, the achievable rate with the

optimal offline algorithm with sequenceσi is RO(σi) = βi−1e, since it spends all its energy in

the slot with the largest fading coefficient.

Consider an online algorithmA. Since the input at slot1 is identical forσi, i = 1, 2, . . . , N ,

at slot1, A does not know which input sequence has actually occurred. Thus, A cannot adapt
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the amount of energy it spends in slot1 depending onσi, i = 1, 2, . . . , N . Thus, letA spend

α1 fraction of its energyE1 = e in slot 1. At slot 2, if A sees(0, 0) as the input resulting

because ofσ1, it transmits no energy. Otherwise, if(β, 0) is the input at slot2 that is identical

for σi, i = 2 . . . , N , similar to above description, letA spendα2 fraction of its energye in slot

2 irrespective of the input sequence, since it has no knowledge of the input sequence among the

possibleN −1 input sequencesσi, i = 2 . . . , N . Carrying this forward, letA spend no energy in

any slot for which the input sequence is(0, 0). Otherwise, letA spendαn fraction of its energye

in slot n, such that
∑N

n=1 αn ≤ 1. Thus, with parameterα′
ns we can index all online algorithms.

The rate of an online algorithmA with input sequenceσi is RA(σi) =
∑i

j=1 αjβ
j−1e. From

Remark 1,

r ≥ min
A

max
σ∈{σ1,...,σN}

RO(σ)

RA(σ)
,

= min
αn,

PN
n=1 αn≤1

max

{
1

α1
,

β

α1 + α2β
,

. . .
βN−1

∑N−1
j=1 αjβj−1 + ((1 −

∑N−1
j=1 αj)βN−1

}

. (9)

Similar to the case ofN = 2, at the optimal values ofα′
ns, α⋆

n, all the terms inside the maximum

are equal. Thus,1
α⋆

1

= β

α⋆
1
+α⋆

2
β

= · · · = βN−1

PN−1

j=1
α⋆

j βj−1+((1−
PN−1

j=1
α⋆

j )βN−1
. Hence

r ≥
1

α⋆
1

, (10)

where

1

α⋆
1

= min
αn,

PN
n=1

αn≤1
max

{
1

α1
,

β

α1 + α2β
,

. . .
βN−1

∑N−1
j=1 αjβj−1 + ((1 −

∑N−1
j=1 αj)βN−1

}

Similar to theN = 2 case, it can be easily shown thatlimβ→∞
1

α⋆
1

= N . Moreover, since, the

lower bound (10) is valid for allβ, therefore,r ≥ limβ→∞
1

α⋆
1

. Thus,r > N−ǫ for any arbitrarily

small ǫ > 0.

In the proof we assumed that|hn|
2 can take any value in[0,∞), which is consistent with the

typical wireless channel modeling [22], where fading coefficients are assumed to have infinite

support. In case, the fading coefficients are bounded from below and above, i.e.hmin < |hn|
2 <
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hmax, where hmin > 0 and hmax < ∞, then we cannot let any|hn|
2 = 0 and β → ∞ in

the proof of Theorem 1. However, ifhmax

hmin
is large enough, reworking the proof of Theorem 1

by replacing|hn|
2 = 0 by |hn|

2 = hmin, and choosinghmax to be large enough, we can get

rA > N − ǫ, for small enoughǫ that depends onhmax

hmin
. The regime wherehmax

hmin
is large enough

has been considered previously in [18] to derive a lower bound on the competitive ratio that is

given byr = Ω
(

hmax

hmin

)

.

Remark 4:Note that the lower bound obtained in Theorem 1 also applies to the case when an

online algorithm makes decision at slotn with information only about the pasthi andEi, i < n

or no information at all, since knowing the present information can only improve the performance

of an online algorithm.

