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Data: An Invaluable Asset in the Digital World
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Market Structures– Fundamentals

Monopoly
One seller dominates the market

Seller is price-setter

Price is set to maximize revenue

Oligopoly
Few sellers compete strategically

Sellers play a pricing game

Price is set to a NE of the pricing
game

Perfect Competition
Many sellers

Sellers are price-takers

Price set to match demand and
supply
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Overview of Solution Concept(s)
in Traditional (Rivalrous) Markets
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(Rivalrous) Fisher Market

a1$b1

a2$b2

an$bn

n buyers with budgets b
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Perfect Competition Solution Concept– Competitive
Equilibrium (CE)
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an$bn

Prices p
g1 $p1

g2 $p2

gm $pm
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x2,m

x2,2

xn,m

Optimum demand bundles x
xi = (xi,1, . . . xi,m) is utility

maximizing bundle for i at p
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Optimum demand bundles x
xi maximizes ∑j ui,jxi,j
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gm $pm
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xn,m

Optimum demand bundles x

(p,x) is a CE iff ∑
i xi,j = sj ∀j
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Perfect Competition Solution Concept– Competitive
Equilibrium (CE)

a1$1

a2$1
4

a3$1
4

g1
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3

1
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1
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1

$1

$1
2

x1 = (1, 0), x2 = (0, 12), x3 = (0, 12)∑
i xi,1 = 1∑
i xi,2 = 1

CE !
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Existence and Computation of CE

• A CE always exists [Arrow and Debreu, Econometrica’1954]

• Convex program exists [Eisenberg and Gale. Management
Science’1968]

• Polynomial time algorithms exist [Devanur, Papadimitriou, Saberi,
Vazirani, Journal of the ACM’08]

• Strongly Polynomial time algorithm exist [Orlin, STOC’10]

• Intuitive dynamics with fast convergence exist. [Codenotti, McCune,
Varadarajan, STOC’05]
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Oligopoly (Fixed Supply) – Pricing Game

• Seller j prices good at pj ,

• Utility/ Revenue of seller j is rev j(pj ,p−j) = pj ·
∑

i x
∗
i,j(p),

• p is stable if it is a pure Nash Equilibrium (NE) of the pricing game.
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• Seller j prices good at pj ,

• Utility/ Revenue of seller j is rev j(pj ,p−j) = pj ·
∑

i x
∗
i,j(p),

• p is stable if it is a pure Nash Equilibrium (NE) of the pricing game.

CE =⇒ NE
If (p,x) is a CE, then p is a NE of the pricing game.
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Monopoly

• Seller prices j at pj ,

• Buyer i demands x∗
i (p),

• p is stable if it is a Stackelberg Equilibrium (SE), i.e., it maximizes∑
j pj(

∑
i x

∗
i,j(p)).
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Monopoly

• Seller prices j at pj ,

• Buyer i demands x∗
i (p),

• p is stable if it is a Stackelberg Equilibrium (SE), i.e., it maximizes∑
j pj(

∑
i x

∗
i,j(p)).

Observation
Problem is trivial if buyers have no value for money, i.e., ui(xi) is
independent of ∑j pjxi,j .
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Monopoly with Quasi-Linear Utilities

• Seller prices j at pj ,

• Buyer i demands x∗
i (p), where, x∗

i (p) maximizes ∑j(ui,j − pj)xi,j such
that xi,j ∈ [0, 1] and ∑

j pjxi,j ≤ bi,

• p is stable if it is a Stackelberg Equilibrium (SE), i.e., it maximizes∑
j pj(

∑
i x

∗
i,j(p)).
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Monopoly with Quasi-Linear Utilities

• Seller prices j at pj ,

• Buyer i demands x∗
i (p), where, x∗

i (p) maximizes ∑j(ui,j − pj)xi,j such
that xi,j ∈ [0, 1] and ∑

j pjxi,j ≤ bi,

• p is stable if it is a Stackelberg Equilibrium (SE), i.e., it maximizes∑
j pj(

∑
i x

∗
i,j(p)).

