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Abstract

We show lower bounds in the multi-party quantum com-
munication complexity model. In this model, there aret
parties where theith party has inputXi ⊆ [n]. These par-
ties communicate with each other by transmitting qubits to
determine with high probability the value of some function
F of their combined input(X1, . . . , Xt). We consider the
class of boolean valued functions whose value depends only
onX1∩· · ·∩Xt; that is, for eachF in this class there is an
fF : 2[n] → {0, 1}, such thatF (X1, . . . , Xt) = fF (X1 ∩
· · · ∩ Xt). We show that thet-party k-round communica-
tion complexity ofF is Ω(sm(fF )/(k2)), wheresm(fF )
stands for the ‘monotone sensitivity offF ’ and is defined

bysm(fF ) ∆= maxS⊆[n] |{i : fF (S ∪ {i}) 6= fF (S)}|.
For two-party quantum communication protocols for the

set disjointness problem, this implies that the two parties
must exchangeΩ(n/k2) qubits. An upper bound ofO(n/k)
can be derived from theO(

√
n) upper bound due to Aaron-

son and Ambainis [AA03]. Fork = 1, our lower bound
matches theΩ(n) lower bound observed by Buhrman and
de Wolf [BdW01] (based on a result of Nayak [Nay99]),
and for2 ≤ k � n1/4, improves the lower bound ofΩ(

√
n)

shown by Razborov [Raz02]. For protocols with no restric-
tions on the number of rounds, we can conclude that the
two parties must exchangeΩ(n1/3) qubits. This, however,
falls short of the optimalΩ(

√
n) lower bound shown by

Razborov [Raz02].
Our result is obtained by adapting to the quantum set-

ting the elegantinformation-theoreticarguments of Bar-
Yossef, Jayram, Kumar and Sivakumar [BJKS02b]. Using
this method we can show similar lower bounds for theL∞

∗School of Technology and Computer Science, Tata Institute of Funda-
mental Research, Mumbai, India and CWI, Kruislaan 413, 1098 SJ Am-
sterdam, The Netherlands. Email:rahulj@tcs.tifr.res.in. Partially sup-
ported by the Kanwal Rekhi Career Development Scholarship, and by the
EU fifth program grant RESQ and NWO grant 612.055.001.

†School of Technology and Computer Science, Tata Institute of Funda-
mental Research, Mumbai, India. Email:jaikumar@tcs.tifr.res.in.

‡Department of Combinatorics and Optimization, University of Water-
loo, Waterloo, ON N2L 3G1, Canada. Email:p2sen@iqc.ca. Work done
while the author was visiting TIFR, Mumbai.

function considered in [BJKS02b].

1 Introduction

Classical communication complexity: The (classical)
communication complexity model of Yao [Yao79] provides
an abstract setting for studying the classical communica-
tion required for computing a function whose inputs are dis-
tributed between several parties. In its most widely studied
version, there are two parties,Alice andBob with inputs
XA, XB ⊆ [n], who exchange classical messages based on
a fixed protocol in order to determine the value of some
functionF (XA, XB). The goal is to design a protocol so
that the parties need to exchange as few bits as possible.
This model of communication is relatively well-understood
(see the book of Kushilevitz and Nisan [KN97]) both in
the deterministic and the randomised setting. In this pa-
per, we will be interested in the randomised setting, where
the parties are allowed to err with some small probability
(say at most13 ). Tight lower bounds are known for sev-
eral functions in this model, for example, the equality func-

tionXA
?= XB [Yao79, LS81], the set disjointness function

DISJXA ∩XB
?= ∅ [KS92, Raz92] and the inner-product

function|XA ∩XB |
?= 0 mod 2 [CG88].

Quantum communication complexity: In [Yao93], Yao
introduced the two-party quantum communication model in
order to investigate if communication costs for computing
functions distributively reduces significantly when the par-
ties are allowed to exchange qubits and perform quantum
operations locally. Since then, there has been a flurry of
results in this model. We will be mainly interested in the
bounded error version of this model, where the two parties
are allowed to err with some small probability (say at most
1
3 ). It was observed early that for the equality and the inner-
product functions the quantum model does not provide any
significant savings: the complexity of the equality function
is still Θ(log n) [Kre95] and the complexity of the inner-
product function is stillΘ(n) [Kre95, CvDNT98].
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The set disjointness function: For the set disjointness
function, however, quantum protocols were found to be
strictly more powerful than their classical randomised coun-
terparts. Since the communication complexity of the set
disjointness function is central to the work presented in
this paper, we describe its history in greater detail. In
the bounded error classical setting Babai, Frankl and Si-
mon [BFS86] showed a lower bound ofΩ(

√
n). This

was improved to anΩ(n) lower bound by Kalyanasun-
daram and Schnitger [KS92]; their proof was simplified by
Razborov [Raz92]. There is a straightforward protocol with
n + 1 bits of communication whereAlice sends her entire
input to Bob, who computes the answer and returns it to
Alice. Interest in the communication complexity of several
problems related to the set disjointness function has been re-
vived recently because of their connection to showing lower
bounds in the classical data stream model [AMS99, FKS02,
GGI+02, Ind00, GMMO00, JKS03, SS02]. One of these
problems is theL∞ promise problem:Alice andBob are
given inputsXA, XB ∈ {0, 1, . . . ,m}n, with the promise
that either for alli ∈ [n], |XA[i]−XB [i]| ≤ 1 or there exists
an i ∈ [n], such that|X[i] − Y [i]| = m; they must com-
municate in order to distinguish between these two types of
inputs. For this problem, Saks and Sun [SS02] showed a
lower bound ofΩ(n/m2) in a restricted model; their lower
bound was strengthened by Bar-Yossef, Jayram, Kumar and
Sivakumar [BJKS02b], who obtained the same lower bound
without any restrictions.

The quantum communication complexity of set disjoint-
ness was first studied by Buhrman, Cleve and Wigder-
son [BCW98], who showed that there is a protocol for this
problem withO(

√
n log n) qubits of communication. This

bound was improved toO(
√
nclog

∗ n), wherec is a small
constant, by Hoyer and de Wolf [HdW02], and recently to
O(
√
n) by Aaronson and Ambainis [AA03]. By a result of

Razborov [Raz02] this last bound is optimal.