Discussion:In this section, we constructed a lower bound on the competitive ratio of any

online algorithm for maximizing the achievable rate under asum-energy/power constraint. We

showed that the lower bound is arbitrarily close to the number of slotsN . To derive this bound,

we first chose the available energy value to be small enough such that the rate achievable in any

slot is well approximated by linear payoff : the product of the fading coefficient and the energy

invested in that slot. With the linear payoff, the basic ideabehind the lower bound is that if we

keep increasing the fading coefficients in subsequent slots, the optimal offline algorithm invests

all its energy in the last slot. Any online algorithm, however, has to invest equal energy in all

slots since it tries to maintain a minimum ratio between the optimal offline algorithms payoff

and its own payoff at each slot without knowing the future fading coefficients.

Compared to [18], we obtained the lower bound as a function ofthe number of slotsN rather

than the ratio of the maximum and the minimum fading coefficient magnitudes. The utility of

this lower bound is that in the next section we will show that this bound is actually tight, i.e.

there exists an online algorithm that can achieve this lowerbound. We also note that our lower

bound does not contradict the upper bound derived in [18] (Remark 3), since [18] assumes that

the number of slotsN is a function of the available energyE1, hmax andhmin, and the bound

is derived for a particular choice ofN .

B. Upper Bound on the Competitive Ratio

We propose an equal power allocation (EPA) algorithm to upper bound the competitive ratio

of Rs (8). With EPA algorithm, the available energy at the startE1 is equally distributed across
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all the slots, i.e.UEn = E1

N
, n = 1, . . . , N . Next, we show that the competitive ratio of the EPA

algorithm isN .

Theorem 2:EPA algorithm isN-competitive for solvingRs. Consequently, the EPA algorithm

is an optimal online algorithm for solvingRs (8).

Proof: Consider any input sequenceσ = ((|h1|
2, E1), (|h2|

2, 0) . . . , (|hN |
2, 0)). Let

m = arg max
j=1,2,...,N

|hj |
2.

Since the EPA algorithm invests equal energyE1/N in each slot, the achievable rate with the

EPA algorithmRs
EPA(σ) ≥ w log

(
1 + |hm|

2 E1

Nw

)
, by just counting for the rate obtained in the

mth slot.

To upper bound the rate obtained with the optimal offline algorithm, consider an enhanced

version of the input sequenceσ that consists of fading coefficients with all entries equal to |hm|
2,

i.e., σ̄ = ((|hm|
2, E1), (|hm|

2, 0), . . . , (|hm|
2, 0)). Clearly, the achievable rate with̄σ is better than

σ. Thus,Rs
O(σ) ≤ Rs

O(σ̄). Moreover, withσ̄, since all fading coefficients are identical, from

Remark 2, the optimal offline algorithm (waterfilling) invests equal energyE1/N in each slot

to getRs
O(σ̄) = Nw log

(
1 + |hm|

2 E1

Nw

)
. Thus, the competitive ratio of the EPA algorithm is

rEPA(σ) =
Rs

O(σ)

Rs
EPA(σ)

,

≤
Rs

O(σ̄)

Rs
EPA(σ)

,

≤
Nw log

(
1 + |hm|

2 E1

Nw

)

w log
(
1 + |hm|2

E1

Nw

) ,

≤ N. (11)

The final conclusion follows by comparing the upper bound (11) with the lower bound on the

competitive ratio derived in Theorem 1.

Discussion:In this section, we proposed a simple EPA algorithm that spends equal energy in

all slots without using the causal fading coefficient information, and whose competitive ratio is

upper bounded by the number of slotsN . More significantly, the competitive ratio of the EPA

algorithm matches with the lower bound obtained in Theorem 1, and hence we conclude that

the EPA algorithm is an optimal online algorithm for solving(8). As described before, upper

and lower bounds on the competitive ratio have been derived previously in [18] as a function of
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the ratio of the maximum to the minimum fading coefficient, however, the bounds do not match.

Note that our upper bound on the competitive ratio derived using the EPA algorithm does not

contradict the lower bound derived in [18] (Remark 3), since[18] assumes that the number of

slotsN is a function of the available energyE1, hmax andhmin. Using Theorems 1 and 2, we

note that the number of slotsN is the right quantity of interest in terms of the competitiveratio

rather than the ratio of the maximum to the minimum fading coefficient [18].

