Homework 2 (7 problems, due: 9 October 2006)

Graph reconstruction Read and understand the solution to the first problem, and submit solutions for the remaining.

- **C1.6** Graph embeddings: Our graphs are undirected and simple with vertex set [n]. Let G_1 and G_2 be graphs with m edges. For graphs H and G, we say that $f : [n] \rightarrow [n]$ is an embedding of H in G if (a) f is one-to-one and onto, and (b) for all $\{i, j\} \in E(H)$, we have $\{f(i), f(j)\} \in E(G)$. Suppose for each graph H with m 1 edges, the number of subgraphs of G_1 that are isomorphic to H is equal to the number of subgraphs of G_2 that are isomorphic to H. Then, show that for every graph H with at most m 1 edges, the number of embeddings of H in G_1 is equal to the number of embeddings of H in G_2 .
- **Solution:** Order the edges of G_1 as e_1, e_2, \ldots, e_m and G_2 as f_1, f_2, \ldots, f_m so that the graph $G_1 e_i$ is isomorphic to $G_2 f_i$; fix an embedding σ_i of $G_1 e_i$ in $G_2 f_i$ for each $i \in [m]$. Let H be some graph on [n] with $k \leq m 1$ edges. We want to show that the number of embeddings of H in G_1 is equal to the number of embeddings of H in G_2 . Let

$$S_1 \stackrel{\Delta}{=} \{(f,i) : f \text{ is an embedding of } H \text{ in } G_1 - e_i\};$$

and $S_2 \stackrel{\Delta}{=} \{(f,i) : f \text{ is an embedding of } H \text{ in } G_2 - f_i\}.$

Note that $(f, i) \in S_1$ if and only if $(\sigma_i \cdot f, i) \in S_2$; so, $|S_1| = |S_2|$. Now, if f is an embedding of H in G, there are exactly m - k indices i such that f is an embedding of H in $G - e_i$. It follows that

the number of embeddings of H in
$$G_1 = \frac{1}{m-k}|S_1|$$
.

Similarly,

the number of embeddings of H in
$$G_2 = \frac{1}{m-k}|S_2|$$
.

But, we just argued that $|S_1| = |S_2|$. So, the number of embeddings of H in G_1 is equal to the number of embeddings of H in G_2 .

C2.1 Let N be finite set, and let $\mathcal{P}(N)$ be the power set of N. Let $f : \mathcal{P}(N) \to \mathbb{R}$. Define $e : \mathcal{P}(N) \to \mathbb{R}$ by

$$e(T) \stackrel{\Delta}{=} \sum_{S:S \supseteq T} f(S).$$
(1)

Suppose for some subset T of size m we have $e(T) \neq 0$, but e(T') = 0 for all proper subsets T' of T. Show that there are at least 2^m sets $S \subseteq N$ such that $f(S) \neq 0$.

C2.2 Let $N = {\binom{[n]}{2}}$. Let G be a graph on [n] and m edges, that is, $G \in {\binom{N}{m}}$. Let the function $f : \mathcal{P}(N) \to \mathbb{R}$ be defined as follows: if G' has exactly m edges, then f(G') is the number of embeddings of G in G'; if G' des not have exactly m edges, then $f(G) \triangleq 0$. Using this f, define $e : \mathcal{P}(N) \to \mathbb{R}$ as in (1). Show that e(H) is exactly the number of embeddings of H in G.

C2.3 Observe that the number of G' for which $f(G') \neq 0$ is at most n! (Why?). Use C1.6 and C2.2 to conclude that if two graphs G_1 and G_2 with m edges have the same list (or deck as in Lovász's paper) of subgraphs with m - 1 edges, then the resulting e's obtained from them (as in C2.2) take the same value for all graphs H with at most m - 1 edges. Conclude that if G_1 and G_2 are not isomorphic, then $2 \cdot n! \geq 2^m$. That is, if $m > 1 + \log_2(n!)$, then the graph can be reconstructed from its deck. Note that Lovász's proof, presented in class, showed that we can reconstruct the graph provided it has more than $\frac{1}{2} {n \choose 2}$ edges.

Permutations

- **C2.4** A permutation in S_n is a *transposition* if it has one cycle with two elements and n-2 cycles with one element each. Show how you will write the cycle (a_1, a_2, \ldots, a_m) as a product of m-1 transpositions. If $\sigma \in S_n$ is a permutation with k cycles, show that σ can be written as a product of n-k transpositions. Can it be written as a product of fewer than n-k transpositions?
- **C2.5** Suppose you are given an array (A[i] : i = 1, 2, ..., n), which contains the numbers 1, 2, ..., n stored in some order. To move the elements of the array, the only operation we are allowed is swap(i, j), where *i* and *j* are distinct indices in the range 1, 2..., n. This operation exchanges the values in A[i] and A[j]. Give a linear-time algorithm that uses the swap operation repeatedly so that in the end the element *i* is in the location A[i]. Your program can use an auxiliary bit-array (B[i] : i = 1, 2, ..., n), and a constant number of other variables, each holding an integer in the range 0, 1, ..., n + 1. How many swaps will your algorithm need if the initial content of the array corresponds to a permutation with *k* cycles (that is, if we define the permuation $\sigma : [n] \rightarrow [n]$ by $\sigma[i] \stackrel{\Delta}{=} A[i]$, then σ has *k* cycles)? Can an algorithm (not necessarily linear-time) use even fewer swaps?
- **C2.6** Let $\sigma \in S_n$ be a permutation with k cycles. Consider the transposition (1, 2). How many cycles can $(1, 2) \cdot \sigma$ have?
- **C2.7** Consider a permutation $\rho \in S_n$ with exactly one non-trivial cycle (a_1, a_2, \ldots, a_m) . Suppose $\sigma \in S_n$. Describe the cycles of the permutation $\sigma \cdot \rho \cdot \sigma^{-1}$.

Please send me email (jaikumar@tifr.res.in) when you spot errors. – Jaikumar