Multi-party classical communication complexity: In
fact, there are several ways to generalise the two-party
model to the multi-party model. In this paper, we will con-
sider the version where there aret partiesP1, P2, . . . , Pt

with respective inputsX1, X2, . . . , Xt ⊆ [n]. In each
round of communication some party sends a message to
another party. The party who receives the last message
can determine the desired valueF (X1, X2, . . . , Xt) based
on his current state at that point. Recently, because of
its connection to the problem of computingfrequency mo-
mentsin the data stream model [AMS99], the following
promise set disjointnessproblem has been studied. Here,
the parties are required to distinguish between two types
of inputs: in the first type,X1, X2, . . . , Xt are pairwise
disjoint; in the second type,X1, X2, . . . , Xt have exactly
one element in common but are otherwise pairwise dis-

joint. For this problem, Chakrabarti, Khot and Sun [CKS03]
show a lower bound ofΩ(n/(t log t)), improving an ear-
lier Ω(n/t2) lower bound of Bar-Yossef, Jayram, Kumar
and Sivakumar [BJKS02b] and anΩ(n/t4) lower bound of
Alon, Matias and Szegedy [AMS99]. A slight variant of this
problem, called the approximate set disjointness problem,
was considered by Nisan [Nis02]; the lower bounds men-
tioned above apply to Nisan’s version as well. The multi-
party quantum communication complexity of these prob-
lems has not been considered before this work.

1.1 Our results

The upper and lower bounds on the two-party quan-
tum communication complexity of the set disjointness func-
tion are tight up to constant factors, if there are no restric-
tions imposed on the number of rounds (i.e. the number
of messages) in the protocol. The best upper bound uses
O(
√
n) rounds of communication, and from it one can de-

rive a k-round protocol where the parties exchange a to-
tal of at mostO(n/k) qubits. Fork = 1, Buhrman and
de Wolf [BdW01] observed that a lower bound ofΩ(n)
follows from the results of Nayak [Nay99] for the index-
function problem. Fork ≥ 2, Klauck, Nayak, Ta-Shma and
Zuckerman [KNTZ01] showed a lower bound ofΩ(n1/k),
but this is subsumed by Razborov’s [Raz02] lower bound
of Ω(

√
n) which holds even if there is no restriction on the

number of rounds. However, for smallk, Razborov’s lower
bound is far from the best upper bound known, namely
O(n/k). Our first result implies lower bounds for the two-
party bounded errork-round quantum communication com-
plexity of set disjointness that comes closer to the upper
bound ofO(n/k). In fact, the result holds for a multi-party
quantum communication model which we define in detail
in Section 2.2. In this model, there aret parties where
the ith party has inputXi ⊆ [n]. These parties communi-
cate with each other by transmitting qubits from one party
to another to determine with high probability the value of
some functionF of their combined input(X1, . . . , Xt).
We consider the class of boolean valued functions whose
value depends only onX1 ∩ · · · ∩ Xt; that is, for each
F in this class there is anfF : 2[n] → {0, 1}, such that
F (X1, . . . , Xt) = fF (X1 ∩ · · · ∩Xt). We call such func-
tionsF set disjointness-like. Define the ‘monotone sensi-

tivity of fF ’ as sm(fF ) ∆= maxS⊆[n] |{i : fF (S ∪ {i}) 6=
fF (S)}|.

Result 1 Thet-partyk-round bounded error quantum com-
munication complexity of a set disjointness-like functionF
is Ω(sm(fF )/k2).

In fact, Result 1 follows from the following result via easy
reductions.
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Result 1’ The t-party k-round bounded error quantum
communication complexity of the promise set disjointness
problem isΩ(n/k2). This lower bound also holds for
Nisan’s approximate set disjointness problem [Nis02].

Remarks:
1. Observe that the lower bound in Result 1’ is indepen-
dent of t! This appears to contradict theO((n log n)/t)
upper bound for the promise set disjointness problem in
[BJKS02a]. However, that upper bound is in the multi-party
simultaneous messagemodel, whereas in our definition of
multi-party quantum protocols it is required to pass mes-
sages from one party to another. Thus, the simultaneous
message protocol of [BJKS02a] is actually at-round proto-
col in our model.
2. For two-party quantum protocols with an unbounded
number of rounds, we get a lower bound ofΩ(n1/3) for the
set disjointness problem.

For theL∞ promise problem we get the following lower
bound.

Result 2 The two-partyk-round quantum communication
complexity of theL∞ promise problem is
Ω(n/(k3mk+1)).

All our lower bounds hold even if the parties start with
arbitrary prior entanglement that is independent of the in-
puts.

Finally, we remark that our quantum communication
complexity lower bounds imply space lower bounds for a
natural model of ‘quantum data stream computation’, in ex-
actly the same way as in the classical setting.

1.2 Techniques used

The original lower bounds for set disjointness in the clas-
sical two-party communication model are based on deep
analyses of the communication matrix and can be said to
be based on thediscrepancy method(see e.g. [KN97]).
Razborov’s recentΩ(

√
n) lower bound [Raz02] for the

bounded error two-party quantum communication complex-
ity of set disjointness also uses the discrepancy method. The
discrepancy method for quantum protocols was formulated
explicitly by Kremer [Kre95] (see also Klauck [Kla01] and
Yao [Yao93]), but Razborov’s proof extends it substantially
by developing interesting and powerful tools based on the
spectral theory of matrices.

Recently however, Bar-Yossef et al. [BJKS02b] pro-
posed an information-theoretic approach for studying set
disjointness-like problems in the classical setting. Using
a refinement of the notion ofinformation costof a com-
munication protocol originally defined by Chakrabarti, Shi,
Wirth and Yao [CSWY01], they showed that a linear lower

bound for the bounded error two-party randomised com-
munication complexity of set disjointness follows from an
Ω(1) lower bound on a certaininformation costof a two-
party communication protocol computing the ANDa ∧ b
of just two bitsa, b! The information-theoretic machin-
ery essentially allowed them to treat the set disjointness
function like a direct sum ofn two-bit AND ’s. Their
work provided a compelling and beautiful illustration of
information-theoretic tools in the analysis of communica-
tion protocols. Interestingly, the idea of proving lower
bounds for set disjointness by treating it like a direct sum
of n two-bit AND ’s was earlier employed in [KKN95]
in the setting of two-party nondeterministic classical com-
munication complexity; however, their approach was not
information-theoretic and does not seem to be suitable for
bounded error classical randomised or quantum communi-
cation protocols.

