
Properly 2-Colouring Linear Hypergraphs ∗

Arkadev Chattopadhyay
School of Computer Science

McGill University, Montreal, Canada

achatt3@cs.mcgill.ca

Bruce A. Reed
School of Computer Science

McGill University, Montreal, Canada

&

Projet Mascotte, Laboratoire I3S

CNRS Sophia-Antipolis, France

breed@cs.mcgill.ca

Abstract

Using the symmetric form of the Lovász Local Lemma, one can conclude that a
k-uniform hypergraph H admits a proper 2-colouring if the maximum degree (denoted

by ∆) of H is at most 2k

8k independently of the size of the hypergraph. However, this
argument does not give us an algorithm to find a proper 2-colouring of such hypergraphs.
We call a hypergraph linear if no two hyperedges have more than one vertex in common.

In this paper, we present a deterministic polynomial time algorithm for 2-colouring
every k-uniform linear hypergraph with ∆ ≤ 2k−k

ε

, where 1/2 < ε < 1 is any arbitrary
constant and k is larger than a certain constant that depends on ε. The previous
best algorithm for 2-colouring linear hypergraphs is due to Beck and Lodha [4]. They
showed that for every δ > 0 there exists a c > 0 such that every linear hypergaph with
∆ ≤ 2k−δk and k > c log log(|E(H)|), can be properly 2-coloured deterministically in
polynomial time.

∗Research of the first author is supported by a NSERC graduate scholarship and research grants of Prof.
D. Thérien, the second author is supported by a Canada Research Chair in graph theory

1 Introduction

The probabilistic method [2] is widely used in theoretical computer science and discrete
mathematics to guarantee the existence of a combinatorial structure with certain desired
properties. However, these techniques are often non-constructive. Efficient construction
of structures with desired properties is an important research theme in various areas like
Ramsey theory, graph colouring and coding theory.

In many applications of the method, there are N events (typically “bad”) in some
probability space, and one is interested in showing that the probability that none of the
events happen is positive. This will be true if the events are mutually independent and each
event occurs with probability less than one. In practice, however one often finds events that
are not indpependent of each other. The Lovász Local Lemma is a powerful sieve method
that can be used in this context when the events have limited dependence.

The power of the Lemma comes from the fact that it allows one to conclude a global
result by analysing the local property of random combinatorial structures. In particular,
the symmetric form of the Lemma implies that a random 2-colouring of the vertices of
a k-uniform hypergraph of maximum degree 2k

8k , generates no monochromatic edges with
non-zero probability. But it provides no clue as to how to find such a structure efficiently.
The Local Lemma merely guarantees the existence of, what has been called a “needle in a
haystack”. It can be easily verified that if the total number of edges m in the hypergraph
is much larger than 4k, then with extremely small probability the colouring is proper. The
question that we are interested in is the following :
“Is there an efficient algorithm to find such a ’rare’ colouring?”

Beck[3] and Alon[1] developed algorithmic versions of the Lemma which evoked its
symmetric form. Beck showed that if the maximum degree ∆ of the hypergraph is reduced
to 2αk, where α = 1/48, then indeed there is a positive answer to the question above.

Later, Beck and Lodha[4] obtained a deterministic polytime algorithm to find such a
2-colouring for linear hypergraphs under the restrictions that ∆ < 2(1−δ)k and that the
total number of hyperedges (denoted by m) satisfies (2m)1+β < 2(k−2k′)2k/4 , where β > 0
is a real constant and 3 ≤ k′ ≤ 2k/3 is an integer. Their method builds upon the ideas in
[3] and uses involved combinatorial analysis that runs into several cases.

1.1 Our result

We build upon the general method outlined in [9] to get an algorithm for 2-colouring k-
uniform linear hypergraphs with larger maximum degree. Further, our algorithm does
not require any conditions to be imposed on the relationship between total size of the
hypergraph and the number of vertices in a hyperedge.

Theorem 1 There exists a deterministic polytime algorithm that for every constant ε >
1/2, finds a proper 2-colouring of any k-uniform linear hypergraph H, whose maximum
degree is bounded by 2k−k

ε
, provided k ≥ kε, where kε is a positive integer that depends only

on ε.

1

Our deterministic algorithm is constructed in two steps. First, we develop a randomized
algorithm that is conceptually fairly simple. The random algorithm genarates the colouring
iteratively in phases. It employs novel freezing techniques that may be useful for dealing
with other problems. In particular, our freezing is guided by the crucial use of the asym-
metric form of the Local Lemma as opposed to the method of Beck and Lodha [4] that uses
the symmetric form. This allows us to minimize freezing enabling the random colouring to
work more effectively. We finish off by derandomizing our algorithm by a simple application
of the method of conditional expectations due to Erdös and Selfridge [6].

