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Abstract

The design of online algorithms for maximizing the achideatate in a wireless communication
channel between a source and a destination over a fixed nuofitstots is considered. The source
is assumed to be powered by a natural renewable source, anchdkt general case of arbitrarily
varying energy arrivals is considered, where neither thieréuenergy arrival instants or amount, nor
their distribution is known. The fading coefficients arecaéssumed to be arbitrarily varying over time,
with only causal information available at the source. Foraximization problem, the utility of an online
algorithm is tested by finding its competitive ratio or coniipeeness that is defined to be the maximum
of the ratio of the gain of the optimal offline algorithm andtbain of the online algorithm over all
input sequences. We show that the lower bound on the optiorapetitive ratio for maximizing the
achievable rate is arbitrarily close to the number of slGmnversely, we propose a simple strategy that
invests available energy uniformly over all remaining slantil the next energy arrival, and show that

its competitive ratio is equal to the number of slots, to dode that it is an optimal online algorithm.

. INTRODUCTION

We consider the energy harvesting paradigm for poweringlegs communication, where
the source harvests energy from natural renewable sowueb,as solar cells, windmills, etc.
for transmitting its data to the destination. Using energynf nature not only improves the

lifetime of wireless devices, which are otherwise batteoyered, but also provides a means
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of greencommunication. Harvesting energy from natural sourcesyeler, makes the future
available energy levels at the source unpredictable anddbece has to adaptively choose the
transmission power for maximizing its utility function Wwiut knowing the future energy arrivals.
Another important constraint dictated by harvesting emérgm nature is the energy neutrality
constraint, i.e. energy spent by any time instant cannot teethan the energy harvested until
that time. Energy neutrality and unpredictable energylalidity makes the design of optimal
algorithms in the energy harvesting paradigm a challengitadplem.

In this paper, we consider a wireless communication chametgleen a single source-destination
pair. The source is assumed to harvest energy from renewabliees, and the problem is to
maximize the mutual information or the achievable rate leetwthe source and the destination
over a fixed number of slots. Each slot corresponds to a cober@terval; time for which
the fading coefficients remain constant. The source is asdumhave only causal information
about the energy arrivals and fading coefficients. To modelrhost general energy harvesting
paradigm, we assume that the energy arrivals are arbytraailying and the source is not assumed
to have any information about the future energy arrivalst®istribution. This assumption is
valid for the case when energy is harvested from a combimaifcheterogenous sources such
as wind, vibrational source, body strapped devices, forcite distribution of energy arrivals
may be time varying and potentially hard to compute.

We consider the scenario when the wireless fading chanreat igrbitrarily varying channel
(AVC), where the fading coefficients do not follow any dibtriion and vary arbitrarily over
time. AVCs in wireless communication are motivated from tio@-stationarities in propagation
environment because of mobility, presence/absence oblimgght, Doppler effects etc. In prior
work, AVCs have been studied from an information theoretbmpof view [1]-[3], however,
to the best of our knowledge, AVCs in the energy harvestinggigm have not been explored
before. In any case, assuming arbitrarily varying energyals and fading coefficients, provides
a worst case guarantee on the system performance. Therdferproblem we consider in this
paper is to findonline algorithms(that have access to only causal information about energy
arrivals and fading coefficients with no distribution infoation) that maximize the achievable
rate over a fixed number of slots.

In prior work, optimal offline algorithms (that have accessal future energy arrivals instants

and amounts) have been derived for maximizing the achievalté in energy harvesting systems



for the wireline Gaussian channel [4]-[6], and for the wessd fading channel [7], [8]. Similar
results are available for many other communication channelg. interference channel [9],
broadcast channel [10], relay channel [11]. The scope cfettagorithms, however, is limited
because of unrealistic assumption of non-causal infoomagome properties of stochastic online
algorithms, where the source has the knowledge of the loligioin of energy harvest instants
and amounts, have been derived in [12], [13] using resutis)fstochastic control theory. To
the best of our knowledge, however, no analysis is known fdine algorithms with unknown
energy harvest distribution for maximizing the achievatalee.

With arbitrarily varying energy arrivals and fading coeifficts, we turn to the competitive
ratio analysis of online algorithms that is popular in co@puscience community [14] to
derive "good” online algorithms for maximizing the achibla rate. With online algorithms,
no knowledge of future inputs (energy arrivals and fadingfficients in our case) is assumed
and the input can even be generated by an adversary tha¢<reaw input portions based on the
systems reactions to previous ones. The goal is to derivaitigs that have a provably good
performance even against adversarial inputs. The perfazenaf online algorithms is usually
evaluated using competitive analysis [14], where an ondilgorithm A is compared with an
optimal offline algorithmO that knows the entire request sequeace advance and can serve
it with maximum profit/minimum cost. In the dynamic programni literature, this framework
is known as theminimaxor maxmincontrol [15], where the objective of the algorithm is to
maximize the utility while the nature is assumed to choogarpaters to minimize the utility.

In prior work, competitive analysis has been used to desigin® algorithms for several
communication systems, e.g. [16]-[20]. The most relatepepato this work are [18], [19],
where the problem of dynamic power allocation in an arbiyratarying wireless fading channel
(AVC) under a sum-power constraint is considered. The twal&mental differences between
the problem studied in this paper and prior work are : i) fetanergy availability is unknown,
and ii) energy neutrality constraint, and to the best of movidedge these issues have not been
addressed in the literature.