Finster, Goldberg and Lock ’24
CE =⇒ SE when agents have quasi-linear utilities.
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Data as a Homogeneous
Commodity and Value for Data
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Value of Data

Shannon’s Information Theoretic Perspective
“Data reduces uncertainty”
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Value of Data

Data as a Signal
• Agent has prior belief of an unknown state θ,

• Data is a signal s about θ,

• Agent updates belief to the posterior of θ | s,

• Value of data = reduction in variance from θ to θ | s
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Value of Data

• Each data record of a seller is a noisy signal s = θ + η, where η ∼ D,

13 / 26



Value of Data

• Each data record of a seller is a noisy signal s = θ + η, where η ∼ D,

• Value of the data record is Var(θ)− E[Var(θ | s)]

13 / 26



Value of Data

• Each data record of a seller is a noisy signal s = θ + η, where η ∼ D,

• Value of the data record is Var(θ)− E[Var(θ | s)] = Var(E[θ | s]) (law of
total variance)

13 / 26



Value of Data Bundles

• n buyers. Buyer i has budget bi, and an unknown state θi to predict,

• m sellers. Seller j owns dataset Dj with sj data records,

• Each data record of seller j, is a noisy signal about θi to buyer i, of the
form si,j = θi + ηi,j , where ηi,j ∼ Di,j
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• m sellers. Seller j owns dataset Dj with sj data records,

• Each data record of seller j, is a noisy signal about θi to buyer i, of the
form si,j = θi + ηi,j , where ηi,j ∼ Di,j

• Buyer i’s data bundle xi = (xi,1, xi,2, . . . , xi,m), where xi,j is the amount of
data records of seller j.
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Value of Data Bundles

• n buyers. Buyer i has budget bi, and an unknown state θi to predict,

• m sellers. Seller j owns dataset Dj with sj data records,

• Each data record of seller j, is a noisy signal about θi to buyer i, of the
form si,j = θi + ηi,j , where ηi,j ∼ Di,j

• S(xi) = set of all observed signals from data records in xi,

ui(xi) = Var(θ)− E[Var(θ | S(xi)] = Var(E[θ | S(xi)])
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Value of Data Bundles

Assumptions

• θi ∼ N (µi, τ
−1
i )

• ηi,j ∼ N (0, τ−1
i,j ),
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Value of Data Bundles

Assumptions

• θi ∼ N (µi, τ
−1
i )

• ηi,j ∼ N (0, τ−1
i,j ), implying

ηi,j ⊥ ηi,j′ and ηi,j ⊥ θi

Implication

• ui(xi) = τi
−1 − (τi +

∑
j τi,jxi,j)

−1

• maxx∈P ui(xi) ⇐⇒ maxx∈P
∑

j τi,jxi,j .

• Alternatively, define,
ui(xi) = E[Pre(θi | S(xi))]−Pre(θi) ⇐⇒
ui(xi) =

∑
j τi,jxi,j .
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Data Markets
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The Non-Rivalry of Data
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Perfect Competition

• ∑
i x

∗
i,j(p) = sj does not make sense! (data is non-rival),

• Principle of CE: “Everything produced is consumed”.

• New market clearing: maxi x
∗
i,j(p) = sj ∀j
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Perfect Competition

• ∑
i x

∗
i,j(p) = sj does not make sense! (data is non-rival),

• Principle of CE: “Everything produced is consumed”.

• New market clearing: maxi x
∗
i,j(p) = sj ∀j

CE in Data Markets
(p,x) is CE iff

• x∗
i ∈ argmaxy|pTy ≤ bi ui(y) ∀i, and

• maxi x
∗
i,j = sj ∀j
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CE: Rivalrous vs.Data Markets

Rivalrous Markets

• CE exists and CE price is unique,
rational

• Set of CE allocations is convex

• Convex program known
(Eisenberg–Gale)

Data Markets (Our Results)

• CE exists and CE price is unique,
rational

• Set of CE allocations is
non-convex

• Convex Program not known
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CE: Rivalrous vs.Data Markets

Theorem [C., Garg, Murhekar, Song]
An ε-CE can be computed through an auction-style algorithm in
poly(n,m, 1/ε,maxi,j log(τi,j)).
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CE: Rivalrous vs.Data Markets

Theorem [C., Garg, Murhekar, Song]
An ε-CE can be computed through an auction-style algorithm in
poly(n,m, 1/ε,maxi,j log(τi,j)).

Open Problems

• What is the complexity of finding an exact CE in data markets?

