
News from India: Primes is in P1Jaikumar Radhakrishnan <jaikumar�t
s.tifr.res.in>Tata Institute of Fundamental Resear
h, MumbaiKavitha Telikepalli <kavitha�mpi-sb.mpg.de>Max-Plan
k Institut f�ur Informatik, Saarbr�u
kenV Vinay <vinay�
sa.iis
.ernet.in>Indian Institute of S
ien
e, BangaloreOn 4 August 2002, an email message from Manindra Agrawal, NeerajKayal and Nitin Saxena left the 
omputers of the Indian Institute ofTe
hnology, Kanpur. The subje
t line read \Primes is in P", andatta
hed to the message was a paper [AKS℄ with the same title. Thismade News.The paper presented a polynomial time algorithm for re
ognizing primenumbers, solving a longstanding open problem in Complexity Theory,and passing a milestone in the 
enturies-old journey towards under-standing prime numbers.In this arti
le, we des
ribe the revised algorithm due to Agrawal, Kayaland Saxena and present a proof of its 
orre
tness; this algorithm buildson an earlier improvement due to H.W. Lenstra, Jr.We want a polynomial-time method to determine if a given number n isprime, that is, a method that terminates after performing O((logn)
) steps of
omputation. The starting point of the new test for primality is the following.Proposition 1 (a) If n is prime, then (X � a)n = Xn � a (mod n).(b) If g
d(a; n) = 1 and n is 
omposite, then (X � a)n 6= Xn � a (mod n).Proof: (Sket
h) (a) If n is prime �ni� = 0 (mod n) for i = 1; 2; : : : ; n � 1 andan = a (mod n). (b) If n is 
omposite and p is a prime fa
tor of n, then the
oeÆ
ient of Xp in (X � a)n, is �np�(�a)n�p 6= 0 (mod n). �This proposition gives us the following algorithm.If (X � 1)n = Xn � 1 (mod n), then n is prime, otherwise it is 
omposite.Figure 1: A primality testing algorithm1A shorter version of this write-up, based on the original paper [AKS℄ was writtenfor the EATCS bulletin. The present write-up and its earlier versions are available at:www.t
s.tifr.res.in/�jaikumar/mypage.html.1



This algorithm 
lassi�es numbers 
orre
tly as prime and 
omposite; unfortu-nately, it 
annot be implemented eÆ
iently. There are two diÆ
ulties. First, thestraightforward method for 
omputing the polynomial (X � 1)n, requires n � 1multipli
ations, and we are allowing ourselves only O((logn)
) time. This is nota serious problem. It is well-known that one 
an 
ompute powers more eÆ
ientlyby repeated squaring (see Figure 2). Interestingly, the use of repeated squaringIf n is a k-bit number, then for i = 0; 1; 2; : : : ; k � 1, 
ompute bi = (X � 1)2i(mod n) by repeated squaring, starting from b0 = X � 1. Let n =Pk�1j=0 �i2i,�i 2 f0; 1g be the binary expansion of n. Then, (X � 1)n =Qki=0 b�ii :Figure 2: Powering by repeated squaringfor 
omputing powers seems to have originated in India, but in the absen
e ofemail, it took some time for the word to get around2.The se
ond problem with the algorithm of Figure 1, and this is more serious,is that the polynomial (X� 1)n has potentially n+1 
oeÆ
ients, and 
omputingsu
h a polynomial even by the repeated squaring, is not feasible in O((logn)
)steps. The key idea in the new primality test is to perform 
omputations modulo apolynomial of small degree. This way, the number of 
oeÆ