To state our results formally, we define an online algoritimd &s competitiveness as follows.

Definition 1: Let P be an optimization problem that depends on request sequenee
(0:), © = 1,2,...,. An online algorithm A for solving P is presented with requests =

(0;), 1=1,2,..., and it has to serve each request without knowing the futugaests. In our



caseo is the sequence of energy arrivals and fading coefficiertsn&lly, when processing;
to solveP, A does not know any requests, t > i. Let the profit of the online algorithm for
servingo be P4(o). An optimal offline algorithmO knows the entire request sequenedn
advance and serves it with maximum prdfi (o).

Definition 2: Let A be any online algorithm for solving a maximization problémThen A
is calledr 4-competitive or has a competitive ratio of if for all input sequencesr,

Po(o)
2P (o) < Ta,

and the optimal competitive ratio is defined as

. Po(o)
T = 1mMin max .
o Py(o)

The contributions of this paper are as follows.

« We first consider the special case when all the energy aravéise start of transmission,
and only the fading coefficients are arbitrarily varyingr Bois special case, we show that
the optimal competitive ratio for solving the achievableermaximization problem oveW
slots, is N, and a simple online algorithm that divides the energy dgualall N slots
is optimal. This special case setting is equivalent to aetiike rate maximization in an
AVC with a sum-energy/power constraint [18], where non¢hatg bounds on the optimal
competitive ratio have been derived as a function of theorafi the maximum and the
minimum value of the fading coefficients. The bounds derivefil8], however, are valid
for the case when the number of sldfsis allowed to be a function of the available energy,
and the maximum and the minimum value of the fading coefftsiefhe bounds [18] are
discussed in detail in Remark 3. Our results apply to any fixeohber of slotsV, where
N need not be a function of any other system parameter.

« For the general case of arbitrarily varying energy arriald fading coefficients, we show
that the optimal competitive ratio i¥, and an online algorithm that invests available energy
uniformly over all the remaining slots until the next enewgyival is optimal.

« We also consider the problem of minimizing the transmissime of a fixed number of bits
when both the energy arrivals and fading coefficients ardrarlty varying, that is related
to the achievable rate maximization problem. We show thatabmpetitive ratio of any

online algorithm for minimizing the transmission time of aefil number of bits is lower



bounded by infinity. This is a negative result that shows thate exist input sequences
for which an optimal offline algorithm can finish transmissiim finite time, however, no
online algorithm can. For the case of minimizing the trarssioin time of a fixed number
of bits under a wireline Gaussian channel, where all fadiogfficients are equal to unity,
a simple online algorithm has been proposed in [21] whosepetitive ratio is less tha.
Thus, the problem of minimizing the transmission time of @&dixumber of bits critically
depends on the arbitrarily varying nature of fading coedfits.

Notation: Let f(n) andg(n) be two function defined on some subset of real numbers. Then
we write f(n) = Q(g(n)) if 3 &k > 0, ng, ¥V n > ng, |g(n)lk < |f(n)], f(n) = O(g(n)) if
f(n)] < |gn)lk, and f(n) = ©(g(n)) if 3 ki, ke >0, ng, ¥ n > ng,
lg(n)|k1 < |f(n)] < |g(n)|ks. We use the symbal= to define a variable.

dk >0, ng, Vn > nyg,

II. SYSTEM MODEL

Consider a wireless communication channel between a s@mden destination, where the

received signal at the destination at times given by

Y =/ Py, + ny, (1)

wherez; is the signal transmitted by the source with powrer i, is the fading coefficient, and
n, 1S the additive white Gaussian noise, that is assumed to zereemean and unit variance, and
is independent across timeWe assume a block fading model [22], where the fading coeiffis

h, remain constant fow time units. We call each such block aslat of width w, where in the
n'" time slot, the fading coefficient is denoted lasfor n = 1,2,..., N, whereN is the total
number of slots of interest. Throughout the rest of this pape work with slots rather than
actual time instants. We assume that the source is poweredrbgewable energy source and
receivesE,, amount of energy at the start of thé" slot.

As discussed before, we consider an arbitrarily varyingnigjicchannel and energy arrivals,
where at slotn no information (not even the distribution) about the fadougfficients or the
energy arrivals of the future slots,,, £,,, m > n is known. We assume that at the beginning
of each slotn, the source obtains the information about fading coefficten of slot n, and

the energyF, that arrives at sloh. The source at slot can use information about the fading



coefficients and energy arrivals till slat i.e. h;, F;,i < n for making transmission decisions
(e.g. power to transmit) to maximize its utility. We call shthecausal information

In this paper, we consider that the source is interested xirmzang the mutual information
or the achievable rate. Let the source use enéfg@y, in slot n, then from (1), the achievable

rate in slotn is given by [23],

, (2)

h,|*UE,
R, = wlog, <1 + %)

since throughout the slat of width w, the fading coefficient is,,, and for which equally
distributing the energy over alb time units maximizes the achievable rate [23]. Throughbat t
rest of the paper we considerg with base2, and drop the subscrigtfrom here onwards. The

overall rate accumulated ovér¥ slots is
R=> R, (3)

and the total energy consumedys’_, UE,.