In light of Remark 4, from Theorems 1 and 2, it also follows that the EPA algorithm is an

optimal online information even if only past or no information about the fading coefficients

is available at each slot. Thus, the optimality of the EPA algorithm is somewhat a negative

result, since the optimal competitive ratio is invariant tothe availability of the information about

the past/present fading coefficients, and shows that the causal fading coefficient information is

actually not useful.

IV. A RBITRARY ENERGY ARRIVALS AND FADING COEFFICIENTS

In this section, we consider the general case, where both theenergy arrivals and fading

coefficients are arbitrarily varying and only causal information is available about them, i.e.,

we are interested in solving (4).

A. Lower Bound on the Competitive Ratio

With arbitrarily varying energy arrivals and fading coefficients, the input sequence isσ =

((|h1|
2, E1), (|h2|

2, E2), . . . , (|hN |
2, EN )). Let us restrict our attention to the case whenEn =

0, n = 2, . . . , N . Then, we are in a setting equivalent to Section III, where all the energy arrives

at the beginning, and sinceEn = 0, n = 2, . . . , N is a special case of input sequences, from

Remark 1, it follows that the lower bound on the optimal competitive ratio obtained in Theorem

1, also applies to the general case of arbitrarily varying energy arrivals and fading coefficients.

We summarize the result in the following Theorem.

Theorem 3:Let any online algorithm berA-competitive for solvingR (4). ThenrA > N − ǫ

for any arbitrarily smallǫ > 0.

Remark 5:Note that from the definition of the competitive ratio, considering a special case

of En = 0, n = 2, . . . , N is sufficient to derive a lower bound on the optimal competitive ratio.

However, since the upper bound has to hold for all input sequencesσ, i.e. all possible values
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of En, n = 1, . . . , N , limiting to special cases of inputs is not sufficient for deriving an upper

bound on the competitive ratio. Hence, the results of Subsection III-B, do not apply for arbitrarily

varying energy arrivals. In the next section, we propose a modified EPA algorithm that is online,

and whose competitive ratio is upper bounded byN .

Sequenceσ

h3h2h1 hN

k2 k3 kp−1
kpk1

Ek1
Ek2

Ek3
Ekp−1

Ekp

Interval1 Intervalp

hkp−1
hkp−1

hkp−1

Intervalp − 1

hk2

Interval2

hkp
hkp

hkp
hk2

hk1
hk1

hk1
hk1

︸ ︷︷ ︸
∑2

i=1 Eki

︸ ︷︷ ︸
∑p−1

i=1 Eki

︸ ︷︷ ︸
∑p

i=1 Eki

︸ ︷︷ ︸
Ek1

Enhanced Sequencēσ

Fig. 1. Illustration of strategy used to upper bound the ratewith optimal offline algorithm.

B. Upper Bound on the Competitive Ratio

To upper bound the competitive ratio with arbitrarily varying energy arrivals and fading

coefficients, we modify the EPA algorithm as follows, and call it repeated equal power allocation

(REPA) algorithm. With REPA, if at slotn the available energy iŝEn, then it equally distributes

the available energy over the remaining slots, and uses energy UE = Ên

N−n+1
in each slot until

the next energy arrival. Clearly, REPA algorithm is online,i.e. it does not depend on future,

and satisfies the energy neutrality constraint. Note that ifthe energy only arrives at slot1, then

the REPA algorithm is equivalent to the EPA algorithm. Next,we show that REPA algorithm is

N-competitive for solving (4).

Theorem 4:REPA algorithm isN-competitive for solvingR (4). Consequently, the REPA

algorithm is optimal for solving (4).

Proof: Consider any input sequenceσ = ((|h1|
2, E1), (|h2|

2, E2), . . . , (|hN |
2, EN)). Consider

the slot indicesn for which energy arrivalsEn 6= 0, and denote them byk1, . . . kp, where

p ≤ N . Without loss, assume thatk1 = 1, i.e., non-zero energy arrives in slot1. Otherwise, we

can start from thekth
1 slot, and remove the firstN − k1 − 1 slots from consideration. This can

only improve the upper bound. Leti denote the index of slot interval between energy arrivals
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at slotski+1 and ki, i = 1, . . . , p − 1. The pth slot interval represents the slots between slot

kp, where the last energy arrival happens, and the last slotN . See Fig. 1 for illustration. For

simplicity of exposition, we let the input sequence corresponding to theith slot interval be

σi = (|hki
|2, Eki

), (|hki+1|
2, 0) . . . , (|hki+1−1|

2, 0), i = 1, . . . , p, whereσ = (σ1, σ2, . . . , σp).

