
News from India: Primes is in P1Jaikumar Radhakrishnan <jaikumar�ts.tifr.res.in>Tata Institute of Fundamental Researh, MumbaiKavitha Telikepalli <kavitha�mpi-sb.mpg.de>Max-Plank Institut f�ur Informatik, Saarbr�ukenV Vinay <vinay�sa.iis.ernet.in>Indian Institute of Siene, BangaloreOn 4 August 2002, an email message from Manindra Agrawal, NeerajKayal and Nitin Saxena left the omputers of the Indian Institute ofTehnology, Kanpur. The subjet line read \Primes is in P", andattahed to the message was a paper [AKS℄ with the same title. Thismade News.The paper presented a polynomial time algorithm for reognizing primenumbers, solving a longstanding open problem in Complexity Theory,and passing a milestone in the enturies-old journey towards under-standing prime numbers.In this artile, we desribe the revised algorithm due to Agrawal, Kayaland Saxena and present a proof of its orretness; this algorithm buildson an earlier improvement due to H.W. Lenstra, Jr.We want a polynomial-time method to determine if a given number n isprime, that is, a method that terminates after performing O((logn)) steps ofomputation. The starting point of the new test for primality is the following.Proposition 1 (a) If n is prime, then (X � a)n = Xn � a (mod n).(b) If gd(a; n) = 1 and n is omposite, then (X � a)n 6= Xn � a (mod n).Proof: (Sketh) (a) If n is prime �ni� = 0 (mod n) for i = 1; 2; : : : ; n � 1 andan = a (mod n). (b) If n is omposite and p is a prime fator of n, then theoeÆient of Xp in (X � a)n, is �np�(�a)n�p 6= 0 (mod n). �This proposition gives us the following algorithm.If (X � 1)n = Xn � 1 (mod n), then n is prime, otherwise it is omposite.Figure 1: A primality testing algorithm1A shorter version of this write-up, based on the original paper [AKS℄ was writtenfor the EATCS bulletin. The present write-up and its earlier versions are available at:www.ts.tifr.res.in/�jaikumar/mypage.html.1



This algorithm lassi�es numbers orretly as prime and omposite; unfortu-nately, it annot be implemented eÆiently. There are two diÆulties. First, thestraightforward method for omputing the polynomial (X � 1)n, requires n � 1multipliations, and we are allowing ourselves only O((logn)) time. This is nota serious problem. It is well-known that one an ompute powers more eÆientlyby repeated squaring (see Figure 2). Interestingly, the use of repeated squaringIf n is a k-bit number, then for i = 0; 1; 2; : : : ; k � 1, ompute bi = (X � 1)2i(mod n) by repeated squaring, starting from b0 = X � 1. Let n =Pk�1j=0 �i2i,�i 2 f0; 1g be the binary expansion of n. Then, (X � 1)n =Qki=0 b�ii :Figure 2: Powering by repeated squaringfor omputing powers seems to have originated in India, but in the absene ofemail, it took some time for the word to get around2.The seond problem with the algorithm of Figure 1, and this is more serious,is that the polynomial (X� 1)n has potentially n+1 oeÆients, and omputingsuh a polynomial even by the repeated squaring, is not feasible in O((logn))steps. The key idea in the new primality test is to perform omputations modulo apolynomial of small degree. This way, the number of oeÆients in the polynomialstays small.Using this idea, Agrawal, Kayal and Saxena propose the algorithm displayedin Figure 3. To implement Step 2, we try all values of r, starting from 2, one afterthe other. If at any stage we disover a non-trivial divisor of n, we delare that nis omposite. We will show, using elementary arguments, that for all large n, thenumber r in Step 2, an be hosen to be O((logn)5). Assuming this, it is easy tohek that this algorithm runs in polynomial time; with some are this algorithman be implemented using only O((logn)10:5(log logn)) bit operations.We �rst show that this algorithm is orret and then verify that Step 2 anbe implemented as desribed above.The proof of orretnessIt is easy to verify, using Proposition 1, that if n is prime, this algorithm willnever delare that it is omposite. So, we only need to argue that omposite2Knuth [K, p. 461℄ says: The method is quite anient; it appeared before 200 B.C. inPingala's Hindu lassi Chandah-sutra [see B. Datta and A.N. Singh, History of Hindu Math-ematis 2 (Lahore: Motilal Banarsi Das, 1935), 76℄. There seems to be no other refereneto this method outside of India during the next 1000 years, but a lear disussion of how toompute 2n eÆiently for arbitrary n was given by al-Uqlidisi of Damasus in A.D. 952; seeThe Arithmeti of al-Uqlidisi by A.S. Saidan (Dordreht: D. Reidel, 1975), 341{342, where thegeneral ideas are illustrated for n = 51. 2