The optimization problenR of interest is

Maxyg, ety B =30 wlog <1 + W%)
(4)
s.t. > UE, <> ™" E,¥Ym<N,
with only causal information about, and E,. The constraint in (4)_" UE, < Y " E,
represents the fact that the energy used by slas less than the energy arrived till slot,
which is popularly known as thenergy neutrality constrainfVe are interested in finding the

optimal online algorithmA* that achieves the best competitive ratio, i.e.

A = arg mjn max gig;i, (5)
whereo = ((|h1|%, E1), (|he)?, E2), ..., (|hn]?, En)) is the sequence of fading coefficients and

energy arrivals forV slots, and the optimal competitive ratio is

. Ro(o)
T = min max
Ao Ry(o)

A related problem to (4) is, given a fixed number of bitst the beginning of communication,

: (6)

minimize the time by which alB bits are sent to the destination with causal informationuabo

h,, and E,,. Note that here we do not have any restriction on the numbstod$, i.e. the total



slots used to transmiB bits need not be less thaN. With the previous definition ot/ E,,
being the energy spent in slat and R,, as the bits transmitted in slatusing energyU E,,, the

number of bits transmitted until slot is
B(m) =) _R,.
n=1
Then the optimization probler# to find the optimal total transmission time is

T = min T. (7
UE,
B(T) > B> UE, <3 E, Vm
Similar to (4), we are interested in finding online algorithta solve7 with the best competitive

ratio

o Tu(o)
r = min max ,
Ao To(o)

where we have inverted the ratio in comparison to (6), bexddyis a minimization problem.

For both the optimization problems (4) and (7), the optim#line algorithm has been
characterized in [4]. However, the structure of the optimifline algorithm does not directly
lead to the evaluation aRy (o) or Ty (o) that is required for computing the competitive ratio.
For analytical tractability of the competitive ratio, welltiypically use an upper bound (lower
bound) onRy (o) (To(0)).

Remark 1:A typical strategy to find the optimal competitive ratio (e(@)) involves two
steps. In the first step, we construct a set of adversarialesegso, ..., o, (typically M

finite for analytical tractability) to lower bound the optiincompetitive ratior by rpz(M),

Ro(o)
""" oM} Ra(o)

A and upper bound by r, := max, ﬁfjﬁiﬁ Then if r (M) = ry4, the optimal solution is

found. Finding the choice of sequences such thagt{ M) = r4, however, is often quite difficult.

wherer,p(M) := ming maXee(o, . In the second step, we find an online algorithm

Before going to the competitive ratio analysis of onlinecaithms where both energy arrivals
and fading coefficients are arbitrarily varying and are daigwn causally (4), in the next section
we consider the case when energy arrives only at the begrmfinommunication, and only the
fading coefficients are arbitrarily varying and known cadlysd his restricted case is equivalent
to sum-rate maximization in an arbitrarily varying fadingacinel with a sum-power constraint

(energy available at the beginning of the communicatidmgt has received recent attention in



[18], from the competitive ratio point of view. Moreover etitompetitive ratio analysis of this

restricted case acts as a building block for the competitti® analysis of the general case.

[1l. FIXED ENERGY WITH ARBITRARY FADING COEFFICIENTS

Consider the case when energy only arrives at the beginrfitigurmsmission at slot given
by E4, and no energy arrives after that, while the fading coefliisieare arbitrarily varying and

only causally known. In this case, any input sequence is ®ffohm
g = ((‘h1‘27 El)u (‘h2|27 07 )7 ERRE) (|hN‘27 0)) .

With this model, the optimization problem (4) specializesi®

(8)
s.t. SN UE, <E,
where compared to (4), the energy constraint is only a suenggnconstraint ofy; throughout
the IV slots.

Remark 2:Under a sum-energy/power constraint, the optimal offlimategy (if the source
knows the sequence at the beginning of transmission) to solve (8) is the well\wnowvater-
filling strategy [23]. For the special case, when all the rigdcoefficients are identical, the
water-filling strategy is to transmit equal energy/poweresch slot. We will use this fact at
multiple instances to upper bound the rate achieved by thienapoffline algorithm.

Remark 3:In prior work, bounds on the competitive ratio &° (8) have been derived in
[18] as a function 0ff,,., and hpin, Where b, < |hal? < Bimae, ¥V n. Assuming that the
number of slotsV are a function of initial energy:, h,az, andh,,;,, a lower bound on the

competitive ratio of any online algorithm has been shown to be= Q (log (2”—)) and an

min

2
online algorithmA is proposed for which the competitive ratioig = O <<h’M> ) Thus,
there is a large gap between the lower and upper bound on thpetitive ratio.
In this section, we consider the general case, where the awuailslots/V is fixed, and is not

a function of any other system parameter, and show that tlimalpcompetitive ratio- = N.