ients in the polynomialstays small.Using this idea, Agrawal, Kayal and Saxena propose the algorithm displayedin Figure 3. To implement Step 2, we try all values of r, starting from 2, one afterthe other. If at any stage we dis
over a non-trivial divisor of n, we de
lare that nis 
omposite. We will show, using elementary arguments, that for all large n, thenumber r in Step 2, 
an be 
hosen to be O((logn)5). Assuming this, it is easy to
he
k that this algorithm runs in polynomial time; with some 
are this algorithm
an be implemented using only O((logn)10:5(log logn)
) bit operations.We �rst show that this algorithm is 
orre
t and then verify that Step 2 
anbe implemented as des
ribed above.The proof of 
orre
tnessIt is easy to verify, using Proposition 1, that if n is prime, this algorithm willnever de
lare that it is 
omposite. So, we only need to argue that 
omposite2Knuth [K, p. 461℄ says: The method is quite an
ient; it appeared before 200 B.C. inPingala's Hindu 
lassi
 Chandah-sutra [see B. Datta and A.N. Singh, History of Hindu Math-emati
s 2 (Lahore: Motilal Banarsi Das, 1935), 76℄. There seems to be no other referen
eto this method outside of India during the next 1000 years, but a 
lear dis
ussion of how to
ompute 2n eÆ
iently for arbitrary n was given by al-Uqlidisi of Damas
us in A.D. 952; seeThe Arithmeti
 of al-Uqlidisi by A.S. Saidan (Dordre
ht: D. Reidel, 1975), 341{342, where thegeneral ideas are illustrated for n = 51. 2



Input: An integer n � 2.Step 1: If n is of the form ab, for integers a; b � 2, then n is 
omposite.Step 2: Choose r so that the order of n modulo r is at least 4(logn)2 + 2.Let ` = b2pr logn
 + 1.Step 3: For a = 2; 3; : : : ; `, if a divides n, then n is 
omposite.Step 4: For a = 1; 2; : : : ; `, if (X � a)n 6= Xn � a (mod Xr � 1; n), then nis 
omposite.Step 5: If n has not been de
lared 
omposite by the earlier steps, then n isprime. Figure 3: The primality testing algorithmnumbers are not de
lared prime. Compare Step 4 to the ineÆ
ient primality testof Figure 1. The main di�eren
e is that we are now performing the 
omputationsmodulo Xr � 1. The main danger in this is that even if (X � a)n 6= Xn � a(mod n), it 
ould be that (X � a)n = Xn� a (mod Xr � 1; n). To 
ompensatefor this, we now verify the identity for ` di�erent values of a, instead of tryingjust one value, namely 1. Agrawal, Kayal and Saxena show that this is adequate
ompensation. To see this, let us assume the opposite and show that this leadsto a 
ontradi
tion.Assumption: n is a 
omposite number and the algorithm of Figure 3 de-
lares that it is prime.Be
ause the number n passes all tests in Step 4, we know thatfor a = 1; 2; : : : ; `, (X � a)n = Xn � a (mod Xr � 1; n): (1)Note that in the above identity we 
an repla
e the n in (mod Xr � 1; n) by anydivisor of n. Let p be a prime divisor of n. Then, we havefor a = 1; 2; : : : ; `, (X � a)n = Xn � a (mod Xr � 1; p): (2)Sin
e p is prime, we always have (see Proposition 1(a))for a = 1; 2; : : : ; `, (X � a)p = Xp � a (mod Xr � 1; p): (3)We thus see that the numbers n and p satisfy similar identities in (2), (3). Su
hnumbers are 
alled introspe
tive numbers by Agrawal, Kayal and Saxena. Thenext 
laim shows that introspe
tive numbers 
an be multiplied to produ
ed moreintrospe
tive numbers. 3