Input: An integer n � 2.Step 1: If n is of the form ab, for integers a; b � 2, then n is omposite.Step 2: Choose r so that the order of n modulo r is at least 4(logn)2 + 2.Let ` = b2pr logn + 1.Step 3: For a = 2; 3; : : : ; `, if a divides n, then n is omposite.Step 4: For a = 1; 2; : : : ; `, if (X � a)n 6= Xn � a (mod Xr � 1; n), then nis omposite.Step 5: If n has not been delared omposite by the earlier steps, then n isprime. Figure 3: The primality testing algorithmnumbers are not delared prime. Compare Step 4 to the ineÆient primality testof Figure 1. The main di�erene is that we are now performing the omputationsmodulo Xr � 1. The main danger in this is that even if (X � a)n 6= Xn � a(mod n), it ould be that (X � a)n = Xn� a (mod Xr � 1; n). To ompensatefor this, we now verify the identity for ` di�erent values of a, instead of tryingjust one value, namely 1. Agrawal, Kayal and Saxena show that this is adequateompensation. To see this, let us assume the opposite and show that this leadsto a ontradition.Assumption: n is a omposite number and the algorithm of Figure 3 de-lares that it is prime.Beause the number n passes all tests in Step 4, we know thatfor a = 1; 2; : : : ; `, (X � a)n = Xn � a (mod Xr � 1; n): (1)Note that in the above identity we an replae the n in (mod Xr � 1; n) by anydivisor of n. Let p be a prime divisor of n. Then, we havefor a = 1; 2; : : : ; `, (X � a)n = Xn � a (mod Xr � 1; p): (2)Sine p is prime, we always have (see Proposition 1(a))for a = 1; 2; : : : ; `, (X � a)p = Xp � a (mod Xr � 1; p): (3)We thus see that the numbers n and p satisfy similar identities in (2), (3). Suhnumbers are alled introspetive numbers by Agrawal, Kayal and Saxena. Thenext laim shows that introspetive numbers an be multiplied to produed moreintrospetive numbers. 3



Claim 1 Suppose(X � a)m1 = Xm1 � a (mod Xr � 1; p) and(X � a)m2 = Xm2 � a (mod Xr � 1; p):Then, (X � a)m1m2 = Xm1m2 � a (mod Xr � 1; p).Proof: The seond assumption says that (X�a)m2 � (Xm2�a) = (Xr�1)g(X)(mod p), for some polynomial g(X). By substituting Xm1 for X in this identity,we get (Xm1 � a)m2 � (Xm1m2 � a) = (Xm1r � 1)g(Xm1) (mod p):Sine Xr � 1 divides Xm1r � 1, this shows that (Xm1 � a)m2 = Xm1m2 � a(mod Xr � 1; p): Using this and the �rst assumption, we obtain(X � a)m1m2 = (Xm1 � a)m2 = Xm1m2 � a (mod Xr � 1; p): �Now starting from (2) and (3), and repeatedly applying the above laim, wesee that for eah m of the form pinj, (i; j � 0), we have (X � a)m = Xm � a(mod Xr� 1; p), for a = 1; 2; : : : ; `. (The ase i; j = 0 orresponds to m = 1, andis trivially true.)Let t be the order of the subgroup G of Z�r , generated by p and n taken modulor. Consider the list L = (pinj : 0 � i; j � �pt�). Note that all elements in this listare at most n2pt. Eah element of this list taken modulo r resides in the subgroupG generated by p and n inside Z�r . This list has (�pt�+ 1)2 > t = jGj elements.Thus, we have two numbers in the list that are ongruent modulo r. Let thesenumbers bem1 = pi1nj1 andm2 = pi2nj2 = m1+kr, where (i1; j1) 6= (i2; j2). Fromnow on we will onentrate on just m1 and m2. Sine Xr = 1 (mod Xr�1), wehave (X � a)m2 = Xm1+kr � a = Xm1 � a = (X � a)m1 (mod Xr � 1; p). Thatis, for a = 1; 2; : : : ; `, (X � a)m1 = (X � a)m2 (mod Xr � 1; p): (4)Claim 2 m1 = m2.We will prove this laim below. Let us �rst omplete the proof of orretnessby assuming this laim. From this laim and the de�nition of m1 and m2, we seethat pi1nj1 = pi2nj2 . Sine (i1; j1) 6= (i2; j2) and p is prime, this implies that n isa power of p. That is n = ps for some s. If s � 2, Step 1 of the algorithm wouldalready have delared that n is omposite. This ontradits our assumption thatthe algorithm delares that n is prime. On the other hand, if s = 1, then n isprime, ontraditing our assumption that n is omposite. We have proved thatthe algorithm is orret assuming Claim 2.4