We adapt their approach to the quantum setting. In order
to bring out the contribution of this paper more clearly, we
will now informally describe the information-theoretic ar-
gument underlying the proof of [BJKS02b] and discuss how
we adapt it to the quantum setting. The argument has two
parts: in the first part, using a direct-sum property for infor-
mation cost of a communication protocol one reduces the
communication problem DISJ to the communication prob-
lem AND of two bits (one withAlice and one withBob);
in the second part, one shows that any communication pro-
tocol for AND of two bits needs to have high information
cost.

The information cost approach: The first part of the
argument is based on the notion ofinformation costof
private coin randomised communication protocols, defined
to be theShannon mutual informationbetween the inputs
(which are assumed to come from some distribution) and
the entire message transcript of the protocol. Bar-Yossef et
al. [BJKS02b] examine the information cost of the protocol
for several distributions. Let the number of bits transmit-
ted by the protocol bec. Then, the information cost is also
bounded byc for each distribution.

At this point it will be convenient to view the inputsXA

andXB of Alice andBob as elements of{0, 1}n and the
set disjointness function DISJ as

∨n
i=1XA[i] ∧ XB [i]. A

typical distribution considered by Bar-Yossef et al. is de-
fined as follows. For each coordinatei, independently, one
party is given the input0 and the other party is given a uni-
formly random bit. Using the sub-additivity property of
mutual information, one concludes that the sum overi of
the mutual information between the transcript andXA[i] is
bounded byc; a similar statement holds forBob’s inputs. It
is then not hard to argue using a standard averaging argu-
ment that there is ani and a probability distributionD∗ on
(XA[j], XB [j] : j 6= i) such that the following conditions
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hold:

• XA[j], XB [k], j 6= i, k 6= i are independent random
variables underD∗;

• For all j 6= i,XA[j]∧XB [j] = 0 (with probability 1);

• If XA[i] is set to0, XB [i] is chosen uniformly at ran-
dom from {0, 1} and (XA[j], XB [j] : j 6= i) are
chosen according toD∗, then the mutual information
between the message transcript andXB [i] is at most
2c/n; similarly, if XB [i] is set to0, XA[i] is chosen
uniformly at random from{0, 1} and(XA[j], XB [j] :
j 6= i) are chosen according toD∗, then the mutual
information between the message transcript andXA[i]
is at most2c/n.

From the first condition, by viewing(XA[j], XB [j] : j 6=
i) as private coins of the two parties, we obtain from the
protocol for DISJ a protocol that computes the AND of the
two bitsXA[i] andXB [i]. The stage is thus set for analysing
the information cost of a protocol computing the AND of
two bits: a lower bound ofε on this quantity translates to a
lower bound ofΩ(εn) on the communication complexity of
the set disjointness function.

In order to implement this programme in the quantum
setting, one has to define a notion of information cost for
quantum protocols. It is not immediately clear how this can
be done, because quantum operations are notorious for de-
stroying the states on which they act; in particular, it is not
reasonable to expect that the complete transcript of all mes-
sages is part of the final global state of the algorithm. Even
if the complete transcript is available in the final global state
of the algorithm, it may not contain any information about
the inputs of either party. If the parties are allowed prior en-
tanglement, then using quantum teleportation, one can im-
plement any protocol such that the messages are classical
and uniformly random. So, the transcript will just be a uni-
formly random string of lengthc independent of the actual
inputs!

The definition of information loss for quantum proto-
cols: We address these difficulties as follows. Assume
that the players’ inputs come from some classical probabil-
ity distribution. Without loss of generality, the players make
a ‘safe’ copy of their (classical) inputs before proceeding
with the quantum protocol. Instead of considering the infor-
mation carried by a particular message, we examine the the
context in which the message is received i.e. we consider
the von Neumann mutual information between the sender’s
input and all the qubits in the possession of the receiver at
that time, including the qubits of the message just received.
The information loss(we use the term loss instead of cost)
of the protocol for the given input distribution is defined
to be a certain weighted sum of these mutual informations

taken over all rounds. With this definition of information
loss, the arguments of [BJKS02b] are easily carried over to
the quantum setting. We can then conclude that if the infor-
mation loss of computing the AND of two bits isε then the
communication complexity of DISJ isΩ(nε/k).

We have arrived at the second part of our programme,
that is, to show non-trivial lower bounds on the informa-
tion loss of a quantum protocol computing the AND of
two bits. In their original argument, [BJKS02b] showed a
lower bound on the information cost of a classical private
coin protocol computing the AND of two bits via a direct
argument usingHellinger distancesbetween certain proba-
bility distributions. Since we are working with our different
notion of information loss, this argument does not appear to
be immediately applicable to us; so instead of reviewing it,
we will now directly describe our new argument for show-
ing a lower bound on the information loss of a quantum
protocol computing the AND of two bits. We consider two
input distributions: in the first distribution,Alice has0 and
Bob has a uniformly random bit; in the second distribution,
Bob has0 andAlice has a uniformly random bit. Suppose
we are given that for these distributions at no stage do the
qubits of the receiver of a message contain more thanε bits
of information about the input of the sender. We wish to
show that ifε is very small, then this leads to a contradic-
tion. Our argument can be understood at an intuitive level in
the framework ofround eliminationin communication pro-
tocols [MNSW98, KNTZ01, Sen03]. Suppose Alice sends
the first message of the protocol. We know that whenBob’s
input is0 the state of his qubits after receiving the first mes-
sage is essentially the same whetherAlice’s input is0 or 1.
So no matter what her actual input is,Alice might as well
send her first message assuming that her input is0. Us-
ing standard arguments (see below), we can eliminate the
first message of Alice and obtain a protocol with one fewer
round of communication, increasing the error probability of
the protocol by a small amount. Now it isBob’s turn. Our
hypothesis says that whenAlice’s input is0 the state of her
qubits after receiving the first message fromBob is essen-
tially the same whetherBob’s input is0 or 1. But the mod-
ified protocol so far has proceeded as ifAlice’s input is 0
(even though her actual input might be something else). We
can thus eliminate Bob’s first message as well. Ifε is small,
then the increase in error probability on account of this ma-
noeuvre is also small. Proceeding in this manner we elimi-
nate all rounds. But it is obvious that if the parties exchange
no messages they cannot compute any non-trivial function
unless one allows error probability greater than1/2. Since
there are at mostk rounds of communication, this gives us
a lower bound of the formε ≥ ε(k). Using these ideas
one can show anΩ(n/k2) lower bound on the two-party
quantum communication complexity of the set disjointness
function.
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There are two aspects of our proof that require further
comment.

