
ΣΠΣ Threshold Formulas

Jaikumar Radhakrishnan∗

Department of Computer Science
Rutgers University

New Brunswick, NJ 08903, USA

Abstract

A ΣΠΣ formula has the form
∨

u

∧
v

∨
w Luvw, where each L is either a variable or a

negated variable. In this paper we study the computation of threshold functions by ΣΠΣ
formulas. By combining the proof of the Fredman-Komlós bound [5, 10] and a counting
argument, we show that for k and n large and k ≤ n/2, every ΣΠΣ formula computing
the threshold function Tn

k has size at least exp(Ω(
√

k/ ln k))n log n. For k and n large and
k ≤ n2/3, we show that there exist ΣΠΣ formulas for computing Tn

k with size at most
exp(2

√
k ln k)n log n.

1 Introduction

The kth threshold function, Tn
k , is the Boolean function on n variables that takes the value 1

precisely when there are at least k 1’s in the input. Threshold functions play a central role in
the investigation of the complexity of Boolean functions. Their complexity has been studied in
various circuit models (see Boppana and Sipser [3], Wegener [18]). In this paper, upper and
lower bounds are shown for computing Tn

k using ΣΠΣ formulas. A ΣΠΣ formula has the form∨p
i=1

∧ti
j=1

∨
q∈Sij

q, where each Sij is a subset of variables and their negations.
The complexity of computing the majority function, Tn

dn/2e, using constant depth circuits
has been well studied [3]. Hastad [6] obtained a nearly optimal lower bound on the size of
such circuits. His result implies that any depth d circuit computing Tn

k , k ≤ n/2, has size
exp(Ω(k1/(d−1))). Note that for small values of k Hastad’s results do not give superlinear lower
bounds. Indeed, it has been shown by Newman, Ragde, and Wigderson [12] that for small values
of k (bounded by a function of the form (log n)r, for some constant r), there do exist linear size
constant depth circuits computing Tn

k .
The complexity of computing Tn

k using formulas over the basis {AND, OR, NOT} has also
been studied. Paterson, Pippenger, and Zwick [13] showed that all threshold functions can
be computed by formulas of size O(n4.57). Khrapchenko [9] showed that any such formula
must have size at least k(n − k + 1). Hansel [7] and Krichevskii [11] showed that any formula
computing Tn

k , 2 ≤ k ≤ n − 1, has size Ω(n log n). In the monotone case, when only AND
and OR gates are allowed, Valiant showed that the majority function can be computed by
formulas of size O(n5.3). Boppana [2] showed that Tn

k can be computed by monotone formulas
of size O(k4.3n log n). Radhakrishnan [14] showed that any monotone formula computing Tn

k ,
2 ≤ k ≤ n

2 , has size at least
⌊

k
2

⌋
n log(n

k−1).
For large values of k, the results for constant depth circuits mentioned above provide nearly

optimal bounds for constant depth formulas as well. However, the situation is different for small
∗Present address: Theoretical Computer Science Group, Tata Institute of Fundamental Research, Bombay,

INDIA 400 005.

1

thresholds. While the Ω(n log n) lower bound for Tn
2 , due to Hansel and Krichevskii, is tight for

ΣΠΣ formulas, for larger thresholds such tight bounds are not known. To better understand the
computation of Tn

k by constant depth formulas, Newman, Ragde, and Wigderson [12] considered
ΣΠΣ formulas computing Tn

k for small values of k. They showed, under the assumption that
each ti = k (fanin of the AND gates is k), that every ΣΠΣ formula computing Tn

k has size at
least Ω(kn log n). Under their assumption the problem is equivalent to the problem of cover-
ing the complete uniform hypergraph using k-partite hypergraphs. In this setting the problem
was studied earlier by Snir [16], who obtained the same lower bounds. It was shown by Rad-
hakrishnan [15] that the results of Snir can be improved using the techniques of Körner [10] and
Fredman and Komlós [5]. The result of [15] implies that every ΣΠΣ formula computing Tn