In Section 2, we introduce the basic terminology and the needed background on the Local
Lemma. Section 3 introduces a randomized algorithm, Section 4 provides its analysis and
Section 5 derandomizes the algorithm proving Theorem 1. We remark that the technique in
this paper can be suitably modified to make it work for the more general case of hypergraphs
having constant co-degree (co-degree of any pair of vertices being the number of edges
containing that pair). Note that linear hypergraphs have co-degree at most one.

2 Basic Notions

A hypergraph H is given by a set of vertices (denoted by V) and a set of non-empty subsets
of V (denoted by E). Each subset in E is called a hyperedge. In this paper, we will often call
a hyperedge simply an edge. The size ofH is simply the sum of the cardinalities of V and E.
H is called k-uniform if each of its hyperedges has cardinality k. The degree of a vertex v in
V is the number of hyperedges containing v and is denoted by dv. We denote the maximum
degree ofH by ∆ i.e ∆ = maxv∈V dv. Two hyperdges intersect at a vertex v if v is contained
in both of them. A hypergraph is called linear if every pair of hyperedges intersect at most
at one vertex. We associate an undirected graph GH with every hypergraph H in the
following way: V (GH) = V (H) ∪ E(H), and E(GH) = {(x, y)|x, y ∈ V (H), x, y ∈ e for
some e ∈ E(H) OR x ∈ V (H), y ∈ E(H), x ∈ y OR x, y ∈ E(H), x ∩ y 6= ∅}. A path from
one vertex/edge x of H to another vertex/edge y of H is just a simple path in GH from x
to y. The distance from x to y is the length of the shortest path in GH from x to y. We
say that vertex x and y are reachable from each other if there exists a path from one to the
other. A (connected) component of H is a hypergraph C such that V (C) is a maximal set
of vertices of H that are reachable from each other and E(C) = {e ∈ E(H)|e ⊆ V (C)}.

A 2-colouring χ of H is any assignment of colours from the set of 2-colours (we use red
and blue) to its vertices i.e χ : V → {red, blue}. We say a hyperedge e is monochromatic
under the colouring χ if every vertex contained in e receives the same colour. χ is called a
proper 2-colouring precisely if it does not generate any monochromatic hyperedge. In this
work, we generate a 2-colouring iteratively, and each phase of our algorithm generates a
partial colouring of vertices. For such a partial colouring, we call an edge uni-coloured if
its vertices have not received two different colours. An uncoloured vertex is called nice if
it lies in exactly one uni-coloured edge. For any uni-coloured edge e, its restriction to the
uncoloured vertices is e′ = {v ∈ e : v is not coloured}. A partial colouring χ of H induces
the hypergraph H′ with its vertex set consisting of all uncoloured vertices and its edge set

2

consisting of the restriction of all its uni-coloured edges. The following simple remarks will
be useful:

Remark 2 A hypergraph H has a proper 2-colouring if and only if each of its components
has one.

Remark 3 A partial colouring χ of H extends to a proper colouring precisely if the induced
hypergraph H′ has a proper colouring.

Remark 4 Let χ be a partial colouring of H and let e be a uni-coloured edge that has a pair
of nice vertices v1 and v2. Extend χ to χ′ by colouring v1 and v2 such that χ′(v1) 6= χ′(v2).
Then the hypergraph induced by χ′ (denoted by H′′) has the set of vertices V (H′)− v1 − v2

and its set of edges is E(H′)− e, where H′ is the hypergraph induced by χ. Further, it has
a proper 2-colouring precisely if H′ has one.

We denote the probability of an event X by Pr[X] and the expected value of a random
variable y by E[y]. We now state the Asymmetric form of the Lovász Local Lemma [5] that
is one of the most powerful tools of the probabilistic method.

Lemma 5 (Asymmetric form of Local Lemma) Let E = A1, . . . , Am be m (typically bad)
events in a probability space, where event Ai occurs with probability pi and is mutually
independent of events in E −Di, for some Di ⊆ E. Then, the probability that none of these
m events occur is positive provided that

• ∑k:Ak∈Di pk ≤
1
4 . for all i.