Local transition: Recall the argument used above to
eliminateAlice’s first message. We know that whenBob’s
input is 0, the state of his qubits after receiving the first
message is roughly the same whetherAlice’s input is0 or
1. her input is0. However, this does not immediately im-
ply that the error probability of the modified protocol is not
changed by much. The final answer is not just a function
of Bob’s state but the combined state ofAlice andBob. In
particular, even thoughBob’s state is similar after the first
round for the two inputs ofAlice, his work qubits might be
entangled withAlice’s qubits differently in the two cases.
This problem arises often in round elimination arguments
and by now standard solutions exist for it by considering
the fidelity between quantum states. This allowsAlice to
perform alocal transition[KNTZ01] on her work qubits, in
order to restore them to the correct state should she discover
later that her actual input is1 (recall that in the modified
protocol,Alice prepares her first message assuming that her
input is always0). We use a stronger local transition lemma
(Lemma 1) than the one in [KNTZ01]. The stronger lemma
is crucial for getting anΩ(n/k2) lower bound in Result 1;
the local transition lemma of [KNTZ01] gives anΩ(n/k4)
lower bound.

A paradox?: In our notion of information loss of quan-
tum protocols it is important that the parties start in apure
global state. In fact, this notion is unsuited for classical pri-
vate coin randomised communication complexity. Consider
the following classical private coin protocol for computing
the AND of two bits(a, b). Alice sendsBob a random bit
r, retaining a copy ofr if and only if a = 1. Bob sends
Alice r ⊕ b; if a = 1, Alice can recoverb using the copy
of r she has and determinea ∧ b. Now clearly, whenBob’s
input is0 he has no information aboutAlice’s input at the
end of the first round; also whenAlice’s input is0 she has
no information aboutBob’s input at the end of the second
round because she does not retain a copy ofr in this case.
So, according to our definition this protocol has zero infor-
mation loss for both the distributions considered above. Yet,
the protocol computes the AND of two bits correctly! In-
terestingly, no such quantum protocol starting with a pure
global state is possible.

1.3 The rest of the paper

In the next section, we give some definitions used in the
rest of the paper. In Section 3, we prove Result 1’. The
proof of Result 2 is omitted from this extended abstract.

2 Preliminaries

2.1 Information theoretic background

We now state some basic facts from information theory
that we need. For a good account of quantum information
theory, see e.g. [NC00].

In this paper, all quantum systems are finite dimensional
and all classical random variables have finite range. Sup-
poseA,B,C are three disjoint quantum systems having
some joint density matrixρ. Let ρA be the reduced den-

sity matrix of A. ThenS(A) ∆= S(ρA) ∆= −Tr ρA log ρA

is thevon Neumann entropyof A. Thevon Neumann mu-

tual informationof A andB is defined asI(A : B) ∆=
S(A) + S(B) − S(AB). The conditional von Neumann
mutual informationof A and B given C is defined as

I((A : B) | C) ∆= S(AC) + S(BC) − S(C) − S(ABC).
If C is a classical random variable taking the classical value
|c〉 with probability pc, it is easy to see thatI((A : B) |
C) =

∑
c pcI(Ac : Bc), where(AB)c denotes the joint

density matrix ofA and B when C = |c〉. We also
write I((A : B) | C = c) for I(Ac : Bc). Mutual
information satisfies the followingmonotonicityproperty:
I(A : BC) ≥ I(A : B).

SupposeD, X1, . . . , Xt are classical random variables.

We say thatD partitionsX
∆= (X1, . . . , Xt) if for all pos-

sible valuesd thatD can take,X1, . . . , Xt are independent
conditioned on the eventD = d.

Fact 1 (Sub-additivity) Let X1, . . . , Xn be independent
classical random variables. LetM be a quantum encoding

of X
∆= (X1, . . . , Xn). Then,I(X : M) ≥

∑n
i=1 I(Xi :

M).

For classical probability distributionsP,Q on the same
sample spaceΩ, their total variation distance is defined as

‖P − Q‖1
∆=

∑
ω∈Ω |P (ω) − Q(ω)|. For density matrices

ρ, σ over the same Hilbert space, their trace distance is de-

fined as follows:‖ρ− σ‖t
∆= Tr

√
(ρ− σ)†(ρ− σ). The

importance of trace distance as a metric on density matrices
stems from the following fact.

Fact 2 (see [AKN98]) Let ρ, σ be density matrices in the
same finite dimensional Hilbert spaceH. LetF be a mea-
surement (POVM) onH. Then,‖Fρ−Fσ‖1 ≤ ‖ρ− σ‖t.

SupposeA,B are disjoint quantum systems. LetρAB , σAB

be two density matrices of the joint quantum systemAB.
The trace distance satisfies the following property ofmono-
tonicity: ‖ρAB − σAB‖t ≥ ‖ρA − σA‖t. In fact, Fact 2 can
be derived from the monotonicity of trace distance.

We now state our strong local transition lemma. The
proof uses an inequality implicitly contained in [Lin91] (see
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also [FvdG99, DHR78]). It is omitted from this extended
abstract.

Lemma 1 SupposeX and Q are disjoint quantum sys-
tems, whereX is a classical random variable uniformly dis-
tributed over{0, 1} andQ is a quantum encodingx → σx

of X. LetH denote the Hilbert space ofQ. LetK be any
Hilbert space of dimension at least the dimension ofH, and
|φ0〉, |φ1〉 any purifications ofσ0, σ1 respectively inH⊗K.
Then there is a local unitary transformationU on K that

maps|φ2〉 to |φ′2〉
∆= (I ⊗U)|φ2〉 (I is the identity operator

onH) such that‖|φ1〉〈φ1| − |φ′2〉〈φ′2|‖t ≤
√

8I(X : Q).