Let |hmax
i |2 be the largest fading coefficient magnitude in slot intervali = 1, . . . , p, i.e.,

|hmax
i |2 = max{|hki

|2, |hki+1|
2, . . . , |hki+1−1|

2}. Then as in the proof of Theorem 2, we enhance

the input sequence corresponding to theith slot intervalσi as

σ̄i = ((|hmax
i |2, Eki

), (|hmax
i |2, 0) . . . , (|hmax

i |2, 0), i = 1, . . . , p,

and σ̄ = (σ̄1, σ̄2, . . . , σ̄p). See Fig. 1 for illustration.

Clearly, the rate achievable with̄σ is better thanσ, thus,RO(σ̄) ≥ RO(σ). Note that because

of energy neutrality constraint, the maximum energy spent by the end of slot intervali is
∑i

j=1 Ekj
, ∀ i. Thus, in any slot intervali, the maximum energy that can be spent is

∑i

j=1 Ekj
, ∀ i.

Therefore, the maximum rate achievable in any slot intervali is obtained by spending all the

energy that has arrived till then in slot intervali.

Moreover, since with̄σ, in each slot interval the fading coefficients are identical, and hence the

energy spent by an optimal offline algorithm in any slot interval is spent equally among all the

slots in that slot interval (Remark 2), therefore,RO(σ̄i) ≤ (ki+1−ki)w log

(

1 +
|hmax

i |2
Pi

j=1 Ekj

(ki+1−ki)w

)

,

since(ki+1−ki)w is the width of theith slot interval. To obtain this upper bound, we have made

significant relaxation of energy constraint since we allow spending energyE1 in slot interval1,

spending energyE1 + E2 in slot interval2 and so on such that the energy spent in slot interval

p is
∑p

i=1 Eki
, as shown in Fig. 1.

HenceRO(σ̄)

=

p
∑

i=1

RO(σ̄i),

≤

p
∑

i=1

(ki+1 − ki)w log

(

1 +
|hmax

i |2
∑i

j=1 Ekj

(ki+1 − ki)w

)

. (12)

Thus, (12) serves as an upper bound onRO(σ̄), that we will use to upper bound the competitive

ratio of the REPA algorithm.

Next, we lower bound the rate with the REPA algorithm by considering the original input

sequenceσ, and not its enhanced version. With the REPA algorithm, let the energy used in
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any slotn of slot interval i be UEi
n. Then UE1

n = E1

N
, and UEi

n = Ei+UEi−1(N−(ki−1−ki))
(N−ki+1)

for

i = 2, . . . , p. Simple algebraic manipulations show thatUEi
n ≥

Pi
j=1

Ekj

N
, ∀ i. Then with the

REPA algorithm, for each slot intervali = 1, 2, . . . , p, considering only one slot that achieves

the fading coefficient|hmax
i |2 in σi,

RREPA(σi) ≥ w log

(

1 + |hmax
i |2

UEi
n

w

)

.

Substituting,UEi
n ≥

Pi
j=1

Ekj

N
, we get

RREPA(σi) ≥ w log

(

1 +
|hmax

i |2
∑i

j=1 Ekj

Nw

)

,

and the total achievable rateRREPA(σ)

=

p∑

i=1

RREPA(σi),

≥

p∑

i=1

w log

(

1 +
|hmax

i |2
∑i

j=1 Ekj

Nw

)

,

=

p
∑

i=1

w log

(

1 +
|hmax

i |2
∑i

j=1 Ekj

N
(ki+1−ki)

(ki+1 − ki)w

)

,

(a)

≥

p
∑

i=1

w
N

(ki+1−ki)

log

(

1 +
|hmax

i |2
∑i

j=1 Ekj

w(ki − ki−1)

)

,

=

p
∑

i=1

(ki+1 − ki)w

N
log

(

1 +
|hmax

i |2
∑i

j=1 Ekj

w(ki − ki−1)

)

, (13)

where(a) follows from the fact thatlog(1 + y

x
) ≥ 1

x
log(1 + y) for x, y ≥ 1. Thus, from (12)

and (13), the competitive ratio of the REPA algorithm is

rREPA(σ) =
RO(σ)

RREPA(σ)
,

≤ N.