In the application of the Local Lemma to colouring a k-uniform hypergraph, we consider
a random 2-colouring of its vertices. With each hyperedge e, we associate the event (denoted
by Ae) that e is monochromatic. One can easily verify that Ae is mutually independent of
all other events except those in De = {Af |f ∩ e 6= ∅}. Clearly, |De| ≤ 1 + (∆− 1)k. Since
Pr[Ae] = 1/2k−1 for all edges e, the local lemma implies that the probability of not having

any monochromatic edge is positive if ∆ ≤ 2k

8k .
We will denote by BIN (n, p) the sum of n independent Bernoulli random variables, each

equal to 1 with probability p and 0 otherwise. The following inequality, called Chernoff’s
bound (see [2]), is used to bound the probability of the sum deviating from its expected
value np:

Pr(|BIN (n, p)− np| > t) < 2e−((1+ t
np

)ln(1+ t
np

)− t
np

)np (1)

3

3 Randomized Algorithm

We assume that the vertices are labelled {1, . . . , n}. We first provide a randomized algo-
rithm to obtain a proper 2-colouring and then show that it can be easily derandomized.
The randomized algorithm works in three phases. In the first phase, we randomly colour a
vertex vi, unless it is frozen using one of the rules described below. These freezing rules are
imposed to ensure that the Local Lemma can be applied to prove that the partial colouring
obtained in the first phase extends to a proper colouring. We shall also show that with
probability near 1, the connected components of the induced hypergraph are small in size.
We post-process the random colouring in the following way : identify those uni-coloured
edges that contain at least two nice vertices. For every such uni-coloured edge, we choose
a pair of nice vertices and assign them different colours. By Remark 4, the hypergraph
induced by this partial colouring (denoted by H1) is still properly 2-colourable and we shall
show that it has small components, with high probability.

In the second phase, we reapply the procedure of the first phase to each component of
H1 separately. We use very similar freezing rules and do identical post-processing to that
in Phase 1. We show again that the partial colouring extends to proper colouring using
the Local Lemma. We denote the induced hypergraph at the end of phase 2 by H2 and as
before, each of its component is very small with high probability.

Finally, in the third phase, we apply brute force to explicitly compute a proper comple-
tion for the partial colouring of each component of H2. This is possible in poly-time as the
size of each component is very small.

Forthwith the details. To ensure that we can apply the Local Lemma to show that our
partial colouring extends to a proper colouring, we introduce a random variable He for each
edge e as given below:

He =
∑

f :e∩f 6=∅
Pr[Af |partial colouring]

Note that if He lies below 1/4 at the end of a phase for every edge e, then the asymmetric
form of the Local Lemma can be applied to conclude that the partial colouring extends to
a proper 2-colouring. It will be more convenient to think of He as being a sum of k random
variables - one for each vertex v contained in edge e. Formally, He =

∑
v∈eHv − (|e| −

1)Pr[Ae|partial colouring], where Hv is given by

Hv =
∑

f :v∈f
Pr[Af |partial colouring]

Thus, Hv ≤ 1/4k ensures that our partial colouring extends to a proper colouring. The
key technique in our procedure is to control Hv, for each vertex v. A vertex v is considered
bad if Hv exceeds a prescribed upper bound bi for Phase i. Whenever a vertex v turns bad,
we freeze all uncoloured vertices in each edge containing v. If this were the only freezing
done, then the probability of v turning bad would be substantial and our freezing would be

4

widespread. Indeed, the probability that a specific edge e containing v is monochromatic is
1/2k−1. So, the probability that v turns bad is at least 1/2k−1. To deal with this, recall that
Hv is a sum of conditional probabilities. The intuition is if each of these probabilities in the
sum is small, then Hv is concentrated and the probability that it turns bad is extremely
small provided the threshold bi is appropriately chosen. In particular, for each of the first
two phases, we specify a lower bound on the number of vertices remaining uncoloured in
a uni-coloured edge. If edge e attains this lower bound, we call e naughty and freeze all
of its uncoloured vertices. This freezing of naughty edges ensures that the conditional
probabilities that appear in the sum for Hv remain small, and reduces the probability of
a vertex becoming bad to well below 2−k. Unfortunately, there is considerable freezing
done due to naughty edges. However, as we shall see, the post-processing step allows us
to ignore all but a vanishingly small proportion of this second kind of freezing. This is the
basic structure of our random colouring procedure in each phase. We fix constants β, α1

and α2 such that 1/2 < α2 < β < α1 < ε for reasons that will become clear from subsequent

discussion. For Phase 1, b1 = 2−k
β

and for Phase 2 b2 = 1/8k. The lower bound used for
freezing uncoloured vertices in naughty edges in Phase i will be kαi for some αi and i = 1, 2.