Claim 1 Suppose(X � a)m1 = Xm1 � a (mod Xr � 1; p) and(X � a)m2 = Xm2 � a (mod Xr � 1; p):Then, (X � a)m1m2 = Xm1m2 � a (mod Xr � 1; p).Proof: The se
ond assumption says that (X�a)m2 � (Xm2�a) = (Xr�1)g(X)(mod p), for some polynomial g(X). By substituting Xm1 for X in this identity,we get (Xm1 � a)m2 � (Xm1m2 � a) = (Xm1r � 1)g(Xm1) (mod p):Sin
e Xr � 1 divides Xm1r � 1, this shows that (Xm1 � a)m2 = Xm1m2 � a(mod Xr � 1; p): Using this and the �rst assumption, we obtain(X � a)m1m2 = (Xm1 � a)m2 = Xm1m2 � a (mod Xr � 1; p): �Now starting from (2) and (3), and repeatedly applying the above 
laim, wesee that for ea
h m of the form pinj, (i; j � 0), we have (X � a)m = Xm � a(mod Xr� 1; p), for a = 1; 2; : : : ; `. (The 
ase i; j = 0 
orresponds to m = 1, andis trivially true.)Let t be the order of the subgroup G of Z�r , generated by p and n taken modulor. Consider the list L = (pinj : 0 � i; j � �pt�). Note that all elements in this listare at most n2pt. Ea
h element of this list taken modulo r resides in the subgroupG generated by p and n inside Z�r . This list has (�pt�+ 1)2 > t = jGj elements.Thus, we have two numbers in the list that are 
ongruent modulo r. Let thesenumbers bem1 = pi1nj1 andm2 = pi2nj2 = m1+kr, where (i1; j1) 6= (i2; j2). Fromnow on we will 
on
entrate on just m1 and m2. Sin
e Xr = 1 (mod Xr�1), wehave (X � a)m2 = Xm1+kr � a = Xm1 � a = (X � a)m1 (mod Xr � 1; p). Thatis, for a = 1; 2; : : : ; `, (X � a)m1 = (X � a)m2 (mod Xr � 1; p): (4)Claim 2 m1 = m2.We will prove this 
laim below. Let us �rst 
omplete the proof of 
orre
tnessby assuming this 
laim. From this 
laim and the de�nition of m1 and m2, we seethat pi1nj1 = pi2nj2 . Sin
e (i1; j1) 6= (i2; j2) and p is prime, this implies that n isa power of p. That is n = ps for some s. If s � 2, Step 1 of the algorithm wouldalready have de
lared that n is 
omposite. This 
ontradi
ts our assumption thatthe algorithm de
lares that n is prime. On the other hand, if s = 1, then n isprime, 
ontradi
ting our assumption that n is 
omposite. We have proved thatthe algorithm is 
orre
t assuming Claim 2.4



Proof of Claim 2: We will use the following elementary fa
t: in a �eld, anon-zero polynomial of degree d has at most d roots. To see the 
onne
tionbetween this fa
t and the 
laim we are trying to prove, note that (4) just saysthat the polynomial b(Z) = Zm1 � Zm2 has several roots, namely, X � a fora = 1; 2; : : : ; `. If we 
ould somehow 
on
lude from this that b(Z) has more rootsthan its degree, namely maxfm1; m2g, in some �eld, we 
an then infer that b(Z)is the zero polynomial, implying m1 = m2. We, thus, have to arrange two things.First, we need to move to a �eld instead of the ring Fp [X℄=(Xr � 1). Se
ond, weneed to show that b(Z) has more roots than maxfm1; m2g.Moving to a �led: Let � be a primitive r-th root of unity. Then, by (4), wehave for a = 1; 2; : : : ; `, (� � a)m1 = (� � a)m2 : (5)in the �eld Fp(�), that is, � � a is a root of the polynomial b(Z) = Zm1 � Zm2 .Note that if e1 and e2 are oots of b(Z), then e1e2 is also a root. Thus, ea
helement of the form Qà=1(� � a)�a (for non-negative integers �a) is a root ofb(Z); in parti
ular, for `0 def= �2pt logn�+1 � ` (the last inequality holds be
auset � r � 1), ea
h element of the setS = ( `0Ya=1(� � a)�a : �a 2 f0; 1g)is a root. We will argue (based on the 
