News from India: Primes is in P!

Jaikumar Radhakrishnan <jaikumar@tcs.tifr.res.in>
Tata Institute of Fundamental Research, Mumbai

Kavitha Telikepalli <kavitha®mpi-sb.mpg.de>
Max-Planck Institut fiir Informatik, Saarbriicken
V Vinay <vinay@csa.iisc.ernet.in>

Indian Institute of Science, Bangalore

On 4 August 2002, an email message from Manindra Agrawal, Neeraj
Kayal and Nitin Sazena left the computers of the Indian Institute of
Technology, Kanpur. The subject line read “Primes is in P”, and
attached to the message was a paper [AKS] with the same title. This
made News.

The paper presented a polynomial time algorithm for recognizing prime
numbers, solving a longstanding open problem in Complexity Theory,
and passing a milestone in the centuries-old journey towards under-
standing prime numbers.

In this article, we describe the revised algorithm due to Agrawal, Kayal
and Sazena and present a proof of its correctness; this algorithm builds
on an earlier improvement due to H.W. Lenstra, Jr.

We want a polynomial-time method to determine if a given number n is
prime, that is, a method that terminates after performing O((logn)¢) steps of
computation. The starting point of the new test for primality is the following.

Proposition 1 (a) If n is prime, then (X —a)" = X™ —a (mod n).
(b) If ged(a,n) =1 and n is composite, then (X —a)” # X™ —a (mod n).

Proof: (Sketch) (a) If n is prime (7) =0 (mod n) fori =1,2,...,n — 1 and
a" =a (modn). (b) If nis composite and p is a prime factor of n, then the
coefficient of X? in (X — a)™, is (g)(—a)"_” #0 (mod n). O

This proposition gives us the following algorithm.

If (X —1)"=X"—-1 (mod n), then n is prime, otherwise it is composite.

Figure 1: A primality testing algorithm

LA shorter version of this write-up, based on the original paper [AKS] was written
for the EATCS bulletin. The present write-up and its earlier versions are available at:
www.tcs.tifr.res.in/~jaikumar/mypage.html.

This algorithm classifies numbers correctly as prime and composite; unfortu-
nately, it cannot be implemented efficiently. There are two difficulties. First, the
straightforward method for computing the polynomial (X — 1)", requires n — 1
multiplications, and we are allowing ourselves only O((logn)¢) time. This is not
a serious problem. It is well-known that one can compute powers more efficiently
by repeated squaring (see Figure 2). Interestingly, the use of repeated squaring

If n is a k-bit number, then for i =0,1,2,...,k — 1, compute b; = (X —1)%
(mod n) by repeated squaring, starting from by = X — 1. Let n = Z?;& €2t
e; € {0,1} be the binary expansion of n. Then, (X — 1)" = []5_ b

=0 71

Figure 2: Powering by repeated squaring

for computing powers seems to have originated in India, but in the absence of
email, it took some time for the word to get around?.

The second problem with the algorithm of Figure 1, and this is more serious,
is that the polynomial (X —1)" has potentially n+ 1 coefficients, and computing
such a polynomial even by the repeated squaring, is not feasible in O((logn)®)
steps. The key idea in the new primality test is to perform computations modulo a
polynomial of small degree. This way, the number of coefficients in the polynomial
stays small.

Using this idea, Agrawal, Kayal and Saxena propose the algorithm displayed
in Figure 3. To implement Step 2, we try all values of r, starting from 2, one after
the other. If at any stage we discover a non-trivial divisor of n, we declare that n
is composite. We will show, using elementary arguments, that for all large n, the
number r in Step 2, can be chosen to be O((logn)®). Assuming this, it is easy to
check that this algorithm runs in polynomial time; with some care this algorithm
can be implemented using only O((logn)'%?(loglogn)¢) bit operations.

We first show that this algorithm is correct and then verify that Step 2 can
be implemented as described above.

The proof of correctness

It is easy to verify, using Proposition 1, that if n is prime, this algorithm will
never declare that it is composite. So, we only need to argue that composite

2Knuth [K, p. 461] says: The method is quite ancient; it appeared before 200 B.C. in
Pingala’s Hindu classic Chandah-sutra [see B. Datta and A.N. Singh, History of Hindu Math-
ematics 2 (Lahore: Motilal Banarsi Das, 1935), 76]. There seems to be no other reference
to this method outside of India during the next 1000 years, but a clear discussion of how to
compute 2" efficiently for arbitrary n was given by al-Uqlidisi of Damascus in A.D. 952; see
The Arithmetic of al-Uqglidisi by A.S. Saidan (Dordrecht: D. Reidel, 1975), 341-342, where the
general ideas are illustrated for n = 51.

Input: An integer n > 2.
Step 1: If n is of the form a®, for integers a,b > 2, then n is composite.