With this intuitive description behind us, we are ready to give the formal description
of the basic random colouring procedure parameterized with t1, the threshold for detecting
naughty edges and t2, the threshold for detecting bad vertices:

RANDCOLOUR(F , t1, t2);
Input: Hypergraph F s.t. ∀e ∈ E(F) |e| > t1, ∀v ∈ V (F) Hv ≤ t2.
Returns a partial colouring and the induced hypergraph F ′ such that ∀e ∈ E(F ′) |e| ≥
t1,∀v ∈ V (F ′) Hv ≤ 2t2.

• Main loop: For each vertex vi ∈ V .

– If vi is frozen, skip colouring it and go back to the main loop

∗ Colour vi uniformly at random and then do the following:

1. If some uni-coloured edge e has only t1 uncoloured vertices remaining,
freeze every uncoloured vertex in e.

2. If for some vertex v, Hv exceeds t2, freeze all uncoloured vertices in
uni-coloured edges containing v.

• Post-processing: For every uni-coloured edge containing two nice vertices, colour
one of them red and the other blue.

Note that the main loop of RANDCOLOUR runs |V (H)| times. To determine if an
edge is naughty or a vertex is bad, we need to only look at edges containing the vertex that
got coloured in that iteration. Thus, each loop takes O(k.∆2) time. Summing this up,

Remark 6 The running time of RANDCOLOUR is O(k∆2 · |V (H)|).

5

We make another remark that is useful to get the intuition behind our post-processing
step.

Remark 7 Every uni-coloured edge at the end of Phase i contains at least kαi >
√
k

uncoloured vertices and satisfies at least one of the following conditions:

1. it is naughty

2. for every uncoloured vertex v in it, v ∈ g for some edge g that is naughty or contains
a bad vertex.

Let us call a uni-coloured edge bad if it intersects with at least
√
k other naughty edges.

Intuitively, we expect bad edges to occur with small probability. The following fact points
out that our post-processing step deals effectively with naughty edges that are not bad and
are far from both bad edges and vertices.

Proposition 8 Consider a uni-coloured edge e. If e is at distance at least 4 from every
bad edge and bad vertex, then e has two nice vertices, provided k is larger than a certain
constant.

Proof: Consider a uni-coloured edge f that intersects e. Remark 7 implies the following: if
f is not naughty then it must be bad or it is at distance at most 2 from a bad vertex. As e
is at distance at least 4 from every bad edge/vertex, f must be naughty. This shows that
every uni-coloured edge that intersects e is naughty. Since e can not be bad, there are at
most

√
k uni-coloured edges intersecting e. Hence for large k satisfying kαi −

√
k ≥ 2, we

conclude that e has 2 nice vertices.

Thus, Remark 4 implies that all uni-coloured edges that are not within distance 3 of
any bad vertex or bad edge, do not remain uni-coloured after post-processing and hence
are not part of the induced hypergraph returned by RANDCOLOUR. We will see later in
the analysis of our algorithm in Section 4 that this observation is very helpful in bounding
the size of components of the hypergraph returned by RANDCOLOUR. Lemma 13 and 15
in the next section imply that the component size at the end of Phase i is si with high
probability, where s1 = 26k(cε/k

ε+1/2) · log(n +m) and s2 = 26k(cε/k
β+1/2) · log(s1). The

constant cε depends on ε and is chosen according to Lemma 15.
Using RANDCOLOUR as our key sub-routine, the entire 3-phase algorithm is described

below.
2-COLOUR(H, α1, α2, β, ε)

• Phase 1 : H1 = RANDCOLOUR(H, kα1 , 2−k
β−1). If the largest component of H1 is

larger than s1 then repeat.

6

• Phase 2 : Enumerate the components of H1 as C1, . . . , Cj.

– For every connected component Ci

∗ Hi2 = RANDCOLOUR(Ci, k
α2 , 1/16k).

· Case 1. 26k ≤ log(n+m)/ log log(n+m). If the largest component of
Hi2 is larger than s2, then repeat call to RANDCOLOUR.

· Case 2. 26k > log(n+m)/ log log(n+m). If there are any uni-coloured
edges remaining, repeat call to RANDCOLOUR.

• Phase 3 Let H2 = ∪ji=1Hi2.

– If there are uni-coloured edges left in H2, then

∗ Colour each connected component C of H2 in turn, by considering all 2|V (C)|

colourings.