2.2 Quantum communication complexity

We definet-party quantum communication protocols as
a natural extension of two-party quantum communication
protocols defined by Yao [Yao93]. Letf : X1×X2 · · · Xt →
Z be a function. There aret partiesP1, . . . ,Pt who hold
qubits. When the quantum communication protocolΠ
starts,Pi holds|xi〉 wherexi ∈ Xi together with some an-
cilla qubits (‘work qubits’) in the state|0〉. P1, . . . ,Pt may
also share an input independent prior entanglement pure
state (say|ψ〉). Different parties possess different qubits
of |ψ〉. The parties take turns to communicate to com-
pute f(x1, x2, · · · , xt). Suppose it isP1’s turn to com-
municate. P1 can make an arbitrary unitary transforma-
tion on the qubits in her possession at this time and then
send some of her qubits toP2, . . . ,Pt. Whose turn it is
to communicate, the unitary transformation applied by the
active player and the qubits that the active player sends to
the other players are predetermined byΠ and independent
of the input(x1, . . . , xt). A round of communication de-
notes the qubits that the active player sends to the other
players. Sending qubits does not change the overall su-
perposition, but rather changes the ownership of the qubits.
At the end of the protocolΠ, one of the parties performs
a von Neumann measurement in the computational basis
of some qubits in her possession (the ‘answer qubits’) to
output an answerΠ(x1, x2, · · · , xt). The party perform-
ing the measurement as well as the qubits that she mea-
sures are predetermined byΠ and independent of the input
(x1, . . . , xt). We say that protocolΠ computesf with error
δ if maxx1,...,xt Pr[Π(x1, . . . , xt) 6= f(x1, . . . , xt)] ≤ δ.
The communication cost ofΠ is the number of qubits ex-
changed inΠ between all the parties. Thet-partyk-roundδ-
error quantum communication complexity off , denoted by
Qt,k

δ (f), is the minimum communication cost of at-party
k-roundδ-error quantum protocol with prior entanglement
for f . Whenδ is omitted, we mean thatδ = 1/3.

We require that the parties make a ‘safe’ copy of their
inputs (using for example CNOT gates) before beginning
the protocolΠ. This is possible without loss of generality

because the inputs are in computational basis states. Thus,
the input qubits of the parties are never sent as messages,
their state remains unchanged throughout the execution of
Π, and they are never measured i.e. some work qubits are
measured to determine the resultΠ(x1, . . . , xt). We call
such protocolssafe, and henceforth, we will assume that all
our protocols are safe.

Fact 3 (see [CvDNT98])Let Alice have a classical ran-
dom variableX. SupposeAlice andBob share a pure state
on some qubits (prior entanglement) independent ofX. Ini-
tially Bob’s qubits have no information aboutX. Now let
Alice andBob run a quantum communication protocol, at
the end of whichBob’s qubits possessm bits of informa-
tion aboutX. Then,Alice has to totally send at leastm/2
qubits toBob.

We now define theconditional information lossof a t-
party quantum communication protocol with prior entangle-
ment. For technical reasons, we need to work with acon-
ditional version of information loss instead of the uncondi-
tional version described in the introduction. A similarcon-
ditional version of information cost is used in [BJKS02b]
to prove their lower bounds. But first, we need a couple of
preliminary definitions.

Definition 1 (Embedding) For x ∈ Xn, j ∈ [n], and
x ∈ X , let embed(x, j, x) be the element ofXn obtained

by replacingx[j] byx, that is,embed(x, j, x)[`] ∆= x[`] for

` 6= j, andembed(x, j, x)[j] ∆= x.

Definition 2 (Collapsing) SupposeF : Xn → Z. We say
thatx ∈ Xn collapsesF to the functionh : X → Z if for
all u ∈ X , j ∈ [n], F (embed(x, j, u)) = h(u). We say that
a random variableX taking values inXn collapsesF to h
if it collapsesF to h with probability1.

LetD, X1, . . . , Xt be classical random variables taking
values in some finite setsD, X1, . . . ,Xt respectively. Let

X
∆= (X1, . . . , Xt). The random variable(X,D)n is ob-

tained by takingn independent copies of(X,D). Thus,
Xn takes values in(X1×· · ·×Xt)n which we identify with
Xn

1 × · · · × Xn
t in the natural way. SupposeD partitions

X, and(X,D) ∆= (X,D)n; then it is easy to verify thatD
partitionsX. Let Π be at-partyk-roundδ-error quantum
protocol for computingF : X1 × · · · × Xt → Z. Suppose
X1, . . . , Xt are the random variables corresponding to the
inputs ofP1, . . . ,Pt. Let Pj denote the active player in
roundj. Let Xj denote the input random variable ofPj .
P̂ j denote the qubits all players exceptPj just after round
j is complete. Letk(j) denote the number of rounds ofΠ
in which the playerPj is active.

Definition 3 (Conditional information loss) In the nota-
tion above, the conditional information loss ofΠ under
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(X,D) is defined byIL(Π | (X,D)) ∆=
∑k

j=1
k

k(j) ·I((X
j :

P̂ j) | D). Thet-partyk-roundδ-error conditional informa-
tion loss ofF under(X,D), denoted byILt,k

δ (F | (X,D)),
is the infimumIL(Π | (X,D)) taken over allt-party k-
round δ-error quantum protocols with prior entanglement
Π for F . [Note thatδ upper bounds the error ofΠ for all
inputs inX1 × · · · × Xt. In particular, this error bound
applies even to inputs not in the support ofX.]

3 Lower bound for set disjointness

Lemma 2 LetF : Xn
1 × · · · × Xn

t → Z. LetX1, . . . , Xt

be classical random variables taking values inX1, . . . ,Xt

respectively. DefineX
∆= (X1, . . . , Xt). SupposeX is

partitioned by a classical random variableD taking val-

ues in some setD. Let (X,D) ∆= (X,D)n. SupposeX
collapsesF to the functionh : X1 × · · · × Xt → Z. Then,
ILt,k

δ (h | (X,D)) ≤ 2k
n ·Qt,k

δ (F ).

Proof: SupposeΠ is at-partyk-roundδ-error quantum pro-
tocol with prior entanglement forF with communication

costc
∆= Qt,k

δ (F ). Our goal is to show that there is at-party
k-roundδ-error quantum protocol with prior entanglement
for h having information loss at most2kc

n under(X,D).
While analysingΠ, we will need to maintain that the global
state ofP1, . . . ,Pt is pure at all times. However, we will
run Π on random inputs drawn from certain product prob-
ability distributions. In such a situation, we will adopt the
following convention. We will assume that in addition to the
usual input registersINi, Pi has another set of registers̃INi.
When we require thatPi’s inputs be some random variable
Xi, we in fact, start with the following state in the regis-

tersINi ĨNi:
∑

x∈Xn
i

√
px|x〉|x〉, wherepx

∆= Pr[Xi = x].
Then, we run the protocolΠ as before with input registers
INi. During this execution no quantum gates are applied
to registersĨNi, they are not sent as messages and they are
never measured. From now on the classical random vari-
ableXi denotes the state of the registersINi, which stays
unchanged throughout the protocolΠ becauseΠ is safe. In
this revised protocolΠ′, ĨNi is included amongst the qubits
of Pi. Π′ has the same communication cost asΠ. Π′ is a
δ-error protocol forF with communication costc. Consider

the execution ofΠ′ on input X ∆= (X1, . . . ,Xt) condi-
tioned onD = d; note that under this conditionX1, . . . ,Xt

are independent random variables. Letc(i) denote the total
number of qubits sent by the partyPi in protocolΠ′ (which
is the same as the total number of qubits sent byPi in pro-
tocolΠ). Then we have, for all1 ≤ i ≤ k,

∑n
j=1 I((X

i[j] :
P̂ i) | D = d) ≤ I((Xi : P̂ i) | D = d) ≤ 2c(i). The first
inequality above follows from Fact 1 because by our defi-
nition of (X,D), (XA[j] : 1 ≤ j ≤ n) are independent

random variables when conditioned onD = d; the second
inequality follows from Fact 3.