• Are there market dynamics that converge to a CE in data markets?
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Oligopoly (Pricing Game)
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Oligopoly (Pricing Game)

CE ̸⇒ NE in Oligopolistic Data Markets.
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Oligopoly (Pricing Game) is unstable

CE ̸⇒ NE in Oligopolistic Data Markets.
Recall: CE =⇒ NE in rivalrous markets. So NE exists and is computable in
poly-time.
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Oligopoly (Pricing Game) is unstable
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Oligopoly (Pricing Game) is unstable
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Oligopoly (Pricing Game) is unstable
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Oligopoly (Pricing Game) is unstable
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Monopoly (Revenue Maximization)

Recall: Agents have value for money,

ui(x,p) = αi(
∑

j τi,jxi,j)−
∑

j pjxi,j

and the goal is to find p, such that

maxp,x∈OPT i(p)

∑
i,j pjxi,j

where OPT i(p) = argmax{y|pTy ≤ bi} ui(x,p)
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Revenue Maximization

Theorem [C., Garg, Sharma, Song]
Revenue maximization in data markets is APX-hard.
Recall: CE =⇒ revenue maximization (SE) in rivalrous markets. Computing
SE is therefore in P.
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Revenue Maximization

Theorem [C., Garg, Sharma, Song]
Revenue maximization in data markets is APX-hard.
Recall: CE =⇒ revenue maximization (SE) in rivalrous markets. Computing
SE is therefore in P.

Theorem [C., Garg, Sharma, Song]
There exists an online 2-approximation algorithm for maximizing revenue in
data markets.
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Connection to k-submodularity

Monotone k-Submodularity
Given a ground set U , a function f defined on k-tuple disjoint subsets of U is
k-submodular iff

• f(S1, . . . , Sk) ≤ f(T1, . . . , Tk) if all Si ⊆ Ti, and

• f(S1, . . . , Sr ∪ {g}, . . . Sk)− f(S1, . . . , Sk) ≥
f(T1, . . . , Tr ∪ {g}, . . . Tk)− f(T1, . . . , Tk), where Si ⊆ Ti.
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Monotone k-Submodularity
Given a ground set U , a function f defined on k-tuple disjoint subsets of U is
k-submodular iff

• f(S1, . . . , Sk) ≤ f(T1, . . . , Tk) if all Si ⊆ Ti, and

• f(S1, . . . , Sr ∪ {g}, . . . Sk)− f(S1, . . . , Sk) ≥
f(T1, . . . , Tr ∪ {g}, . . . Tk)− f(T1, . . . , Tk), where Si ⊆ Ti.

Ward and Zivny SODA’14
There exists an online 2-approximation greedy algorithm for maximizing k
submodular functions. 23 / 26



Connection to k-submodularity

Key Observations

• ui(x,p) =
∑

j(αiτi,j − pj)xi,j ,

• Money spend by buyer i is min(bi,
∑

j|αiτi,j ≥ pj
pj),

• At an optimal p, pj = αiτi,j for some i,

• Let Si = {j | pj = αiτi,j},

• f(S1, . . . , Sn) is n-submodular
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Connection to k-submodularity

f(S1, . . . , Sn) is n-submodular

• p(S1, . . . , Sn), be the prices corresponding to S1, . . . , Sn.

• Let S1 ⊆ T1, . . . , Sn ⊆ Tn,

• Buyers have less remaining budget in p(T1, . . . , Tn) than in p(S1, . . . , Sn),

• Marginal revenue increase in pricing a new good is more in p(S1, . . . , Sn)
than in p(T1, . . . , Tn).
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Connection to k-submodularity

Theorem [C., Garg, Sharma, Song]
One can formulate revenue maximization in data markets as submodular
optimization subject to partition matroid constraint and get a
(1− 1/e)−1-approximation.
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Beyond Uniform Pricing

Core-Question

• Why restrict ourselves to pricing functions that are linear?

• What happens when agents (monopolist or oligopolist) optimize over
all pricing functions?
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Beyond Uniform Pricing

Core-Question

• Why restrict ourselves to pricing functions that are linear?

• What happens when agents (monopolist or oligopolist) optimize over
all pricing functions?

Theorem [C., Garg, Sharma, Song]
When agents optimize over all pricing strategies,

• A SE can computed in polynomial time.

• An approximate NE exists in the pricing game. 24 / 26



Summary

• Framework for studying equilibrium theory in data markets.

• Rivalry of data calls for a new CE notion.

• Uniform pricing: oligopolies unstable, monopolist’s strategy hard.

• Beyond-uniform pricing fixes existence and computation issues.

• Computational directions: complexity, hardness, and dynamics.

• Modeling directions: complimentary signals, Cournot Oligopoly.
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Thank You!
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