Proposition 9 Every partial colouring produced at the end of Phase 1 or Phase 2 can be
completed to a proper 2-colouring.

Proof: Let H′1 be the hypergraph induced at the end of random colouring in Phase 1 just
before the post-processing step. Consider any edge f and any vertex u in f . It is simple
to verify that colouring u at most doubles the probability that f becomes monochromatic.
Hence, freezing done due to bad vertices ensures that for every vertex v, Hv is at most 2−k

β

which is less than 1/4k for large k. Hence, He < 1/4 for all edges e in H′1. This ensures
that the second condition of the Local Lemma is satisfied for each event Ae. Thus H′1 has
a proper colouring. Recalling Remark 4, we see colouring a pair of nice vertices in a uni-
coloured edge differently, does not increase the probability of any event Ae. Thus, H1 has
a proper colouring. Using Remark 3, the partial colouring at the end of Phase 1 extends
to a proper 2-colouring. A very similar argument applied to each connected component
of H1 shows that each partial colouring obtained at the end of Phase-2 also has a proper
completion.

Our aim in the next section is to show the result given below:

Theorem 10 With high probability, 2-COLOUR produces a proper 2-colouring of hyper-
graph H in time polynomial in the size of H.

4 Analysis of 2-COLOUR

We have already noted in Remark 6 that RANDCOLOUR runs in poly-time. Further
Case 1 and Case 2 handled in Phase 2 of 2-COLOUR ensures that either the size of every
component of H2 is at most s2 or no uni-coloured edge is left at end of Phase 2. Thus
Phase 3 of 2-COLOUR also runs in poly-time. Hence, to prove Theorem 10 it is sufficient
to show the following:

7

Lemma 11 Every call from 2-COLOUR to RANDCOLOUR succeeds with probability at
least 1/2.

To prove Lemma 11, we simply need to show that the probability that the induced
hypergraph returned by RANDCOLOUR has large components is less than a half. One
way to do this would be to establish the following:

Claim 12 E[Xi] < 1/2, for i = 1, 2.

where, Xi denotes the number of components of size at least si of the hypergraph Hi.
Lemma 11 follows from the above claim by a simple application of Markov’s inequality.

Instead of bounding directly the expected value of Xi, we will define another integer
valued random variable Yi, such that Xi ≤ Yi. Bounding the expected value of Yi turns out
to be more convenient. But we need to introduce a few more notions before we can define
Yi.

Consider an auxiliary graph Gi associated with Hi in the following way. Each node of
Gi corresponds to either a vertex or a hyperedge of hypergraph Hi. Two nodes of Gi are
connected by an arc if their distance from each other in Hi is at least 4 and at most 10.
Every rooted tree Ti of Gi is called a (4, 10)-tree of Hi. We call a (4, 10)-tree bad if every
node of the tree corresponds to either a bad edge or a bad vertex generated in Phase i. Let
Yi be the number of bad (4, 10) trees of Hi of size si ·2−6k. The following lemma establishes
the desired relationship between Xi and Yi (i.e. Xi ≤ Yi).

Lemma 13 If Hi has a component C of size s, then there is a bad (4, 10)-tree of size at
least s/26k, whose set of nodes is contained in V (C) ∪E(C).

Proof: Let T be a maximal bad (4, 10)-tree formed from vertices and edges of C. Let C1

be the sub-hypergraph in the component that includes all edges that are within distance 6
from T . We show that there cannot be any vertex or edge outside of C1 in C and the result
follows from that by recalling that the degree of any vertex is at most 2k−k

ε
.

Suppose the contrary is true. Then, let b be a edge that is at minimal distance (at least
7) in C from T . Consider a minimal path P in C from b to T . Consider a node u in P at
distance 7 from T . We have following possibilities:

• u is a bad edge, in which case one can add u to T .

• u is not bad. Recalling Proposition 8 and our post-processing step in RANDCOLOUR,
there is a node u′ that corresponds to either a bad vertex or bad edge at distance at
most 3 from u. Hence u′ is at distance at least 4 and at most 10 from T . We can
grow T by adding u′.

Thus, in each case our assumption that T is maximal is contradicted if there exists any
edge outside of C1.

8

Now, to estimate the expected value of Yi we need to calculate the probabilites of certain
events. We denote the events of any edge e becoming naughty and bad in phase i by N i

e

and Bi
e respectively. Let the event that a vertex v becomes bad in phase i be denoted by

Bi
v.

Proposition 14 Let 1/2 < α2 < β < α1 < ε < 1. Then for sufficiently large k, the
following probability bounds hold:

1. Pr[B1
e] ≤ 2−k

ε+1/2+kα1+1/2+
√
k log k+1 for any edge e.