Averaging over the possible values ofD, we obtain:
∀i, 1 ≤ i ≤ k,

∑n
j=1 I((X

i[j] : P̂ i) | D) ≤ 2c(i). Sum-
ming these inequalities with weightk/k(i) over all rounds
i, we obtain

∑n
j=1

∑k
i=1

k
k(i) · I((X

i[j] : P̂ i) | D) ≤ 2ck,
which implies:

∃j, 1 ≤ j ≤ n,
k∑

i=1

k

k(i)
· I((Xi[j] : P̂ i) | D) ≤ 2ck

n
. (1)

Fix a value ofj so that the last inequality holds. Ford ∈
Dn, let

I(d) ∆=
k∑

i=1

k

k(i)
· I((Xi[j] : P̂ i) | D = d) (2)

Then from (1),ED[I(D)] ≤ 2ck
n .

We will now obtain a protocol forh by ‘embedding’ its
input as thejth input ofΠ′. Using a straightforward aver-
aging argument we first fix a valuêd ∈ Dn so that∑

d∈D

Pr[D = d]I(embed(d̂, j, d))

= ED[I(embed(d̂, j,D)) ≤ 2ck
n .

(3)

Consider the following quantum protocol with prior entan-
glementΠh for computingh(u1, . . . , ut). On inputui ∈
Xi, Pi prepares her input registers as follows. In the reg-
isters(INi[`], ĨNi[`] : ` 6= j) Pi places the superposition∑

x∈Xn−1
i

√
px|x〉|x〉, wherepx

∆= Pr[(Xi[`] : ` 6= j) =

x | D = d̂]; registerINi[j] is set to|ui〉. Then,P1, . . . , Pt

run the protocolΠ′. Note that the registers̃INi[j], 1 ≤ i ≤ t
do not exist inΠh.

We need to verify that protocolΠh has two properties.
First, that it is aδ-error protocol forh. For this we note
that inΠh, at all times, the state of the registers that were
present in the original protocolΠ (that is all registers ex-
cept ĨNi) is identical to their state whenΠ is run with
input embed(X, j, (u1, . . . , ut)) conditioned on the event
D = d̂. SinceX collapsesF to h, we conclude thatΠh

computesh(u1, . . . , ut) with probability at least1− δ.
Second, we need to verify thatIL(Πh | (X,D)) ≤ 2ck

n .
We expand the left hand side of (3) using definition (2) of
I(d) and show that each term in it is at least the correspond-
ing term inIL(Π | (X,D)). For example, consider the term
I((Xi : Pi) | D = d), 1 ≤ i ≤ k in the definition of
IL(Πh | (X,D)). Note that the state of(Xi,Pi) in Πh

on inputX conditioned onD = d is identical to the state
of (Xi[j],Pi) in Π′ with registersĨN`[j], ` ranging over
all parties exceptPi traced out, whenΠ′ is run on input
X conditioned onD = embed(d̂, j, d). It follows from
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the monotonicity of mutual information thatI((Xi : Pi) |
D = d) ≤ I((Xi[j] : Pi) | D = embed(d̂, j, d)). We can
thus conclude thatIL(Πh | (X,D)) ≤ 2ck

n .
LetD be a random variable taking values in{1, . . . , t},

with Pr[D = d] ∆= k(d)/k. LetX1 = · · · = Xt
∆= {0, 1}.

Let Xi be a random variable taking values inXi andX
∆=

(X1, . . . , Xt). WhenD = d, Pr[Xd = 0] = Pr[Xd =
1] = 1/2 andPr[Xi = 0] = 1, i 6= d. It is clear thatD
partitionsX. Note thatXn collapses DISJ to AND (here
DISJ denotes the promiset-party set disjointness problem
and AND denotes the AND function ont bits). We now
show a lower bound for the conditional information loss of
AND under(X,D).

Lemma 3 Let(X,D) be as above. Let0 ≤ ε ≤ 1/2. Then,

ILt,k
ε (AND | (X,D)) ≥ (1−2ε)2

8k .

Proof: Let θ > 0. Let Π be a t-party k-round ε-error
quantum protocol with prior entanglement for AND with

η
∆= IL(Π | (X,D)) ≤ ILt,k

ε (AND | (X,D))+θ. Consider
the situation inΠ just after theith round of communication.
For anyx ∈ {0, 1}t, let |φi

x〉 be the global state vector of
the qubits ofP1, . . . , Pt at this point in time, when proto-

col Π is started with inputX = x. Defines(i) ∆= I((Xi :
P̂ i) | D = Pi). Then,s(i) = k

k(i) · I((X
i : P̂ i) | D).

