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The Global Big Data Market Size accounted for USD 163.5 Billion in 2021 and is projected to occupy a market

size of USD 473.6 Billion by 2030 growing at a CAGR of 12.7% from 2022 to 2030.
Big data is primarily intended to analyze, process, and extract information from massive amounts of data and
extremely complex structures. Big data analytics are widely associated with many other massively augmented

technologies such as artificial intelligence (Al), deep learning, machine learning, and the Internet of Things (loT) among
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Equilibrium Theory in Data Markets
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Market Structures— Fundamentals

[ ]
moh
Monopoly Oligopoly
One seller dominates the market Few sellers compete strategically
Seller is price-setter Sellers play a pricing game
Price is set fo maximize revenue Price is set fo a NE of the pricing

game

Perfect Competition
Many sellers

Sellers are price-takers

Price set to mafch demand and

supply
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Overview of Solution Concept(s)
in Traditional (Rivalrous) Markets



(Rivalrous) Fisher Market

n buyers with budgets b
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(Rivalrous) Fisher Market

n buyers with budgets b

u1,1 m divisible goods

Utility matrix «

U2,m

Un,m
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Perfect Competition Solution Concept— Competitive

Equilibrium (CE)

$bl
5

[e)e)e)

5,

n
i

[e)e)e)

5

Prices p

7126



Perfect Competition Solution Concept— Competitive
Equilibrium (CE)

Prices p

Optimum demand bundles =

T = (J)i,l, . mi,m) is UTI'ITy

maximizing bundle for ¢ at p
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Perfect Competition Solution Concept— Competitive
Equilibrium (CE)

Prices p

Optimum demand bundles =

x; Maximizes Zj Ui jTj 5

subject to 37, pjzi; < b;
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Perfect Competition Solution Concept— Competitive
Equilibrium (CE)

Prices p

Optimum demand bundles =

(p., LE) is a CE iff Zz Tjj = Sj Vj
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Perfect Competition Solution Concept— Competitive
Equilibrium (CE)

T = (%70)1332 - (%,0),:1}5 :( /0)

Wl

> w1 = 2 (over-demanded)
> iz = 0 (under-demanded)

$3 Not a CE !
4
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Perfect Competition Solution Concept— Competitive
Equilibrium (CE)
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T = (0,4), To = (07 1), T3 = (07 1)

>, w1 = 0 (under-demanded)
> Ti2 = 6 (over-demanded)
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Perfect Competition Solution Concept— Competitive
Equilibrium (CE)
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Existence and Computation of CE

A CE always exists [Arrow and Debreu, Econometrica’1954]

Convex program exists [Eisenberg and Gale. Management
Science’1968]

Polynomial time algorithms exist [Devanur, Papadimitriou, Saberi,
Vazirani, Journal of the ACM’08]

Strongly Polynomial time algorithm exist [Orlin, STOC’10]

Intuitive dynamics with fast convergence exist. [Codenotti, McCune,
Varadarajan, STOC’05]
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Oligopoly (Fixed Supply) — Pricing Game

e Seller j prices good at p;,
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Oligopoly (Fixed Supply) — Pricing Game

e Seller j prices good at p;,
* Utility/ Revenue of seller j is rev;(p;, p—j) = pj - >, 27 ;(p).

® pisstable if it is a pure Nash Equilibrium (NE) of the pricing game.

CE = NE
If (p, ) is a CE, then pis a NE of the pricing game.
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Oligopoly (Fixed Supply) — Pricing Game
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Oligopoly (Fixed Supply) — Pricing Game

>z} ; does not increase

$b3
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Oligopoly (Fixed Supply) — Pricing Game
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Monopoly

e Seller prices j at p;,
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Monopoly

e Seller prices j at p;,
¢ Buyer i demands x;(p),

e pisstable if it is a Stackelberg Equilibrium (SE), i.e., it maximizes

ijj(zi wf](P))

Problem is frivial if buyers have no value for money, i.e., u;(x;) is
independent of Zj DT 5
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Monopoly with Quasi-Linear Utilities

e Seller prices j at p;,

* Buyer i demands x;(p). where, x;(p) maximizes }_,(u;,; — pj)zi,; SUch
that i € [0, 1] and Zj PjTi j < b;,

e pisstable if it is a Stackelberg Equilibrium (SE), i.e., it maximizes

2. P27 ;(p)).
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Monopoly with Quasi-Linear Utilities

e Seller prices j at p;,

* Buyer i demands x;(p). where, x;(p) maximizes }_,(u;,; — pj)zi,; SUch
that i € [0, 1] and Ej PjTi j < b;,

e pisstable if it is a Stackelberg Equilibrium (SE), i.e., it maximizes

Z pJ(Zz zg(p))'