2. Pr[B1
v] ≤ 2e−2k

α1−kβ−log k−1 ≤ 2−20.5kα1
, for any vertex v.

3. Pr[B2
e] ≤ 2−k

β+1/2+kα2+1/2+
√
k log k+1 for any edge e.

4. Pr[B2
v] ≤ 2e−2k

α2−3 log k−6 ≤ 2−20.5kα2

, for any vertex v.

Proof: We consider a set Se of
√
k edges {e1, . . . , e√k} that intersect an edge e. Let Vei be

the set of those vertices of ei that are not contained in any edge in Se\{ei}. SinceH is linear,
|Vei | ≥ k−

√
k+ 1, for all i. If ei is to become naughty, the first k−kαi −

√
k vertices in Vei

that get coloured, receive the same colour. The actual vertices in Vei that get coloured in
any instance by RANDCOLOUR may depend on the freezing caused by colouring in the rest
of the hypergraph. Nevertheless, every instance of RANDCOLOUR that makes ei naughty,
makes a sequence Li of k−kαi−

√
k independent colour assignments to some vertices in Vei .

Since Vei ∩ Vej = ∅ for i 6= j, every call to RANDCOLOUR makes all edges in Se naughty

with probability at most 2(−k+kα1+
√
k)
√
k. We have at most (∆ ·k)

√
k = (2k−k

ε ·k)
√
k-many

choices for Se. Combining everything yields the first bound of our proposition.
We now compute Pr[B1

v]. Let nv,i represent the number of edges containing v and
having i vertices uncoloured with k − i vertices coloured the same. Let n′v,i be a random
variable that is defined in the following way:

n′v,i =
∑

e:v∈e
xie

where, for every edge e, xie is a Bernoulli random variable that takes value 1 with probability
2−k+i+1. Since our hypergraph is linear, the edges containing v only intersect each other at
v. Thus, using sequences of colour assignments for each edge as before in the first part, one
can show that Pr[nv,i ≥ N] ≤ Pr[n′v,i ≥ N] for every number N . Further, one can easily

verify E[n′v,i] = ∆ ·2−k+i+1 = 2i+1−kε . Since n′v,i is the sum of independent and identically
distributed random variables, the classical result of Chernoff says that it is concentrated
around its mean value. We re-write Hv in the following way:

Hv =
∑

i:kα1 ≤ i≤ k
Hv,i

9

where
Hv,i = 2−i+1 × nv,i

If Hv ≥ 2−k
β
, then for some i, we have Hv,i ≥ 2−k

β

k and so

nv,i ≥
2i−1−kβ

k
= E[n′v,i] · 2k

ε−kβ−log k−2

Since, n′v,i = BIN (∆, p) for p = 2−k+i+1, we get

Pr
[
nv,i ≥

2i−1−kβ

k

]
≤ Pr

[
|BIN (∆, p)−∆p| ≥ ∆p ·

(
2k

ε−kβ−log k−2 − 1
)]

(2)

Recalling that ∆p = 2i+1−kε , we apply Chernoff’s bound from (1) to the RHS of (2)

Pr
[
nv,i ≥

2i−1−kβ

k

]
≤ 2exp

(
− 2k

ε−kβ−log k−2(kε − kβ − 2)
(
2i+1−kε)

)
(3)

Noting that our freezing ensures that i ≥ kα1 , we get finally

RHS of (3) ≤ 2exp
(
− (kε − kβ − 2)2k

α1−kβ−log k−2
)

(4)

Recalling our assumption that β < α1 < ε, we see that (4) directly yields the second
bound of our Proposition for large k.
To obtain the probability bounds for events in the second phase of the algorithm, we
introduce another notation. LetHi represent the subgraph induced by those monochromatic
edges at the end of Phase 1 that have exactly i uncoloured vertices left. Note that the degree
of Hi denoted by ∆i is at most 2i−k

β
, since Hv ≤ 2−k

β
for all vertices v at the end of phase

1.
Consider

√
k second phase naughty edges e1, . . . , e√k intersecting edge e, where edge

ej had ij uncoloured vertices at the beginning of phase 2. Applying a similar argument as

before for computing Pr[B1
e] and observing that there are at most k

√
k ways of choosing

the
√
k-tuple (i1, . . . , i√k) where kα1 ≤ ij ≤ k for each j, we get

Pr[B2
e] ≤ k

√
k ×

√
k∏

j=1

2−ij+k
α2+
√
k · (∆ijk) ≤ 2(−kβ+kα2+2 log k+1)

√
k

giving us our third bound.
Let niv,j be the number of monochromatic edges containing vertex v that have i uncoloured
vertices at the end of Phase 1 and have j ≤ i uncoloured vertices at the end of Phase 2.