k , with
the restriction that the fanin for the AND gates be k, has size Ω(exp(k)

k
√

k
n log n). Using a random

family of k-partite hypergraphs one may obtain ΣΠΣ formulas of size O(
√

k exp(k)n log n) [8, 5].
Thus, there exist almost tight bounds on the size of such restricted ΣΠΣ formulas computing
Tn

k .
In this paper, we consider ΣΠΣ formulas computing Tn

k , k ≤ n
2 , with no restriction. That is,

the ti need not be k and the formula is permitted to contain negations. We obtain the following
results. Suppose that k and n are large numbers.

Result 1. If k ≤ n/2, then every ΣΠΣ formula computing Tn
k has size exp(

√
k/3)n.

Result 2. If k < (log log n)2, then every ΣΠΣ formula computing Tn
k has size at least

exp(δ(k))n log n, where δ(k) = 1
50

√
k

ln k .

Result 3. If k3/2 is an integer that divides n, then there exist ΣΠΣ formulas computing Tn
k

with size at most exp(2
√

k log k)n log n. These formulas are monotone.

Note that for k ≥ (log log n)2 the lower bound claimed in the abstract is implied by Result 1.
The main contribution of this work is Result 2, which combines an exponential dependence on k,
suggested by the small depth circuit lower bounds for the majority function, with the Ω(n log n)
lower bound of Hansel and Krichevskii. The proof is based on the proof of the Fredman-Komlós
bound presented by Körner [10]. Our proof, like Körner’s proof, makes use of the notion of
graph entropy. The idea is to associate graphs with formulas in such a way that graphs of small
formulas have low entropy, while a formula computing Tn

k has graph of high entropy.

1.1 Overview

The rest of the paper is organized as follows. In section 2, we recall definitions and facts about
graph entropy. In section 3, we describe the lower bound results. The lower bound stated as
Result 1 above is shown in subsection 3.2. Our main result, Result 2, is derived in subsection 3.3.
Assuming a combinatorial lemma, the main argument is presented in subsections 3.3.1 and 3.3.2.
The proof of the combinatorial lemma is presented in subsection 3.3.3. Finally, the proof of
Result 3 is presented in section 4.

We derive Result 1 using counting arguments that are related to those used later in the
proof of the combinatorial lemma. Result 1 can also be obtained from Hastad’s lower bound for
constant depth circuits computing majority (see Hastad [6, p. 37]). However, we believe that
familiarity with the arguments we present will help the reader follow the more involved proof of
the combinatorial lemma.

2

2 Graph Entropy

We shall need the following standard definitions from information theory (see [4]).

Definition 2.1 (Entropy) For a random variable X with finite support, the entropy of X is
given by

H(X) = −
∑
x

Pr[X = x] log Pr[X = x].

If X and Y are random variables then (X, Y) will be the random variable taking values in
support(X)× support(Y) according to the joint distribution of X and Y .

Definition 2.2 (Mutual Information) If X and Y are random variables, then their mutual
information is given by

I(X ∧ Y) = H(X) + H(Y)−H((X, Y)).

We shall need the following definitions and facts about graph entropy (see [10]).

Definition 2.3 (Graph Entropy) Let G be a graph. Let A(G) denote the set of independent
sets of G. Let X and Y be random variables taking values in V (G) and A(G) respectively. We
shall say that the pair (X, Y) is admissible for G if

1. X takes values in V (G) with uniform distribution; and

2. Pr[X = v and Y = A] = 0 whenever v 6∈ A.

The graph entropy H(G) is defined by

H(G) = min{I(X ∧ Y) : (X, Y) is admissible for G}.