Step 2: Choose r so that the order of n modulo r is at least 4(logn)* + 2.
Let £ = [2y/rlogn] + 1.

Step 3: Fora =2,3,...,4, if a divides n, then n is composite.

Step 4: Fora=1,2,...,0,if (X —a)"# X" —a (mod X" —1,n), then n
is composite.

Step 5: If n has not been declared composite by the earlier steps, then n is
prime.

Figure 3: The primality testing algorithm

numbers are not declared prime. Compare Step 4 to the inefficient primality test
of Figure 1. The main difference is that we are now performing the computations
modulo X" — 1. The main danger in this is that even if (X —a)” # X" — a
(mod n), it could be that (X —a)” = X™ —a (mod X" — 1,n). To compensate
for this, we now verify the identity for ¢ different values of a, instead of trying
just one value, namely 1. Agrawal, Kayal and Saxena show that this is adequate
compensation. To see this, let us assume the opposite and show that this leads
to a contradiction.

Assumption: n is a composite number and the algorithm of Figure 3 de-
clares that it is prime.

Because the number n passes all tests in Step 4, we know that
fora=1,2,...0, (X —a)"=X"—a (mod X" —1,n). (1)

Note that in the above identity we can replace the n in (mod X" — 1,n) by any
divisor of n. Let p be a prime divisor of n. Then, we have

fora=1,2,...,0, (X —a)"=X"—a (mod X" —1,p). (2)
Since p is prime, we always have (see Proposition 1(a))
fora=1,2,...,0, (X —a)) =X’ —a (mod X" —1,p). (3)

We thus see that the numbers n and p satisfy similar identities in (2), (3). Such
numbers are called introspective numbers by Agrawal, Kayal and Saxena. The
next claim shows that introspective numbers can be multiplied to produced more
introspective numbers.

Claim 1 Suppose

(
(

Then, (X —a)™™ = X™™ — g (mod X" —1,p).

—a)™ = X™ —a (mod X" —1,p) and

X
X—-—a)™ = X™—a (mod X" —1,p).

Proof: The second assumption says that (X —a)™ — (X —a) = (X" —1)g(X)
(mod p), for some polynomial g(X). By substituting X™ for X in this identity,
we get

(X™ — @)™ — (X" —) = (X™" ~ 1)g(X™) (mod p).

Since X" — 1 divides X™" — 1, this shows that (X™ — @)™ = X™™ — g
(mod X" — 1, p). Using this and the first assumption, we obtain

(X —a)™™ = (X™ —q)™ =X"™" —qg (mod X" —1,p).

O

Now starting from (2) and (3), and repeatedly applying the above claim, we
see that for each m of the form p'n?, (i,j > 0), we have (X —a)™ = X™ —a
(mod X" —1,p), fora=1,2,...,¢. (The case i, j = 0 corresponds to m = 1, and
is trivially true.)

Let ¢ be the order of the subgroup G of Z, generated by p and n taken modulo
r. Consider the list L = (p'n/ : 0 < i, < |\/f]). Note that all elements in this list

are at most n2V*. Each element of this list taken modulo r resides in the subgroup
G generated by p and n inside Z;. This list has (|v/] +1)? > t = |G| elements.
Thus, we have two numbers in the list that are congruent modulo r. Let these
numbers be m; = p''n?' and my = p?n/2 = my+kr, where (i1, j1) # (ia, j2). From
now on we will concentrate on just m; and msy. Since X" =1 (mod X" —1), we
have (X —a)™ = X™Hh — g = X™ — g = (X —a)™ (mod X" —1,p). That
is,

fora=1,2,...0, (X —a)™ = (X —a)™ (mod X" —1,p). (4)

Claim 2 m; = ms.

We will prove this claim below. Let us first complete the proof of correctness
by assuming this claim. From this claim and the definition of m; and msy, we see
that p''n’t = p2n/2. Since (i1, 51) # (i2, jo) and p is prime, this implies that n is
a power of p. That is n = p® for some s. If s > 2, Step 1 of the algorithm would
already have declared that n is composite. This contradicts our assumption that
the algorithm declares that n is prime. On the other hand, if s = 1, then n is
prime, contradicting our assumption that n is composite. We have proved that
the algorithm is correct assuming Claim 2.

Proof of Claim 2: We will use the following elementary fact: in a field, a
non-zero polynomial of degree d has at most d roots. To see the connection
between this fact and the claim we are trying to prove, note that (4) just says
that the polynomial b(Z) = Z™ — Z™2 has several roots, namely, X — a for
a=1,2,...,0 If we could somehow conclude from this that b(.7) has more roots
than its degree, namely max{my, my}, in some field, we can then infer that b(7)
is the zero polynomial, implying m; = my. We, thus, have to arrange two things.
First, we need to move to a field instead of the ring F,[X]/(X" —1). Second, we
need to show that b(Z) has more roots than max{m;, ms}.