A. Lower Bound on the Competitive Ratio

In this section, we show that the competitive ratio of anyirehklgorithm solvingR® is lower
bounded byN — ¢ for arbitrarily smalle > 0. We first discuss the simple case &f = 2 to
illustrate the proof idea, and then generalize it for any

As discussed in Remark 1, to lower bound the optimal competiatio it is sufficient to
consider anyM input sequences. In this section, we consider only two irggguencesN( =
N =2),0,=((1,E),(0,0), andoy = ((1, E1), (4,0)), whereg is the parameter that we will
choose to get the largest lower bound on the competitive,raiid £, = e. We choose: to be
small enough such that for any,.|* € o;,i = 1,2 we consider, the achievable rate obtained in
any slotn using energy < e is wlog (1 + %) ~ |h,|*¢ (linear approximation), similar to
[18]. Since we are looking for the worst possible input segaefor deriving the lower bound,
we can choose any value ef and in particular to be small enough. Note that we will prove
the upper bound on the competitive ratio for any valuepfand w in Subsection I111-B.

Following Remark 1, we have the following lower bound on tloenpetitive ratio

: Ro(o)
r > min max
A oe{o1,02} RA(O')

With the linear rate approximation in each slot, it immeeigatfollows that the optimal offline
algorithm will invest all itse amount of energy in one slot that has the highest fading cefti.
Thus, withEy, = e, Ro(o1) = e, while Rp(o3) = Se.

Now, consider an online algorithm. Note that the input sequence in slofor both o, and
o is identical, and thus without the knowledge of future fadooefficients of sloR, A cannot
adapt the energy it spends in slotlepending orrr;,i = 1, 2. Thus, letA spendx fraction of its
energyl; = einslot1 for botho; andeo,, and use the rest — «) fraction in slot2. Thus, with
parametery we can index all online algorithms. Note that any online atgon with choose that
« that minimizes the competitive ratio (penalty with respextan optimal offline algorithm).
Next, we show that no matter whatis, the competitive ratio of any online algorithm is at least
2.

With A spendingx fraction of its energyr; = e in slot 1 for botho; andos, Ra(o:) = ae,
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while R4(o2) = (a+ (1 — a)B)e. Thus,

r > min max Ro(o)
A oe{oi,02} RA(O')

. 1 154
= min max{ —, ————
ael0,1] a a+(1—a)p

At the optimal value ofx, o*, the two terms inside the maximum are equal. Thussatisfies

Y

1 B * 1
o = a5 Therefore,a* = P and hence

. 1 I} 5 1
min max<{ —, ————— » =2 — —,
a€[0,1] a a+(1—a)p 1G]
and consequently; > 2 — %. Note thatr > min,jo ] max{é, ﬁ} for any value ofp.

Thereforer > limg_.o, minge(o 1) max {é, ﬁ } Clearly,
: . 1 p
i iy e o | =2
Thus,r > 2 — € for any arbitrarily smalk > 0.

Working backwards, what we have essentially done is asvislidets say we want to show
thatr > 2 — e for somee > 0. Then we pickis large enough so that> 2 — e using the linear
approximation thatv log (1 + %) ~ (3¢ for any é < e. Then picke small enough so that the
linear approximation on achievable ratdog (1 + 2°) ~ B¢ for any é < e is tight. The same
technique is applied for obtaining a lower bound for any namaf slots /N in the following
Theorem.

Theorem 1:Let any online algorithm be 4,-competitive for solvingR®. Thenr, > N — e for
any arbitrarily smalk > 0.

Proof: ConsiderN input sequences of lengtN,

o: = (1, £1), (8,0),(6%,0),...,(8,0),(0,0),....(0,0)),

(. '

N—i
1 =1,2,...,N, where3 >> 1. We also fix the total energy available that arrives at $lot
to F; = e. As in the case ofN = 2, we lete small enough such that log(1 + %) ~
\ha|?e, ¥V n,é < e, |ha|> € 04,0 = 1,2,...,N. With £, = ¢, the achievable rate with the
optimal offline algorithm with sequenae; is Ro(o;) = 57 e, since it spends all its energy in
the slot with the largest fading coefficient.
Consider an online algorithm. Since the input at slot is identical foro;,i =1,2,..., N,

at slot1, A does not know which input sequence has actually occurreds,Th cannot adapt
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the amount of energy it spends in slbtdepending onr;,i = 1,2,..., N. Thus, letA spend
ay fraction of its energyE; = e in slot 1. At slot 2, if A sees(0,0) as the input resulting
because ob, it transmits no energy. Otherwise, (i, 0) is the input at slo® that is identical
for o;,i=2..., N, similar to above description, let spenda, fraction of its energy in slot

2 irrespective of the input sequence, since it has no knoveeddhe input sequence among the
possibleN —1 input sequences;,i = 2..., N. Carrying this forward, letA spend no energy in
any slot for which the input sequence(is 0). Otherwise, letd spenda,, fraction of its energy

in slotn, such thatz _, 0y, < 1. Thus, with parametet,, s we can index all online algorithms.
The rate of an online algorithml with input sequencer; is R4(o;) = Z;zl a; 3 te. From
Remark 1,

. Ro(o)
r > min max ,
A oe{oi,...,on} RA(O')

. { 1 B
= min max

an,ZnNzl an<1 Oél o1+ agﬁ

. BN-1 }
EJ 1 O‘Jﬁj T+ ((1 EJ 1 O‘J)BN !

