
Homework 2 (12 problems, due 24 September 2008)

Permutations

2.1 A permutation in Sn is a transposition if it has one cycle with two elements and n− 2 cycles
with one element each.

(a) Show how you will write the cycle (a1, , a2 . . . , am) as a product of m−1 transpositions.
(b) If σ ∈ Sn is a permutation with k cycles, show that σ can be written as a product of

n− k transpositions.
(c) Let σ ∈ Sn be a permutation with k cycles.
(d) Consider the transposition (1, 2). How many cycles can (1, 2) ·σ have? Can it be written

as a product of fewer than n− k transpositions?

2.2 Suppose you are given an array (A[i] : i = 1, 2, . . . , n), which contains the numbers 1, 2, . . . , n
stored in some order. To move the elements of the array, the only operation we are allowed is
swap(i, j), where i and j are distinct indices in the range 1, 2 . . . , n. This operation exchanges
the values in A[i] and A[j]. Give a linear-time algorithm that uses the swap operation re-
peatedly so that in the end the element i is in the location A[i]. Your program can use an
auxiliary bit-array (B[i] : i = 1, 2, . . . , n), and a constant number of other variables, each
holding an integer in the range 0, 1, . . . , n + 1. How many swaps will your algorithm need
if the initial content of the array corresponds to a permutation with k cycles (that is, if we
define the permuation σ : [n] → [n] by σ[i] ∆= A[i], then σ has k cycles)? Can an algorithm
(not necessarily linear-time) use even fewer swaps?

2.3 Consider a permutation ρ ∈ Sn with exactly one non-trivial cycle (a1, a2, . . . , am). Suppose
σ ∈ Sn. Describe the cycles of the permutation σ · ρ · σ−1.

Inclusion-exclusion

2.5 A surjection is an onto function i.e. every element of the co-domain has a pre-image. Show
that the number of surjections from [s] to [n] is

s∑
k=0

(−1)k

(
n

k

)
(n− k)s.

Hence, conclude that the above expression is 0 iff s < n.

2.6 (Bonferroni’s inequalities.) Let A1, A2, . . . , Ak ⊆ [n]. For S ⊆ [k], let AS
∆= ∩s∈SAs,

A{}
∆= [n]. Then, for 0 ≤ r ≤ k, show that

|A1 ∪A2 ∪ . . . ∪Ak| ≥
∑

S⊆[k]:|S|≤r(−1)|S||AS |, r odd;

|A1 ∪A2 ∪ . . . ∪Ak| ≤
∑

S⊆[k]:|S|≤r(−1)|S||AS |, r even.

That is, show that the successive steps in the inclusion-exclusion formula alternately bound
the final value from above and below.



2.7 (a) (Möbius inversion.) Let f, g : {1, 2, . . . , n} → C be two functions. Suppose

f(n) =
∑
d|n

g(d).

Let µ(·) be the Möbius function on positive integers defined as follows: Let positive
integer x have the prime factorisation x = pr1

1 pr2
2 · · · prk

k . Then,

µ(x) =
{

0 if ri ≥ 2 for some 1 ≤ i ≤ k
(−1)k otherwise.

Show that
g(n) =

∑
d|n

µ(n/d)f(d).

(b) Prove the following identity via a counting argument:

n =
∑
d|n

ϕ(d).

Hence, derive a formula for ϕ(·) in terms of µ(·).

2.8 (a) Consider the 2n×2n matrix I with rows and columns indexed by the subsets of [n] defined
as follows:

IA,B
∆=

{
1 if A ⊆ B
0 otherwise.

The matrix I is known as the set inclusion matrix. Find I−1 explicitly i.e. you should
be able to write down I−1

A,B for any A,B ⊆ [n].

(b) Show that the expression for I−1 derived above gives rise to the general inclusion-
exclusion formula.

(c) Using the first part of this exercise or otherwise, show that the set disjointness matrix
D defined as:

DA,B
∆=

{
1 if A ∩B = {}
0 otherwise,

is invertible. Find an explicit expression for D−1.

2.9 Read and understand the solution to the following problem, and submit solutions for the
remaining. Graph embeddings: Our graphs are undirected and simple with vertex set [n]. Let
G1 and G2 be graphs with m edges. For graphs H and G, we say that f : [n] → [n] is an
embedding of H in G if (a) f is one-to-one and onto, and (b) for all {i, j} ∈ E(H), we have
{f(i), f(j)} ∈ E(G). Suppose for each graph H with m−1 edges, the number of subgraphs of
G1 that are isomorphic to H is equal to the number of subgraphs of G2 that are isomorphic to
H. Then, show that for every graph H with at most m− 1 edges, the number of embeddings
of H in G1 is equal to the number of embeddings of H in G2.



Solution: Order the edges of G1 as e1, e2, . . . , em and G2 as f1, f2, . . . , fm so that the graph G1−ei

is isomorphic to G2− fi; fix an embedding σi of G1− ei in G2− fi for each i ∈ [m]. Let H be
some graph on [n] with k ≤ m − 1 edges. We want to show that the number of embeddings
of H in G1 is equal to the number of embeddings of H in G2. Let

S1
∆= {(f, i) : f is an embedding of H in G1 − ei};

and S2
∆= {(f, i) : f is an embedding of H in G2 − fi}.

Note that (f, i) ∈ S1 if and only if (σi · f, i) ∈ S2; so, |S1| = |S2|. Now, if f is an embedding
of H in G, there are exactly m− k indices i such that f is an embedding of H in G− ei. It
follows that

the number of embeddings of H in G1 =
1

m− k
|S1|.

Similarly,

the number of embeddings of H in G2 =
1

m− k
|S2|.

But, we just argued that |S1| = |S2|. So, the number of embeddings of H in G1 is equal to
the number of embeddings of H in G2.

2.10 Let N be a finite set, and let P(N) be the power set of N . Let f : P(N) → R. Define
e : P(N) → R by

e(T ) ∆=
∑

S:S⊇T

f(S). (1)

Suppose for some subset T of size m we have e(T ) 6= 0, but e(T ′) = 0 for all proper subsets
T ′ of T . Show that there are at least 2m sets S ⊆ N such that f(S) 6= 0.

2.11 Let N =
(
[n]
2

)
. Let G be a graph on [n] and m edges, that is, G ∈

(
N
m

)
. Let the function

f : P(N) → R be defined as follows: if G′ has exactly m edges, then f(G′) is the number of
embeddings of G in G′; if G′ does not have exactly m edges, then f(G) ∆= 0. Using this f ,
define e : P(N) → R as in (1). Show that e(H) is exactly the number of embeddings of H in
G.

2.12 Observe that the number of G′ for which f(G′) 6= 0 is at most n! (Why?). Use [2.9] and
[2.10] to conclude that if two graphs G1 and G2 with m edges have the same list (or deck) of
subgraphs with m− 1 edges, then the resulting e’s obtained from them (as in [2.10]) take the
same value for all graphs H with at most m− 1 edges. Conclude that if G1 and G2 are not
isomorphic, then 2 ·n! ≥ 2m. That is, if m > 1+log2(n!), then the graph can be reconstructed
from its deck. Note that Lovász’s proof, presented in class, showed that we can reconstruct
the graph provided it has more than 1

2

(
n
2

)
edges.

Please send me email (jaikumar@tifr.res.in) when you spot errors. – Jaikumar