Hence,η =
∑k

i=1 s(i). Let ei ∈ {0, 1}t denote the vec-
tor which has an1 in the ith coordinate and0 everywhere
else. Let0,1 ∈ {0, 1}t denote the all-zeroes and all-
ones vectors respectively. To keep our notation concise, for
state vectors|φ〉 and |ψ〉 we write‖|φ〉 − |ψ〉‖t instead of
‖|φ〉〈φ| − |ψ〉〈ψ|‖t. By Lemma 1, there is a ‘correction’
unitary transformationV i acting on the qubits in the pos-
session ofPi just after roundi such that∥∥∥V i|φi

0〉 − |φi
ePi

〉
∥∥∥

t
≤

√
8s(i). (4)

For any1 ≤ j ≤ t, letW i
j denote the ‘correction’ unitary

transformation of partyPj in the last round at or before
round i whenPj was active. Then,W i

Pi = V i. For any
j 6= j′ W i

j andW i
j′ act on disjoint sets of qubits. Without

loss of generality,Pi = P1 andPi+1 = P2. Defineδi
∆=∥∥W i

1W
i
3 · · ·W i

t |φi
e2
〉 − |φi

1〉
∥∥

t
. Let U i denote the unitary

transformation of protocolΠ thatP1 applies to the qubits
in her possession just after roundi − 1 in order to prepare
the messages of roundi. Let i′ denote the last round before
i whenP2 was active. LetU i′,i denote the product of the
unitary transformations applied by the parties in protocolΠ
after roundi′ is complete and till the end of roundi. Then,
|φi

x〉 = U i|φi−1
x 〉 and|φi

x〉 = U i′,i|φi′

x 〉. Forj 6= 1, U i and
W i

j act on disjoint sets of qubits andW i
j = W i−1

j . Also,

W i
2 andU i′,i act on disjoint sets of qubits. Using the unitary

invariance and triangle inequality of the trace distance, the

fact that unitary transformations on disjoint sets of qubits
commute, and (4),

δi
∆=

∥∥W i
1W

i
3 · · ·W i

t |φi
e2
〉 − |φi

1〉
∥∥

t

≤
∥∥∥∥ W i

1W
i
3 · · ·W i

tU
i′,i|φi′

e2
〉

−W i
1W

i
3 · · ·W i

tU
i′,iW i

2|φi′

0 〉

∥∥∥∥
t

+∥∥∥∥ W i
1W

i
3 · · ·W i

tU
i′,iW i

2|φi′

0 〉
−U iW i

2 · · ·W i
t |φi−1

e1
〉

∥∥∥∥
t

+∥∥U iW i
2 · · ·W i

t |φi−1
e1

〉 − U i|φi−1
1 〉

∥∥
t

=
∥∥∥|φi′

e2
〉 −W i

2|φi′

0 〉
∥∥∥

t

+
∥∥∥W i

1U
i′,i|φi′

0 〉 − U i|φi−1
e1

〉
∥∥∥

t

+
∥∥W i

2 · · ·W i
t |φi−1

e1
〉 − |φi−1

1 〉
∥∥

t

=
∥∥∥|φi′

e2
〉 −W i

2|φi′

0 〉
∥∥∥

t
+

∥∥W i
1|φi

0〉 − |φi
e1
〉
∥∥

t

+
∥∥W i−1

2 · · ·W i−1
t |φi−1

e1
〉 − |φi−1

1 〉
∥∥

t

≤
√

8s(i′) +
√

8s(i) + δi−1.

It is easy to check thatδ0 = 0. Hence, δk ≤∑k
i=1 2

√
8s(i). Using concavity of the square root func-

tion, we get thatδk ≤
√

32ηk. Using Fact 2, the fact
that a local unitary transformation does not affect the den-
sity matrix of the remote system and monotonicity of trace
distance, we get that a correctk-roundε-error protocol for

AND must haveδk ≥ 2−4ε. Hence,η ≥ (1−2ε)2

8k implying

that ILt,k
ε (AND | (X,D)) ≥ (1−2ε)2

8k − θ for any θ > 0.
This completes the proof of the lemma.

Remark: In fact, there are bounded error two-partyk-
round quantum protocols for the AND of two bits with con-
ditional information lossO(log k/k). Such protocols can be
obtained from the protocols of [BCW98, HdW02, AA03]
for set disjointness on a universe of sizeO(k2) by set-
ting the first coordinate of Alice and Bob to the two in-
put bits and setting the rest of the coordinates to0. An-
other such protocol with one qubit messages can be ob-
tained by adapting the ‘reflections in a plane’ visualisation
(see e.g. [NC00]) of Grover’s algorithm on a universe of
sizeO(k2).

The following is now immediate from Lemma 2 and
Lemma 3.

Theorem 1 Any t-party k-round bounded error quantum
protocol for the set disjointness problem needs to have com-
munication cost at leastΩ(n/k2).

Acknowledgements

Our original proof gave a lower bound ofΩ(n/k4) for
set disjointness. We later improved it toΩ(n/k2) using an

8



inequality implicitly contained in a paper by Lin [Lin91].
Hartmut Klauck independently pointed out to us that similar
improvements can also be obtained using an inequality from
[DHR78]. We thank him for sharing with us his insights
and pointing reference [DHR78] to us. We also thank An-
dris Ambainis for pointing out reference [FvdG99], which
contains an explicit form of Lin’s inequality.

References

[AA03] S. Aaronson and A. Ambainis. Quantum
search of spatial regions. InProceedings of
the 44th Annual IEEE Symposium on Founda-
tions of Computer Science, 2003. To appear.
Also quant-ph/0303041.

[AKN98] D. Aharonov, A. Kitaev, and N. Nisan. Quan-
tum circuits with mixed states. InProceedings
of the 30th Annual ACM Symposium on The-
ory of Computing, pages 20–30, 1998. Also
quant-ph/9806029.

[AMS99] N. Alon, Y. Matias, and M. Szegedy. The
space complexity of approximating the fre-
quency moments.Journal of Computer and
System Sciences, 58(1):137–147, 1999.

[BCW98] H. W. Buhrman, R. Cleve, and Avi Wigder-
son. Quantum vs classical communication
and computation. InProceedings of the 30th
Annual ACM Symposium on Theory of Com-
puting, pages 63–68, 1998. Also quant-
ph/9702040.

[BdW01] H. Buhrman and R. de Wolf. Communica-
tion complexity lower bounds by polynomi-
als. In Proceedings of the 16th IEEE Con-
ference on Computational Complexity, pages
120–130, 2001.

[BFS86] L. Babai, P. Frankl, and J. Simon. Complexity
classes in communication complexity theory.
In Proceedings of the 27th Annual IEEE Sym-
posium on Foundations of Computer Science,
pages 337–347, 1986.

[BJKS02a] Z. Bar-Yossef, T. Jayram, R. Kumar, and
D. Sivakumar. Information theory methods in
communication complexity. InProceedings of
the 17th Annual IEEE Conference on Compu-
tational Complexity, pages 93–102, 2002.

[BJKS02b] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar,
and D. Sivakumar. An information statis-
tics approach to data stream and communica-
tion complexity. InProceedings of the 43rd

Annual IEEE Symposium on Foundations of
Computer Science, pages 209–218, 2002.

[CG88] B. Chor and O. Goldreich. Unbiased bits from
sources of weak randomness and probabilistic
communication complexity.SIAM Journal of
Computing, 17(2):230–261, 1988.