As in the argument for bounding Pr[B1
v], we introduce a random variable n

′,i
v,j for each niv,j

10

such that Pr[niv,j ≥ N] ≤ Pr[n
′,i
v,j ≥ N] for every number N . Like before, each n

′,i
v,j is a

sum of identical and independent Bernoulli random variables and hence, is concentrated

around its mean. Clearly, E[n
′,i
v,j] = ∆i · 2−i+j = 2j−k

β
. Let nv,j,2 =

∑k
i=kα1 n

i
v,j i.e. the

number of edges through v that have j uncoloured vertices at end of phase 2. As before,
define H2

v,j = 2−j+1 · nv,j,2, so that Hv at end of phase 2 is simply
∑k

j=kα2 H
2
v,j. Thus,

Hv ≥ 1/8k implies that for some i, j,

niv,j ≥
2j−1

8k3
= E[n

′,i
v,j] ·

2k
β−3

8k3

Applying Chernoff’s bound as we did for computing the second bound of the proposition,

Pr[njv,i ≥
2j−1

8k3
] ≤ 2e−2k

β−3 log k−6·E[n
′,j
v,i]

Plugging E[n
′,j
v,i] ≥ 2k

α2−kβ , we get our desired bound.

With the bounds on probability of relevant events, we are ready to calculate the expected
number of bad (4, 10)-trees in each phase of 2-COLOUR.

Lemma 15 There exists a constant cε for i = {1, 2} such that the expected number of bad
(4, 10)-trees in Hi of size (cε/k

δi+1/2) · log(ni +mi) is less than 1
2 , where δ1 = ε and δ2 = β

and ni, mi are respectively the number of vertices and edges in the largest component of Hi.

Proof: Let X i
` denote the random variable that is equal to the number of bad (4, 10)-trees

of size ` at end of Phase i. In the following discussion, we shall drop the superscript i
denoting the Phase in which events occur. Consider T to be a (4, 10)-tree of size ` with
nodes n1, . . . , n`. Further, let BT denote the event that T turns bad at the end of Phase
i. We first want to compute Pr[BT]. For T to turn bad, each edge and vertex of the
hypergraph comprising it has to become bad. These events are not independent as freezing
done due to a vertex (an edge) becoming bad (naughty) affects the probabilities of other
vertex/edge becoming bad/naughty. But event Bv (Be) is determined by just exposing
colours assigned to a set of vertices at distance 1 (2) from v (e) in Hi. Let this set be
denoted by Vv (Ve). For two edges e and f , it is easily verified that sets Ve∩Vf 6= ∅ implies
that the distance between e and f is less than 4. Similarly one can verify that sets Vnj
and Vnk are disjoint for every pair of nodes nj, nk in T as distance between nj and nk is
at least 4 in Hi. For each node n in T , let B ′n denote the auxiliary event that n turns
bad when just vertices in Vn are randomly coloured. Our previous observation implies
that the auxiliary events associated with nodes of a (4, 10)-tree are independent of each
other. Further, Pr[BT] ≤ Pr[B′n1

∩ B′n2
∩ · · · ∩B′n`]. Thus, using the bounds obtained for

probabilities in Proposition 14, one gets the following:

Pr[Bi
T] ≤ 2−0.5`(kδi+1/2) (5)

11

where δ1 = ε and δ2 = β. We find out an upper bound on N` i.e. the possible number of
such trees of size `. There are 4` ways of choosing an unlabelled tree of size ` (see [7]). The
root of our bad tree can be chosen in ni +mi ways. We fix an unlabelled tree and the root
of our bad tree and then choose the remaining nodes of the tree in a breadth-first fashion.
Each node can then be chosen in at most (2k−k

ε
)10 · k ways. Thus, the total number of

choices for a (4, 10)-bad tree of size ` is at most

N` = (ni +mi)× 4` × (210(k−kε) · k10)`−1 (6)

Combining (5) and (6) for sufficiently large k we have,

E[X i
`] ≤ (ni +mi) · 2(−0.5kδi+1/2+10k+2)` (7)

Taking ` = cε · log (ni +mi)), for large k one gets that E[X i
`] < 1/2, since δi + 1/2 > 1

and cε is a constant that just depends on ε.