Discussion:In this section, we proposed the REPA algorithm that spends the available energy

equally in all future slots until the next energy arrival, and upper bounded its competitive ratio for

solving (4). REPA algorithm is essentially a pessimistic algorithm that assumes that no further

energy is going to arrive in future, and spends its energy equally in each slot. Even though the

REPA algorithm is pessimistic, and does not depend on the current or past fading coefficients,
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we showed that the competitive ratio of the REPA algorithm isequal to the number of slotN

which matches with the derived lower bound in Theorem 3. Similar to the comment made in

Discussion of Subsection III-B, once again we conclude thatthe value of current or past fading

coefficients information is minimal for solving (4), since the competitive ratio of the REPA

algorithm that is agnostic to the causal fading coefficient information is optimal.

In the next section, we discuss a related problem of minimizing the transmission time for a

fixed number of bits, when both the energy and fading coefficients are arbitrarily varying.

V. TRANSMISSION TIME M INIMIZATION PROBLEM

In this section, we consider the problem of minimizing the transmission time of fixed number

of bits B that are available at the beginning of transmission (7), when both the energy arrivals

and fading coefficients are arbitrarily varying, and only causal information is known about them.

This problem has been previously considered in [7], where the optimal offline algorithm has been

derived. For this problem, we will show a negative result that the competitive ratio of any online

algorithm is infinity. We would like to note that for the minimum transmission completion time

problem in an additive white Gaussian noise (AWGN) channel,where all the fading coefficients

are equal to1, the competitive ratio is upper bounded by2 [21].

Theorem 5:Let any online algorithm berA-competitive for solvingT (7). ThenrA = ∞.

Proof: Following Remark 1, to prove the Theorem we will construct two sequencesσ1 and

σ2, and a value ofB such that the time taken to transmitB by the optimal offline algorithm is

finite, but the time taken by any online algorithm to transmitB bits with at least one of the two se-

quences is infinite. As before, any input sequence is of the typeσ = ((|h1|
2, E1), (|h2|

2, E2), . . . . . . )

Let

σ1 = ((1, 1), (10, 0), (0.01, 0), . . . , (0.01, 0), . . . , ),

while

σ2 = ((1, 1), (0.38, 10), (0.01, 0), . . . , (0.01, 0), . . . , ).

Let B = 3 bits, and slot widthw = 1.

Consider the optimal offline algorithm. We upper bound the time taken by the offline algorithm

to finish the transmission ofB = 3 bits. With σ1, the channel in slot2 is far better than in slot

1, and if the optimal offline algorithm invests all its energyE1 = 1 in slot 2, then the number of
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bits transmitted by the optimal offline algorithm islog(1 + 10) > 3. Hence the optimal offline

algorithm finishes transmission ofB = 3 bits within 2 slots, i.e.TO(σ1) ≤ 2. Similarly, with

σ2, since10 units of energy arrives in slot2, it is optimal [7] to investE1 = 1 in slot 1 and

E2 = 10 in slot 2, and the number of bits transmitted by the optimal offline algorithm in two

slots islog(1 + 1) + log(1 + 3.8) which is again greater than3 bits, and henceTO(σ2) ≤ 2.

Let any online algorithmA spendα1 fraction of its energy available in slot1, andα2 fraction

of its energy available in slot2. Also, let the online algorithm know the future energy arrivals

and fading coefficients from slot3 onwards. This relaxation can only improve the performance

of any online algorithm. Then the number of bits sent byA is

BA(σ1) = log(1 + α1) + log(1 + (1 − α1)α210)

+ lim
t→∞

t log

(

1 +
1 − α1 − (1 − α1)α2

100t

)

,

andBA(σ2)

= log(1 + α1) + log(1 + (1 − α1 + 10)α20.38)

+ lim
t→∞

t log

(

1 +
11 − (1 − α1 + 10)α2 − α1

100t

)

.