Similar to the case oV = 2, at the optimal values af/ s, o, all the terms inside the maximum

(9)

L _ s pr7
are equal. Thusg: = o5 = -+ = S T i (a1 Hence
1
r Z X (10)
1
where
1 . { 1 g
— = min max — 5
a; an, SN an<1 a’ap + agf’

ﬁN—l
DDA (D Wiy Oéj)ﬁN‘l}

Similar to the N = 2 case, it can be easily shown thahs_. ai = N. Moreover, since, the
1

lower bound (10) is valid for alp, thereforey > limg_, ail Thus,r > N —e for any arbitrarily
small e > 0.

[
In the proof we assumed th#t,|? can take any value iff), co), which is consistent with the
typical wireless channel modeling [22], where fading co#dfits are assumed to have infinite

support. In case, the fading coefficients are bounded fradeowband above, i.€h,,;, < |h.|? <
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Pomaz, Where by, > 0 and h,,.. < oo, then we cannot let anyh,|> = 0 and 3 — oo in
the proof of Theorem 1. However, gj—n is large enough, reworking the proof of Theorem 1
by replacing|h,|*> = 0 by |h,|*> = hmin, and choosing:,,... to be large enough, we can get
ra > N — ¢, for small enoughe that depends onﬁﬁ. The regime wher% is large enough
has been considered previously in [18] to derive a lower doom the competitive ratio that is
given byr = Q <"Z—n>

Remark 4:Note that the lower bound obtained in Theorem 1 also appdi¢lse case when an
online algorithm makes decision at shotwith information only about the pa#t and E;,i < n
or no information at all, since knowing the present infonmatcan only improve the performance
of an online algorithm.

Discussion:In this section, we constructed a lower bound on the competratio of any
online algorithm for maximizing the achievable rate undesuan-energy/power constraint. We
showed that the lower bound is arbitrarily close to the nundbeslots N. To derive this bound,
we first chose the available energy value to be small enough that the rate achievable in any
slot is well approximated by linear payoff : the product o tlading coefficient and the energy
invested in that slot. With the linear payoff, the basic itketind the lower bound is that if we
keep increasing the fading coefficients in subsequent,gloésoptimal offline algorithm invests
all its energy in the last slot. Any online algorithm, howeueas to invest equal energy in all
slots since it tries to maintain a minimum ratio between tpénoal offline algorithms payoff
and its own payoff at each slot without knowing the futureifigdcoefficients.

Compared to [18], we obtained the lower bound as a functidlh@humber of slot$v rather
than the ratio of the maximum and the minimum fading coefficimagnitudes. The utility of
this lower bound is that in the next section we will show thas tbound is actually tight, i.e.
there exists an online algorithm that can achieve this |dveemd. We also note that our lower
bound does not contradict the upper bound derived in [18in@&#& 3), since [18] assumes that
the number of slotsV is a function of the available energy,, h,,.. andh,,;,, and the bound

is derived for a particular choice af.

B. Upper Bound on the Competitive Ratio

We propose an equal power allocation (EPA) algorithm to ufyoeind the competitive ratio

of R? (8). With EPA algorithm, the available energy at the sfgytis equally distributed across
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all the slots, i.elUE, = %, n=1,...,N. Next, we show that the competitive ratio of the EPA
algorithm is NV.

Theorem 2:EPA algorithm isV-competitive for solvingR?. Consequently, the EPA algorithm
is an optimal online algorithm for solvin®® (8).

Proof: Consider any input sequenee= ((|h|*, E1), (|h2|?,0) ..., (Jhx|?,0)). Let

_ 12
m=arg max o |hj|*.

Since the EPA algorithm invests equal enetgy/N in each slot, the achievable rate with the
EPA algorithmR3,, 4 (o) > wlog (1 + |h,|*£L), by just counting for the rate obtained in the
m'" slot.

To upper bound the rate obtained with the optimal offline athm, consider an enhanced
version of the input sequeneethat consists of fading coefficients with all entries eqodFs,,|?,
i.e.,d = ((|hnl? E1), (|hm]?,0), ..., (|hx]?,0)). Clearly, the achievable rate withis better than
o. Thus, R (o) < R (). Moreover, withg, since all fading coefficients are identical, from
Remark 2, the optimal offline algorithm (waterfilling) inteequal energy; /N in each slot
to getRf) (&) = Nwlog (1 + |hy,[*£L). Thus, the competitive ratio of the EPA algorithm is

Ry(o)
Rypalo)’
fp(@)
wpalo)
Nwlog (1 + [hp|*£L)
wlog (1+ |hy|>42L)
< N. (11)

TEPA(O') =

)

)

The final conclusion follows by comparing the upper bound) {@ith the lower bound on the
competitive ratio derived in Theorem 1.
[

Discussion:In this section, we proposed a simple EPA algorithm that dpegual energy in
all slots without using the causal fading coefficient infation, and whose competitive ratio is
upper bounded by the number of sla¥s More significantly, the competitive ratio of the EPA
algorithm matches with the lower bound obtained in Theorerantl hence we conclude that
the EPA algorithm is an optimal online algorithm for solvi(8). As described before, upper

and lower bounds on the competitive ratio have been derivedqusly in [18] as a function of
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the ratio of the maximum to the minimum fading coefficientwiewer, the bounds do not match.
Note that our upper bound on the competitive ratio derivadgughe EPA algorithm does not
contradict the lower bound derived in [18] (Remark 3), sifit®] assumes that the number of
slots IV is a function of the available energy,, h,... andh,,;,. Using Theorems 1 and 2, we
note that the number of slof¥ is the right quantity of interest in terms of the competitre¢io
rather than the ratio of the maximum to the minimum fadingffocent [18].