Finster, Goldberg and Lock 24
CE = SE when agents have quasi-linear utilities.
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Data as a Homogeneous
Commodity and Value for Data



Value of Data

Shannon’s Information Theoretic Perspective
“Data reduces uncertainty”

12726



Value of Data

e Agent has prior belief of an unknown state 6,
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Value of Data

Agent has prior belief of an unknown state 6,

Data is a signal s about 6,

Agent updates belief to the posterior of 4 | s,

Value of data = reduction in variance from 6 to 6 | s
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Value of Data

e Each data record of a seller is a noisy signal s = 6 + n, where n ~ D,
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e Each data record of a seller is a noisy signal s = 6 + n, where n ~ D,
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Value of Data

e Each data record of a seller is a noisy signal s = 6 + n, where n ~ D,

¢ Value of the data record is Var(0) — E[Var(d | s)] = Var(E[# | s]) (law of
total variance)

13726



Value of Data Bundles

* n, buyers. Buyer i has budget b;, and an unknown state 6, to predict,
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Value of Data Bundles

n buyers. Buyer ¢ has budget b;, and an unknown state 6; to predict,

m sellers. Seller j owns dataset D; with s; data records,

Each data record of seller j, is a noisy signal about 6; to buyer i, of the
form Sij = 0; + Mijr where Nij ~ Di,j

Buyer i's data bundle x; = (zi1,xi2, ..., zim). Where z; ; is the amount of
data records of seller j.

14726



Value of Data Bundles

n buyers. Buyer i has budget b;, and an unknown state 6, to predict,

m sellers. Seller j owns dataset D; with s; data records,

Each data record of seller j, is a noisy signal about §; to buyer ¢, of the
form Sij = 0; + Mijo where Mij ~ ’Di’]'

® S(x;) = set of all observed signals from data records in x;,

u;(x;) = Var(f) — E[Var(0 | S(z;)] = Var(E[0 | S(x;)])

14726



Value of Data Bundles

® 05~ N (i 7;7")
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Value of Data Bundles

® 05~ N (i 7;7")

® 15 ~N(O,7; ).
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Value of Data Bundles

® 05~ N (i 7;7")

® n;; ~N(0,7, "), implying
nij L iy andn; L 0;

15/26



Value of Data Bundles

® 0~ N(ui, 7, t) o i) =7 = (i + ;i)
® i NN(O,Tile), implying ® maxgep Ui(T;) <= maxgecp Zj Ti i
Nij L migoandm,; L 6;
e Alternatively, define,
u;(x;) = E[Pre(0; | S(x;))] —Pre(d;) <—

wi(@;) = 32, Ti jTi-

15/26



Data Markets



The Non-Rivalry of Data
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Perfect Competition

* >, 7;,;(p) = s; does not make sense! (data is non-rival),
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Perfect Competition

* > ;7 ;(p) = s; does not make sense! (data is non-rival),
¢ Principle of CE: “Everything produced is consumed”.
¢ New market clearing: max; :c;j(p) =5; Vj

CE in Data Markets
(p,x) is CE iff

® ] € argmaxy,r, <, wi(y) Vi, and

® max; xF. =8; Vj
1,] J
18/26



CE: Rivalrous vs.Data Markets
Rivalrous Markets Data Markets (Our Results)

e CE exists and CE price is unique,
rational
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e CE exists and CE price is unique,
rational

e Set of CE allocations is convex
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CE: Rivalrous vs.Data Markets

Rivalrous Markets Data Markets (Our Results)
e CE exists and CE price is unique, e CE exists and CE price is unique,
rational rational
e Set of CE allocations is convex e Set of CE allocations is

non-convex
e Convex program known

(Eisenberg-Gale) e Convex Program not known
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CE: Rivalrous vs.Data Markets

[C.
An ¢-CE can be computed through an auction-style algorithm in
poly(n,m,1/e, max; ; log(7; ;)).
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CE: Rivalrous vs.Data Markets

[C.
An ¢-CE can be computed through an auction-style algorithm in
poly(n,m,1/e, max; ; log(7; ;)).

¢ What is the complexity of finding an exact CE in data markets?

e Are there market dynamics that converge to a CE in data markets?
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Oligopoly (Pricing Game)
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Oligopoly (Pricing Game)

CE # NE in Oligopolistic Data Markets.
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Oligopoly (Pricing Game) is unstable

CE # NE in Oligopolistic Data Markets.