Proof:[of Lemma 11] Combining Lemma 13 and Lemma 15 with Markov’s inequality yields
the bound on the size of the components of the hypergraph induced at the end of Phase
1 (i.e. H1). The argument for analyzing Phase 2 when Case 1 holds is very similar, just
noting that each component Ci of H1 now has size at most 26kcε log(n+m). The remaining
case is when the following is true:

26k > log(n+m)/ log log(n+m) (8)

Consider any component C of H1. Let XB be the random variable representing the total
number of bad vertices and bad edges generated by phase 2 for C. Clearly, (8) and bounds
from proposition 14 imply

E[XB] ≤ |C| · 2−0.5kβ+1/2 ≤ 26kcε log(n+m)× 2−0.5kβ+1/2
= o(1) (9)

since β + 1/2 > 1. Using Markov’s inequality, with probability at most E[XB] → 0, there
exists a bad vertex or a bad edge. In otherwords, almost surely no bad edges or vertices
are present, whence at the end of Phase 2 there are no uni-coloured edges remaining with
very high probability.

Now we are ready to prove Theorem 10.

Proof:[of Theorem 10] Using Lemma 11, it is easy to see that the expected number of
times that Phase 1 is run is at most 2 and that phase 2 is run is at most 2(n + m).
It is straight-forward to see that each run of Phase 1 and Phase 2 takes poly-time. If
26k ≤ log(n+m)/ log log(n+m), then clearly the brute force method of Phase 3 will take
polytime. In the other case, as there are no uni-coloured edges at end of Phase 2, any
completion of the partial colouring is proper.

12

5 Derandomization

We will use the method of conditional expectations (due to Erdös and Selfridge [6]) to
derandomize our algorithm from the previous section which would prove theorem 1 (see
also [9] for an exposition of this technique).

Proof:[of Theorem 1] In Phase 1 of 2-COLOUR, when we consider assigning a colour to a
vertex v, we compute the colour that minimizes the expected number of bad (4, 10)-trees
of size `1 = (cε/k

ε+1/2) log(n+m) that would arise if the colouring is randomly completed
as prescribed in Phase 1. This colour is then assigned to v. The number of such bad trees
that we need to take into consideration is bounded from above by (n+m) · 210(k−kε)`1 · 4`1 .
Since ε > 1/2, it gets easily verified that the number of such bad trees is O((n + m)1+δ)
for every δ < 1 when k is growing function of n. Otherwise it is O(nc) for some constant
c. As shown in Lemma 15, the expected number of such bad (4, 10)-trees at the beginning
of Phase 1 is less than a half. The deterministic variant of Phase 1 hence produces no bad
trees and so H1 has no large components.

If 26k ≤ log(n+m)/ log log(n+m), we apply a similar procedure to derandomize Phase
2 by considering trees of size `2 = (cε/k

β+1/2) log log(n+m). The rest of the method and
argument is same as above. For larger k, when colouring a vertex v in a component C of
H1, we assign v the colour that minimizes the expected number of bad vertices and edges of
C. Using the argument given in the proof of Lemma 11, we conclude that Phase 2 generates
no bad vertices or edges. Thus, no edge at the end of Phase 2 is uni-coloured.

13

References

[1] N. Alon. A parallel algorithmic version of the Local Lemma. Random Structures and
Algorithms, 2:367–379, 1991.

[2] N. Alon and J. Spencer. The Probabilistic Method. Wiley, New York, 1992.

[3] J. Beck. An algorithmic approach to the Lovász Local Lemma. Random Structures and
Algorithms, 2(4):343–365, 1991.

[4] J. Beck and S. Lodha. Efficient proper 2-coloring of almost disjoint hypergraphs. In
SODA, pages 598–605, 2002.

[5] P. Erdös and L. Lovász. Problems and results on 3-chromatic hypergraphs and some
related questions. In A. H. et. al., editor, Infinite and Finite sets, volume 11, pages
609–627. Colloq. Math. Soc. J. Bolyai, 1975.

[6] P. Erdös and J. Selfridge. On a combinatorial game. Journal of Combinatorial Theory
(A), 14:298–301, 1973.

[7] F. Harary and E. Palmer. Graphical Enumeration. Academic Press, 1st edition, 1973.

[8] M. Molloy and B. Reed. Further algorithmic aspects of the Local Lemma. In STOC,
pages 524–529, 1998.

[9] M. Molloy and B. Reed. Graph Colouring and the Probabilistic Method. Springer, 2002.

14