In light of Remark 4, from Theorems 1 and 2, it also followstttlee EPA algorithm is an
optimal online information even if only past or no informati about the fading coefficients
is available at each slot. Thus, the optimality of the EPAoatbm is somewhat a negative
result, since the optimal competitive ratio is invarianthe availability of the information about
the past/present fading coefficients, and shows that theatdading coefficient information is

actually not useful.

V. ARBITRARY ENERGY ARRIVALS AND FADING COEFFICIENTS

In this section, we consider the general case, where bothetieegy arrivals and fading
coefficients are arbitrarily varying and only causal infatmon is available about them, i.e.,

we are interested in solving (4).

A. Lower Bound on the Competitive Ratio

With arbitrarily varying energy arrivals and fading coeifficts, the input sequence & =
((|h1]?, E1), (Jhal?, Es), ..., (Jhn|?, EN)). Let us restrict our attention to the case whep =
0,n=2,...,N. Then, we are in a setting equivalent to Section Ill, whelte¢ha energy arrives
at the beginning, and sincgé,, = 0,n = 2,..., N is a special case of input sequences, from
Remark 1, it follows that the lower bound on the optimal cotitppe ratio obtained in Theorem
1, also applies to the general case of arbitrarily varyingrgy arrivals and fading coefficients.
We summarize the result in the following Theorem.

Theorem 3:Let any online algorithm be 4-competitive for solvingR (4). Thenr, > N —¢
for any arbitrarily smalk > 0.

Remark 5:Note that from the definition of the competitive ratio, calesing a special case
of £, =0,n=2,..., N is sufficient to derive a lower bound on the optimal compeitiatio.

However, since the upper bound has to hold for all input seceeo, i.e. all possible values
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of E,,n=1,...,N, limiting to special cases of inputs is not sufficient for idielg an upper
bound on the competitive ratio. Hence, the results of Sulmsetil-B, do not apply for arbitrarily
varying energy arrivals. In the next section, we propose difieal EPA algorithm that is online,

and whose competitive ratio is upper boundedNy

Sequencer
Ekl E]\z E’H e EhP 1 EkP
h hy | hs ole o oo o o b e hy
1 ko ks kp—1 Ky
Intervall | Interval2 | | Intervalp — 1 | Intervalp |
\ 1 \ \ 1 \
Enhanced Sequeneée
h’w hk'l hkl hkl h’\z th LA hk'p 1 hk'p i hk'p 1 hk,, hk’p hkp
N’ N—— N’
B, S By, S By, Zia By

Fig. 1. lllustration of strategy used to upper bound the veite optimal offline algorithm.

B. Upper Bound on the Competitive Ratio

To upper bound the competitive ratio with arbitrarily vargi energy arrivals and fading
coefficients, we modify the EPA algorithm as follows, and dalepeated equal power allocation
(REPA) algorithm. With REPA, if at slot the available energy i&,, then it equally distributes

the available energy over the remaining slots, and useggner = N_E;H in each slot until

the next energy arrival. Clearly, REPA algorithm is onlime, it does not depend on future,
and satisfies the energy neutrality constraint. Note thttefenergy only arrives at sladt then
the REPA algorithm is equivalent to the EPA algorithm. Nex¢, show that REPA algorithm is
N-competitive for solving (4).

Theorem 4:REPA algorithm isN-competitive for solvingR (4). Consequently, the REPA
algorithm is optimal for solving (4).
Proof: Consider any input sequenee = ((|h|?, E1), (|ha|?, Es), ..., (|hn]?, Ex)). Consider
the slot indicesn for which energy arrivalst,, # 0, and denote them by, ...k, where
p < N. Without loss, assume that = 1, i.e., non-zero energy arrives in slot Otherwise, we
can start from the:!" slot, and remove the firs¥ — k; — 1 slots from consideration. This can

only improve the upper bound. Leétdenote the index of slot interval between energy arrivals
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at slotsk,.; andk;, i = 1,...,p — 1. The p'* slot interval represents the slots between slot
k,, where the last energy arrival happens, and the last/¢éloBee Fig. 1 for illustration. For

simplicity of exposition, we let the input sequence coroesting to the:'* slot interval be

o; = (|hx, 2 Ek,), (|hki+1|2, 0)..., (|hki+1_1|2, 0),i=1,...,p, whereo = (01,09,...,0,).
Let |h7e|2 be the largest fading coefficient magnitude in slot intervak 1,....p, i.e.,
|he |2 = max{|hk,|?, |k, 41]%, - - - s [Pk, -1} Then as in the proof of Theorem 2, we enhance

the input sequence corresponding to tteslot intervalo; as
0; = ((|h;nax|2> Eki)’ (|h;nax|27 0) SRR (|h;nax|2> O)vi =1,...,p,

andé = (01,09, ...,0,). See Fig. 1 for illustration.