Note thatlimt→∞ t log
(
1 + x

t

)
= x log2 e. We have chosen|hn|

2 = 0.01 to be small enough for

n > 2, so thatarg maxα2∈[0,1] BA(σ1) = 1, andarg maxα2∈[0,1] BA(σ2) = 1, i.e. all the available

energy is used up by slot2 with both σ1 andσ2, knowing the future from slot3 onwards.

With the optimal choice ofα2 = 1, BA(σ1) is a decreasing function ofα1, while BA(σ2)

is an increasing function ofα1. Moreover, sincemaxα1
BA(σi) > 3 and minα1

BA(σi) < 3,

for i = 1, 2, BA(σ1) = BA(σ2) for some value ofα1. Let α̂1 be the value ofα1 for which

BA(σ1) = BA(σ2) < 3, then we know that forα1 ≥ α̂1, BA(σ1) < 3, while for α1 ≤ α̂1

BA(σ2) < 3. For the choice of input sequencesσi, i = 1, 2, we have thatBA(σ1) ≥ 3 for

α1 < 0.6, while BA(σ2) ≥ 3 for α1 > 0.608, also illustrated in Fig. 2. Thus, at the intersection

point, the value ofBA(σ1) = BA(σ2) < 3. Sinceα1 cannot be simultaneously less than0.6

and more than0.608, we conclude that any online algorithm will not finish transmission with

at least one of the input sequences. Hence we get the following lower bound on the optimal

competitive ratior ≥ minα∈[0,1] max
{

TA(σ1)
TO(σ1)

, TA(σ2)
TO(σ2)

}

= ∞.

Note that this choice ofσ1 andσ2 is not unique, and one can easily find many other input

sequences for which the competitive ratio of any algorithm is ∞.
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Fig. 2. Comparison of number of bits sent withσ1 andσ1 as a function ofα1.

Discussion:In this section, we constructed two input sequences to show that the competitive

ratio of any online algorithm to solve (7) is lower bounded byinfinity. The basic idea behind

the construction was to find a set of two input sequences and a value ofB for which the choice

of energy invested in the first slot by an online algorithm so that it can transmitB bits in finite

time with the two sequences is contradictory to each other. Therefore, any online algorithm

with any choice of energy to transmit in slot1 can transmitB bits in finite time with only

one of the two sequences. This construction is indeed possible since the energy arrivals and the

fading coefficients in future can be arbitrarily ordered. For a special case, when all the fading

coefficients take a constant value (e.g. unity in case of additive white Gaussian channel), we

cannot have such a construction, and there exists an online algorithm for solving (7) for which the

competitive ratio is less than2 [21]. So, really, the lower bound of infinity on the competitive

ratio is a manifestation of arbitrarily varying energy arrivals together with arbitrarily varying

fading coefficients.

VI. CONCLUSIONS

In this paper, we derived the optimal competitive ratio for maximizing the achievable rate

in a wireless communication channel over a fixed number of slots, with arbitrarily varying

energy arrivals and fading coefficients. The competitive ratio analysis provides strong worst
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case guarantees on the performance of any online algorithm that has access only to the causal

information. We showed that a very simple algorithm that invests equal energy in all future slots

and which is agnostic to the current or past fading coefficient realizations is an optimal online

algorithm, and has competitive ratio equal to the number of slots of interest. Another important

conclusion we drew was that the optimal competitive ratio isinvariant to the availability of

the current/past fading coefficient information, i.e. withor without the causal information, the

optimal competitive ratio remains the same. This is quite a pessimistic result, since one would

expect an optimal online algorithm to adapt its transmission power as a function of current/past

fading coefficients and provide with a better competitive ratio. We also considered the problem

of minimizing the transmission time of a fixed number of bits,and showed that no matter how

smart an online algorithm is, the competitive ratio of any online algorithm is infinity, i.e. there

exists a set of input sequences for which the online algorithm never finishes transmission of

appropriately chosen number of bits.
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