Proof of Claim 2: We will use the following elementary fat: in a �eld, anon-zero polynomial of degree d has at most d roots. To see the onnetionbetween this fat and the laim we are trying to prove, note that (4) just saysthat the polynomial b(Z) = Zm1 � Zm2 has several roots, namely, X � a fora = 1; 2; : : : ; `. If we ould somehow onlude from this that b(Z) has more rootsthan its degree, namely maxfm1; m2g, in some �eld, we an then infer that b(Z)is the zero polynomial, implying m1 = m2. We, thus, have to arrange two things.First, we need to move to a �eld instead of the ring Fp [X℄=(Xr � 1). Seond, weneed to show that b(Z) has more roots than maxfm1; m2g.Moving to a �led: Let � be a primitive r-th root of unity. Then, by (4), wehave for a = 1; 2; : : : ; `, (� � a)m1 = (� � a)m2 : (5)in the �eld Fp(�), that is, � � a is a root of the polynomial b(Z) = Zm1 � Zm2 .Note that if e1 and e2 are oots of b(Z), then e1e2 is also a root. Thus, eahelement of the form Qà=1(� � a)�a (for non-negative integers �a) is a root ofb(Z); in partiular, for `0 def= �2pt logn�+1 � ` (the last inequality holds beauset � r � 1), eah element of the setS = ( `0Ya=1(� � a)�a : �a 2 f0; 1g)is a root. We will argue (based on the hoie of r in Step 2) that S has 2`0elements. Thus, the equation b(Z) = Zm1 �Zm2 has at least 2`0 roots in the �eldFp(�). Now, m1; m2 � n2bpt and 2`0 > n2pt. This implies that b(Z) is the zeropolynomial, that is, m1 = m2, establishing Claim 2.Zm1 �Zm2 has many roots: We need to argue that the 2`0 produts of the formQ`0a=1(��a)�a , �a 2 f0; 1g, are distint elements of Fp(�). Eah of these elementsis obtained by substituting � for X in a polynomial of the formQ`0a=1(X�a)�a 2Fp [X℄. First, are these polynomials distint in Fp [X℄? By Step 3, n (and henep) has no small small divisors. Thus, eah X � a, a = 1; : : : ; `0, is a distintelement of Fp [X℄. Sine elements of Fp [X℄ fatorize uniquely into irreduiblefators, di�erent produts must give rise to di�erent polynomials. Now, we needto show for di�erent g(X) of the formQ`0a=1(X�a)�a , g(�) are di�erent in Fp(�).By Claim 1, g(X)m = g(Xm) (mod Xr � 1; p) for eah suh g(X) of the formQ`0a=1(X � a)�a and eah m of the form pinj. It follows that g(�)m = g(�m) inFp(�) for eah suh m.Thus, if if g1(X) and g2(X) are of the formQ`0a=1(X�a)�a and g1(�) = g2(�),then g1(�m) = g2(�m); that is, eah element of the form �m (m = nipj, i; j � 0) isa root of the polynomial g1(X)� g2(X) 2 Fp [X℄. Sine � is a primitive r-th root5



of unity, �nipj takes as many distint values as the number of distint residuesmod r generated by nipj. Hene, g1(X) � g2(X) has at least t roots in Fp(�).But, g1(X) and g2(X) are polynomials of degree at most `0 � �2pt logn� + 1,and t � ordr(n) � 4(logn)2+2. But then, `0 < t, and g1(X)�g2(X) must be thezero polynomial, that is g1(X) = g2(X) in Fp [X℄. Thus, distint produts of theform Q`0a=1(X � a)�a 2 Fp [X℄ give distint elements in Fp(�) when we substitute� for X. That is, S has 2`0 distint elements, and b(Z) has at least 2`0 roots inthe Fp(�). This, �nally, establishes that the algorithm is orret.The existene of a small r in Step 2We will need a lower bound on the lm of 1; 2; : : : ; R.Claim 3 (See [N, V℄) The lm of the 1; 2; : : : ; 2k + 1 is at least 22k. (In fat,it is known [N, V℄ that for R � 7, the lm of 1; 2; : : : ; R is at least 2R.)Proof: We have,2�2k � Z 10 [x(1� x)℄kdx = kXi=0 �ki�Z 10 (�1)ixk+idx = kXi=0 Mik + i+ 1 = ML ;where the Mi's and M are integers and L is the lm of k + 1; k + 2; : : : ; 2k + 1.The integral is learly positive, so it is at least 1=L. Thus, L � 22k. �Let us return to Step 2 of the algorithm. Suppose for all r less than some some oddnumber R, we have that r does not divide n and also ordr(n) � T def= 4(logn)2+2.Then, eah r � R divides TYi=0(ni � 1) � nT 2 :By the above laim, we have 2R�1 � nT 2 , that is, R � T 2 logn + 1, Thus, thereis a number r = O((logn)5) with ordr(n) > T .Referenes[AKS℄ M Agrawal, N Kayal and N Saxena. Primes is in P,http://www.se.iitk.a.in/users/manindra/primality.ps.[K℄ DE Knuth. The Art of Computer Programming, Volume 2, SeminumerialAlgorithms, 3rd edition, Addison-Wesley, 1998.[N℄ M Nair. On Chebyshev-type inequalities for primes. Amerian Mathemati-al Monthly, 89:126{129, 1982.[V℄ V Vinay. Leture notes on Computational Complexity Theory sribed byPR Subramanya. http://www.ims.res.in/�iars/elnotes/.ps.gz.6