Clearly, the rate achievable with is better tharo, thus,Ro(a) > Ro(o). Note that because
of energy neutrality constraint, the maximum energy spentthe end of slot interval is
Z;Zl Ey,,Vi. Thus, in any slot interval the maximum energy that can be sper‘@%z1 Ey,, V.
Therefore, the maximum rate achievable in any slot inteivial obtained by spending all the
energy that has arrived till then in slot intenal

Moreover, since witle, in each slot interval the fading coefficients are identiaad hence the

energy spent by an optimal offline algorithm in any slot iméis spent equally among all the
|hes (2 550 By,
(ki+1—ki)w !

slots in that slot interval (Remark 2), therefof&, (7;) < (ki1 —k;)w log <1 +
since(k;, — k;)w is the width of thei’" slot interval. To obtain this upper bound, we have made
significant relaxation of energy constraint since we allp&rgling energy; in slot intervall,
spending energy; + E» in slot interval2 and so on such that the energy spent in slot interval
pis > » | E, as shown in Fig. 1.

HenceRy(F)
p
= Z RO (5-2)7
i=1

p |hmax|2 Zi'—l Ek
< ]{fi - k‘l w IOg 14 : = ’ . (12)
;( +1 ) ( (ki+1 _ ]CZ>’UJ

Thus, (12) serves as an upper boundyi{a ), that we will use to upper bound the competitive
ratio of the REPA algorithm.
Next, we lower bound the rate with the REPA algorithm by cdasng the original input

sequencer, and not its enhanced version. With the REPA algorithm, et énergy used in
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any slotn of slot intervali be UE.. ThenUE! = £ andUE! = Ei+UEi&\}(]er('f§*1‘ki)) for
ZJ 1 k

, V 1. Then with the
REPA algorithm, for each slot interval= 1,2, ..., p, considering only one slot that achieves

i = 2,...,p. Simple algebraic manipulations show tHaf’ >

the fading coefficienth}"**|? in o,
UE!
Rrepa(o;) > wlog (1 + \h;”“ﬂ?T") _

Yo
N

Substituting,U E? > P we get

‘h;nax‘Z 23:1 Ly,
Nw ’

Rrepa(o;) > wlog <1 +

and the total achievable rafezzpa(o)

p
= ZRREPA(Ui)a
=1
p hma:v 2 i'_ E '_
Zw10g<1+| i |]\§:]_1 k’J)7
w

i=1

b7 2 3 B,
1 1 =
Zw og( + )

(kip1—k; )(kHl

p mar . E )
27% log <1+| Pl e k’>,
i1 (kir1—FK2) w(k; — ki—q)

p

(ki—i-l - ki)w |hznmc|2 2321 Ekj
—1 1 1

1=1

v

—~
S
N

v

where (a) follows from the fact thatog(1 + £) > Xlog(1 + y) for ,y > 1. Thus, from (12)
and (13), the competitive ratio of the REPA algorithm is
Ro(o)

RREPA(U') 7
N.

TREPA(O') =

IN

[
Discussion:n this section, we proposed the REPA algorithm that spenelgvailable energy
equally in all future slots until the next energy arrivaldampper bounded its competitive ratio for
solving (4). REPA algorithm is essentially a pessimistigoaithm that assumes that no further
energy is going to arrive in future, and spends its energyakgin each slot. Even though the

REPA algorithm is pessimistic, and does not depend on theermuor past fading coefficients,
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we showed that the competitive ratio of the REPA algorithreasial to the number of slav
which matches with the derived lower bound in Theorem 3. Binto the comment made in
Discussion of Subsection 1lI-B, once again we conclude thatvalue of current or past fading
coefficients information is minimal for solving (4), sincket competitive ratio of the REPA
algorithm that is agnostic to the causal fading coefficiafdrimation is optimal.

In the next section, we discuss a related problem of minimgizhe transmission time for a

fixed number of bits, when both the energy and fading coefftsiare arbitrarily varying.

V. TRANSMISSION TIME MINIMIZATION PROBLEM

In this section, we consider the problem of minimizing thengmission time of fixed number
of bits B that are available at the beginning of transmission (7),ibeth the energy arrivals
and fading coefficients are arbitrarily varying, and onlysa information is known about them.
This problem has been previously considered in [7], wheseofitimal offline algorithm has been
derived. For this problem, we will show a negative result tha competitive ratio of any online
algorithm is infinity. We would like to note that for the minim transmission completion time
problem in an additive white Gaussian noise (AWGN) chanwbkre all the fading coefficients
are equal tal, the competitive ratio is upper bounded dy21].

Theorem 5:Let any online algorithm be ,-competitive for solvingZ (7). Thenr, = oc.
Proof: Following Remark 1, to prove the Theorem we will construcb tsequenceg; and
o9, and a value ofB such that the time taken to transniitby the optimal offline algorithm is
finite, but the time taken by any online algorithm to transmibits with at least one of the two se-
quences is infinite. As before, any input sequence is of thedy= ((|h1]2, E1), (|ha|?, E2), ... ... )
Let

o, =((1,1),(10,0),(0.01,0),...,(0.01,0),...,),

while
o = ((1,1),(0.38,10), (0.01,0), ..., (0.01,0),...,).