[CKS03] A. Chakrabarti, S. Khot, and X. Sun. Near-
optimal lower bounds on the multiparty com-
munication complexity of set-disjointness. In
Proceedings of the 18th Annual IEEE Confer-
ence on Computational Complexity, 2003.

[CSWY01] A. Chakrabarti, Y. Shi, A. Wirth, and A. Yao.
Informational complexity and the direct sum
problem for simultaneous message complex-
ity. In Proceedings of the 42nd Annual IEEE
Symposium on Foundations of Computer Sci-
ence, pages 270–278, 2001.

[CvDNT98] R. Cleve, Wim van Dam, M. Nielsen, and
A. Tapp. Quantum entanglement and the com-
munication complexity of the inner product
function. InProceedings of the 1st NASA In-
ternational Conference on Quantum Comput-
ing and Quantum Communications, Lecture
Notes in Computer Science, vol. 1509, pages
61–74. Springer-Verlag, 1998. Also quant-
ph/9708019.

[DHR78] D. Dacunha-Castelle, H. Heyer, and
B. Roynette. Ecole d’Et́e de Proba-
bilit és de Saint-Flour VII. Lecture Notes
in Mathematics, vol. 678. Springer-Verlag,
1978.

[FKS02] J. Feigenbaum, S. Kannan, and M. Strauss.
An approximatel1-difference algorithm for
massive data streams.SIAM Journal of Com-
puting, 32:131–151, 2002.

[FvdG99] C. A. Fuchs and J. van de Graaf. Crypto-
graphic distinguishability measures for quan-
tum mechanical states.IEEE Transactions on
Information Theory, 45(4):1216–1227, 1999.
Also quant-ph/9712042.

[GGI+02] A. Gilbert, S. Guha, P. Indyk, Y. Kotidis,
S. Muthukrishnan, and M. Strauss. Fast small
space algorithms for approximate histogram
maintenance. InProceedings of the 34th An-
nual ACM Symposium Theory of Computing,
pages 389–398, 2002.

[GMMO00] S. Guha, N. Mishra, Rajeev Motwani, and
L. O’Callaghan. Clustering data streams. In

9



Proceedings of the 41st Annual IEEE Sym-
posium on Foundations of Computer Science,
pages 359–366, 2000.

[HdW02] P. Hoyer and R. de Wolf. Improved quantum
communication complexity bounds for dis-
jointness and equality. InSymposium on The-
oretical Aspects of Computer Science, pages
299–310, 2002. Also quant-ph/0109068.

[Ind00] P. Indyk. Stable distributions, pseudorandom
generators, embeddings, and data stream com-
putations. InProceedings of the 41st Annual
IEEE Symposium on Foundations of Com-
puter Science, pages 189–197, 2000.

[JKS03] T.S. Jayram, R. Kumar, and D. Sivakumar.
Two applications of information complexity.
In Proceedings of the 35th Annual ACM Sym-
posium on Theory of Computing, pages 673–
682, 2003.

[KKN95] M. Karchmer, E. Kushilevitz, and N. Nisan.
Fractional covers and communication com-
plexity. SIAM Journal on Discrete Mathemat-
ics, 8(1):76–92, 1995.

[Kla01] H. Klauck. Lower bounds for quantum com-
munication complexity. InProceedings of
the 42nd Annual IEEE Symposium on Foun-
dations of Computer Science, pages 288–297,
2001. Also at quant-ph/0106160.

[KN97] E. Kushilevitz and N. Nisan. Communica-
tion complexity. Cambridge University Press,
1997.

[KNTZ01] H. Klauck, A. Nayak, Amnon Ta-Shma, and
D. Zuckerman. Interaction in quantum com-
munication and the complexity of set disjoint-
ness. InProceedings of the 33rd Annual ACM
Symposium on Theory of Computing, pages
124–133, 2001.

[Kre95] I. Kremer. Quantum communication. Master’s
thesis, Hebrew University, 1995.

[KS92] Bala Kalyansundaram and G. Schnitger. The
probabilistic communication complexity of
set intersection. SIAM Journal on Discrete
Mathematics, 5(4):545–557, 1992.

[Lin91] J Lin. Divergence measures based on Shannon
entropy. IEEE Transactions on Information
Theory, 37(1):145–151, 1991.

[LS81] R.J. Lipton and R. Sedgewick. Lower bounds
for VLSI. In Proceedings of the 13th An-
nual ACM Symposium on Theory of Comput-
ing, pages 300–307, 1981.

[MNSW98] P. Bro Miltersen, Noam Nisan, S. Safra, and
A. Wigderson. On data structures and asym-
metric communication complexity.Journal of
Computer and System Sciences, 57(1):37–49,
1998.

[Nay99] A. Nayak. Optimal lower bounds for quantum
automata and random access codes. InPro-
ceedings of the 40th Annual IEEE Symposium
on Foundations of Computer Science, pages
369–376, 1999.

[NC00] M. Nielsen and I. Chuang.Quantum Compu-
tation and Quantum Information. Cambridge
University Press, 2000.

[Nis02] N. Nisan. The communication complexity
of approximate set packing and covering. In
Proceedings of the 29th International Collo-
quium on Automata, Languages and Program-
ming, Lecture Notes in Computer Science,
vol. 2380, pages 868–875, 2002.

[Raz92] A. Razborov. On the distributional complex-
ity of disjointness.Theoretical Computer Sci-
ence, 106(2):385–390, 1992.

[Raz02] A. Razborov. Quantum communication com-
plexity of symmetric predicates. Izvestiya
Math, 6, 2002. In Russian. To appear. English
version at quant-ph/0204025.

[Sen03] P. Sen. Lower bounds for predecessor search-
ing in the cell probe model. InProceedings of
the 18th Annual IEEE Conference on Compu-
tational Complexity, 2003.

[SS02] M. Saks and X. Sun. Space lower bounds
for distance approximation in the data stream
model. In Proceedings of the 34th Annual
ACM Symposium on Theory of Computing,
pages 360–369, 2002.

[Yao79] A. Yao. Some complexity questions related
to distributed computing. InProceedings of
the 11th Annual ACM Symposium on Theory
of Computing, pages 209–213, 1979.

[Yao93] A. Yao. Quantum circuit complexity. InPro-
ceedings of the 34th Annual IEEE Symposium
on Foundations of Computer Science, pages
352–361, 1993.

10