hoi
e of r in Step 2) that S has 2`0elements. Thus, the equation b(Z) = Zm1 �Zm2 has at least 2`0 roots in the �eldFp(�). Now, m1; m2 � n2bpt
 and 2`0 > n2pt. This implies that b(Z) is the zeropolynomial, that is, m1 = m2, establishing Claim 2.Zm1 �Zm2 has many roots: We need to argue that the 2`0 produ
ts of the formQ`0a=1(��a)�a , �a 2 f0; 1g, are distin
t elements of Fp(�). Ea
h of these elementsis obtained by substituting � for X in a polynomial of the formQ`0a=1(X�a)�a 2Fp [X℄. First, are these polynomials distin
t in Fp [X℄? By Step 3, n (and hen
ep) has no small small divisors. Thus, ea
h X � a, a = 1; : : : ; `0, is a distin
telement of Fp [X℄. Sin
e elements of Fp [X℄ fa
torize uniquely into irredu
iblefa
tors, di�erent produ
ts must give rise to di�erent polynomials. Now, we needto show for di�erent g(X) of the formQ`0a=1(X�a)�a , g(�) are di�erent in Fp(�).By Claim 1, g(X)m = g(Xm) (mod Xr � 1; p) for ea
h su
h g(X) of the formQ`0a=1(X � a)�a and ea
h m of the form pinj. It follows that g(�)m = g(�m) inFp(�) for ea
h su
h m.Thus, if if g1(X) and g2(X) are of the formQ`0a=1(X�a)�a and g1(�) = g2(�),then g1(�m) = g2(�m); that is, ea
h element of the form �m (m = nipj, i; j � 0) isa root of the polynomial g1(X)� g2(X) 2 Fp [X℄. Sin
e � is a primitive r-th root5



of unity, �nipj takes as many distin
t values as the number of distin
t residuesmod r generated by nipj. Hen
e, g1(X) � g2(X) has at least t roots in Fp(�).But, g1(X) and g2(X) are polynomials of degree at most `0 � �2pt logn� + 1,and t � ordr(n) � 4(logn)2+2. But then, `0 < t, and g1(X)�g2(X) must be thezero polynomial, that is g1(X) = g2(X) in Fp [X℄. Thus, distin
t produ
ts of theform Q`0a=1(X � a)�a 2 Fp [X℄ give distin
t elements in Fp(�) when we substitute� for X. That is, S has 2`0 distin
t elements, and b(Z) has at least 2`0 roots inthe Fp(�). This, �nally, establishes that the algorithm is 
orre
t.The existen
e of a small r in Step 2We will need a lower bound on the l
m of 1; 2; : : : ; R.Claim 3 (See [N, V℄) The l
m of the 1; 2; : : : ; 2k + 1 is at least 22k. (In fa
t,it is known [N, V℄ that for R � 7, the l
m of 1; 2; : : : ; R is at least 2R.)Proof: We have,2�2k � Z 10 [x(1� x)℄kdx = kXi=0 �ki�Z 10 (�1)ixk+idx = kXi=0 Mik + i+ 1 = ML ;where the Mi's and M are integers and L is the l
m of k + 1; k + 2; : : : ; 2k + 1.The integral is 
learly positive, so it is at least 1=L. Thus, L � 22k. �Let us return to Step 2 of the algorithm. Suppose for all r less than some some oddnumber R, we have that r does not divide n and also ordr(n) � T def= 4(logn)2+2.Then, ea
h r � R divides TYi=0(ni � 1) � nT 2 :By the above 
laim, we have 2R�1 � nT 2 , that is, R � T 2 logn + 1, Thus, thereis a number r = O((logn)5) with ordr(n) > T .Referen
es[AKS℄ M Agrawal, N Kayal and N Saxena. Primes is in P,http://www.
se.iitk.a
.in/users/manindra/primality.ps.[K℄ DE Knuth. The Art of Computer Programming, Volume 2, Seminumeri
alAlgorithms, 3rd edition, Addison-Wesley, 1998.[N℄ M Nair. On Chebyshev-type inequalities for primes. Ameri
an Mathemati-
al Monthly, 89:126{129, 1982.[V℄ V Vinay. Le
ture notes on Computational Complexity Theory s
ribed byPR Subramanya. http://www.ims
.res.in/�iar
s/elnotes/

.ps.gz.6