Let B = 3 bits, and slot widthw = 1.
Consider the optimal offline algorithm. We upper bound theetiaken by the offline algorithm
to finish the transmission aB = 3 bits. With o1, the channel in slo? is far better than in slot

1, and if the optimal offline algorithm invests all its enerfy = 1 in slot 2, then the number of
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bits transmitted by the optimal offline algorithm lisz(1 + 10) > 3. Hence the optimal offline
algorithm finishes transmission @ = 3 bits within 2 slots, i.e.75(o 1) < 2. Similarly, with
o9, Ssincel0 units of energy arrives in sldt, it is optimal [7] to investE; = 1 in slot 1 and
E> =10 in slot 2, and the number of bits transmitted by the optimal offlinecathm in two
slots islog(1 + 1) + log(1 + 3.8) which is again greater thahbits, and hencé&y(o2) < 2.

Let any online algorithmA spendqx; fraction of its energy available in sldt andas fraction
of its energy available in sld. Also, let the online algorithm know the future energy aates
and fading coefficients from slét onwards. This relaxation can only improve the performance

of any online algorithm. Then the number of bits sentAys

Ba(o1) = log(l+ ay) +log(l+ (1 —aq)asl0)
1— o] — (1 — Oél)OQ)

lim ¢1 1
o Og( o 100¢
and B4(o2)

= log(l+ a;) +log(1l + (1 — a; + 10)20.38)
11 — (1 — o1+ 10)0&2 - Oél)

100¢

Note thatlim; ... tlog (1 + £) = zlog, e. We have choseth,|* = 0.01 to be small enough for

+tlim tlog (1 +

n > 2, so thatarg max,,cj1] Ba(o1) = 1, andarg max,,cp1) Ba(o2) = 1, i.e. all the available
energy is used up by sla@twith both oy and o, knowing the future from slo8 onwards.

With the optimal choice otv, = 1, B4(o) is a decreasing function af;, while B4 (o)
is an increasing function ofi;. Moreover, sincemax,, Ba(o;) > 3 and min,, Bs(o;) < 3,
for i = 1,2, Ba(o1) = Ba(oy) for some value ofv;. Let &; be the value ofw; for which
Ba(o1) = Ba(os) < 3, then we know that for; > &y, Ba(o1) < 3, while for a; < &
Ba(oy) < 3. For the choice of input sequences,i = 1,2, we have thatB,(c;) > 3 for
a; < 0.6, while B4(o2) > 3 for ay > 0.608, also illustrated in Fig. 2. Thus, at the intersection
point, the value ofB4(o1) = Ba(os) < 3. Sincea; cannot be simultaneously less théut
and more thar).608, we conclude that any online algorithm will not finish transsion with

at least one of the input sequences. Hence we get the foliplewwer bound on the optimal

competitive ratior > min,ep,; max {525537 %Egig} — .

Note that this choice o&; and o, is not unique, and one can easily find many other input

sequences for which the competitive ratio of any algoritismai. [ |
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Comparison of Maximum Throughput with g, and a, vis a,
3.5

2.5¢

maquT(GZ)

maxuzT(crl)

Maximum Throughput

15F

Fig. 2. Comparison of number of bits sent with ando ;1 as a function of; .

Discussion:In this section, we constructed two input sequences to shaivthe competitive
ratio of any online algorithm to solve (7) is lower bounded ibfinity. The basic idea behind
the construction was to find a set of two input sequences aradua wf B for which the choice
of energy invested in the first slot by an online algorithm Isat it can transmif3 bits in finite
time with the two sequences is contradictory to each othkerdfore, any online algorithm
with any choice of energy to transmit in slotcan transmitB bits in finite time with only
one of the two sequences. This construction is indeed dessifice the energy arrivals and the
fading coefficients in future can be arbitrarily orderedr Bospecial case, when all the fading
coefficients take a constant value (e.g. unity in case oft@édwhite Gaussian channel), we
cannot have such a construction, and there exists an omdjagtam for solving (7) for which the
competitive ratio is less tha® [21]. So, really, the lower bound of infinity on the compefi
ratio is a manifestation of arbitrarily varying energy wats together with arbitrarily varying

fading coefficients.

VI. CONCLUSIONS

In this paper, we derived the optimal competitive ratio foaximizing the achievable rate
in a wireless communication channel over a fixed number dfsshith arbitrarily varying

energy arrivals and fading coefficients. The competitiveoranalysis provides strong worst
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case guarantees on the performance of any online algorhiaimhias access only to the causal
information. We showed that a very simple algorithm thaestg equal energy in all future slots
and which is agnostic to the current or past fading coefftcrealizations is an optimal online
algorithm, and has competitive ratio equal to the numbelaif of interest. Another important
conclusion we drew was that the optimal competitive rationigariant to the availability of
the current/past fading coefficient information, i.e. withwithout the causal information, the
optimal competitive ratio remains the same. This is quiteesspnistic result, since one would
expect an optimal online algorithm to adapt its transmisgower as a function of current/past
fading coefficients and provide with a better competitivieoraWe also considered the problem
of minimizing the transmission time of a fixed number of basd showed that no matter how
smart an online algorithm is, the competitive ratio of anyirmalgorithm is infinity, i.e. there
exists a set of input sequences for which the online algorittever finishes transmission of
appropriately chosen number of bits.
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