Recall: CE — NE in rivalrous markets. So NE exists and is computable in
poly-time.
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Monopoly (Revenue Maximization)

Recall: Agents have value for money,

ui(@, p) = (32 TijTij) — 2; Pitij

and the goalis to find p, such that

MaXp zc OPT,(p) 2uiyj Pitis

where OPT;(p) = arg maxy,ry, < p,} wi(, )

21/26



Revenue Maximization

Theorem [C.. Garg, Sharma, Song]

Revenue maximization in data markets is APX-hard.
Recall: CE = revenue maximization (SE) in rivalrous markets. Computing
SE is therefore in P.
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Revenue Maximization

[C.

Revenue maximization in data markets is APX-hard.
Recall: CE = revenue maximization (SE) in rivalrous markets. Computing
SE is therefore in P.

[C.
There exists an online 2-approximation algorithm for maximizing revenue in
data markets.
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Connection to k-submodularity

Monotone k-Submodularity

Given a ground set U, a function f defined on k-tuple disjoint subsets of U is
k-submodular iff

L4 f(Sl,,Sk) < f(Tl,.. . ,Tk) if all S; C T;, and

® f(S1,..., S U{g},...Sk) — f(S1,...,Sk) >
F(T1,.. T, u{g}... . Tk) — f(T3,...,Ti), where S; C Ts.

23 /26



Connection to k-submodularity

Monotone k-Submodularity
Given a ground set U, a function f defined on k-tuple disjoint subsets of U is
k-submodular iff

o £(S1,...,S) < f(Tn,...,T},) ifall S; C T3, and

° f(Sl)7STU{g}7Sk)_f(SlaaSk)Z
F(To T, U g} T~ f(Th.. .. Ty). where S; C T,

Ward and Zivny SODA" 14
There exists an online 2-approximation greedy algorithm for maximizing &
submodular functions. 2872



Connection to k-submodularity

Key Observations

® ui(x,p) = (uiTij — pj)Ti;.
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Connection to k-submodularity

Key Observations
* ui(x,p) =3 (uTi,; — pj)Tiy
* Money spend by buyer i is min(bi, 3 4.7, ; > p, Pi)-
¢ At an optimal p, p; = a;7; ; for some 4,

o letS;={j|pj = aimi;},
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Connection to k-submodularity

Key Observations

* ui(x,p) = > (uTij — pj)Tiy

e Money spend by buyer i is min(b;, Zj‘amj > p; Pj)

At an optfimal p, p; = a;7; ; for some i,

Let S; ={j | pj = ayms j}. and f(S1, Sa,...,S,) = total revenue when
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Connection to k-submodularity

Key Observations

* ui(x,p) = > (uTij — pj)Tiy

e Money spend by buyer i is min(b;, Zj‘amj > p; Pj)

At an optfimal p, p; = a;7; ; for some i,

Let S; ={j | pj = ayms j}. and f(S1, Sa,...,S,) = total revenue when
prices are defined by 5i,...,.S,. Prices of datasefts ¢ U;S; is set to co.

f(S1,...,S,) is n-submodular
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Connection to k-submodularity

f(S1,...,S,) is n-submodular

® p(S1,...,S,). be the prices corresponding to Sy, ..., S,.
b LeT51 ng,...,Sn CT,.
e Buyers have less remaining budget in p(T1,...,T,) thanin p(Sy,...,Sy).

¢ Marginal revenue increase in pricing a new good is more in p(Sy, ..., Sy)
thanin p(T1,...,T,).
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Connection to k-submodularity

[C.
One can formulate revenue maximization in data markets as suomodular
optimization subject to partition matroid constraint and get a
(1 —1/e)~t-approximation.
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Beyond Uniform Pricing

¢ \Why restrict ourselves to pricing functions that are linear?

¢ What happens when agents (monopolist or oligopolist) optimize over
all pricing functions?
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Beyond Uniform Pricing

e Why restrict ourselves to pricing functions that are linear?

¢ \What happens when agents (monopolist or oligopolist) optimize over
all pricing functions?

[C.
When agents optimize over all pricing strategies,
e A SE can computed in polynomial time.

e An approximate NE exists in the pricing game.

24726



Summary

e Framework for studying equilibrium theory in data markets.
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Summary

Framework for studying equilibrium theory in data markets.

Rivalry of data calls for a new CE notion.

Uniform pricing: oligopolies unstable, monopolist’s strategy hard.

Beyond-uniform pricing fixes existence and computation issues.

Computational directions: complexity, hardness, and dynamics.

Modeling directions: complimentary signals, Cournot Oligopoly.
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