Moving to a filed: Let n be a primitive r-th root of unity. Then, by (4), we
have
fora=1,2,...,0,(n—a)™ = (n—a)™. (5)

in the field F,(n), that is, n — a is a root of the polynomial b(Z) = Z™ — Z™>.
Note that if e; and ey are oots of b(Z), then eje, is also a root. Thus, each
element of the form []._,(n — a)® (for non-negative integers a,) is a root of

b(Z); in particular, for ¢ def LQ\/flog nJ +1 < £ (the last inequality holds because
t <r —1), each element of the set

S = {H(n— a)* oy € {0,1}}

a=1

is a root. We will argue (based on the choice of r in Step 2) that S has 2°
elements. Thus, the equation b(Z) = Z™ — Z™ has at least 2¢ roots in the field

F,(n). Now, my,my < n’ Vi) and 2¢ > n?%. This implies that b(Z) is the zero
polynomial, that is, m; = ms, establishing Claim 2.

7" — 7 has many roots: We need to argue that the 2° products of the form
[T5_,(n—a)*, a, € {0,1}, are distinct elements of F, (). Each of these elements

a=1
is obtained by substituting n for X in a polynomial of the form Hilzl(X —a)* €
F,[X]. First, are these polynomials distinct in F,[X]? By Step 3, n (and hence
p) has no small small divisors. Thus, each X —a, a = 1,...,¢, is a distinct
element of F,[X]. Since elements of F,[X] factorize uniquely into irreducible
factors, different products must give rise to different polynomials. Now, we need
to show for different g(X) of the form Hilzl(X —a)®, g(n) are different in F, (7).

By Claim 1, g(X)™ = g(X™) (mod X" — 1,p) for each such g(X) of the form
[T°_,(X — a)® and each m of the form pin. Tt follows that g(n)™ = g(n™) in
F,(n) for each such m.

Thus, if if g,(X) and go(X) are of the form HﬁIZI(X —a)® and g;(n) = g2(n),
then g1 (n™) = g2(n™); that is, each element of the form ™ (m = n'p’, 7,7 > 0) is
a root of the polynomial g;(X) — g2(X) € F,[X]. Since 7 is a primitive r-th root

5

of unity, n”i”j takes as many distinct values as the number of distinct residues
mod r generated by n'p’. Hence, ¢1(X) — g2(X) has at least ¢ roots in F,(n).
But, ¢;(X) and go(X) are polynomials of degree at most ¢ < LQ\/Elog nJ +1,
and t > ord,(n) > 4(logn)?+2. But then, ¢’ < ¢, and ¢;(X) — g2(X) must be the
zero polynomial, that is ¢;(X) = ¢2(X) in F,[X]. Thus, distinct products of the

form Hf;;l(X —a)% € F,[X] give distinct elements in F,(n) when we substitute
n for X. That is, S has 2¢ distinct elements, and b(Z) has at least 2¢ roots in
the F,(n). This, finally, establishes that the algorithm is correct.

The existence of a small r in Step 2

We will need a lower bound on the lem of 1,2,..., R.

Claim 3 (See [N, V]) The lem of the 1,2,...,2k + 1 is at least 2?%. (In fact,
it is known [N, V] that for R > 7, the lem of 1,2,..., R is at least 2%.)

Proof: We have,
1 k 1 k
k o M; M
v [=3 /27 u
—/0[5”(Dl de i_g(i) | (D kti+vl L’
2k +

where the M;’s and M are integers and L is the lem of kK 4+ 1,k + 2,..
The integral is clearly positive, so it is at least 1/L. Thus, L < 2%, D

Let us return to Step 2 of the algorithm. Suppose for all r less than some some odd

number R, we have that r does not divide n and also ord,(n) < T o 4(logn)*+2.
Then, each r < R divides

T

H n'—1)

By the above claim, we have 2R < n™", that is, R < T?logn + 1, Thus, there
is a number r = O((logn)®) with ord,(n) > T.

References

[AKS] M Agrawal, N Kayal and N Saxena. Primes is in P,
http://www.cse.iitk.ac.in/users/manindra/primality.ps.

[K] DE Knuth. The Art of Computer Programming, Volume 2, Seminumerical
Algorithms, 3rd edition, Addison-Wesley, 1998.

[N] M Nair. On Chebyshev-type inequalities for primes. American Mathemati-
cal Monthly, 89:126-129, 1982.

[V] 'V Vinay. Lecture notes on Computational Complexity Theory scribed by
PR Subramanya. http://www.imsc.res.in/~iarcs/elnotes/cc.ps.gz.