Lemma 2.4 (Subadditivity) If F and G are graphs such that V (G) = V (F) = V , then
H(F ∪ G) ≤ H(F) + H(G). Here F ∪ G denotes the graph on vertex set V with E(F ∪ G) =
E(F) ∪ E(G). 2

Lemma 2.5 (Additivity) Let G1, G2, . . . , Gr be the connected components of the graph G.
Then,

H(G) =
r∑

i=1

|V (Gi)|
|V (G)|

H(Gi). 2

The following lemma is a direct consequence of the definition of graph entropy.

Lemma 2.6 (Monotonicity) If F and G are graphs on the same vertex set and E(F) ⊆ E(G),
then H(F) ≤ H(G). 2

Definition 2.7 (Coloring, Entropy of a Coloring) For a graph G, a function c with do-
main V (G) is a coloring of G if c(x) 6= c(y) whenever (x, y) ∈ E(G). The entropy of a coloring
c is given by H(c) = H(c(X)), where the random variable X takes values in V (G) with uniform
distribution.

Lemma 2.8 Let c be a coloring of the graph G. Then, H(G) ≤ H(c). 2

Lemma 2.9 (a) H(Kn) = log n; (b) If E(G) = ∅, then H(G) = 0. 2

3

Let L(x) = log((x + 1)e). We shall need the following lemma relating the entropy and the
expectation of a random variable. It can be obtained from Corollary 3.2, Csiszár and Körner [4,
page 56].

Lemma 2.10 If X is non-negative integer valued, then H(X) ≤ L(E(X)). Here E(X) denotes
the expectation of X. 2

The following lemma is due to Boppana [1].

Lemma 2.11 Every graph G with n vertices and m edges has a coloring with entropy at most
L(m

n). 2

Using Lemma 2.8 we obtain the following corollary to Lemma 2.11.

Corollary 2.12 Every graph with n vertices and m edges has entropy at most L(m
n). 2

3 The Lower Bounds

In this section we describe the two lower bound results, Result 1 and Result 2.

3.1 Notation

We shall use the following notation and conventions.
A ΣΠΣ formula has the form

∨p
i=1

∧ti
j=1

∨
q∈Sij

q, where each Sij is a subset of variables and
their negations. The size of a formula F , denoted by size(F), is the number of occurrences of
literals in it. Thus, if F is the ΣΠΣ formula

∨p
i=1

∧ti
j=1

∨
q∈Sij

q, then size(F) =
∑p

i=1

∑ti
j=1 |Sij |.

A ΠΣ formula has the form
∧t

j=1

∨
q∈Sj

q. We use S+
j to denote the set of non-negated variables

in Sj .
We use [n] to denote the set {1, 2, . . . , n}. For a set S,

(S
k

)
denotes the set of all k sized subsets

of S. A set of size k is called a k-set. [n]k denotes the set of all sequences of length k of elements
of [n] where no element is repeated. We write (n)k for |[n]k|. Thus, (n)k = n(n−1) . . . (n−k+1).

Let f be a function with n variables x1, x2, . . . , xn. We say that f accepts T ⊆ [n] if f
evaluates to 1 when all the variables xi, i ∈ T , are given the value 1 and the remaining variables
are given the value 0. We say that f accepts a sequence (i1, i2, . . . , ir) of elements of [n] if
f accepts the set {i1, i2, . . . , ir}. We identify a set of variables with the set of indices of those
variables. Similarly, we identify a sequence of variables with the sequence formed by their indices.
A function f is said to be l-immune if it accepts no set T with |T | ≤ l. Thus the threshold
function Tn

k is (k − 1)-immune. We shall use this notation for formulas also. For example, a
formula accepts a set T if the function it computes accepts T ; and a formula is l-immune if the
function it computes is l-immune.

When considering a formula with n variables, we shall normally assume that the n variables
are x1, x2, . . . , xn. If F is a formula with n variables and T ⊆ [n], then F |T denotes the formula
obtained from F by fixing the variables appearing in T at 1. Unless it is indicated otherwise, we
shall continue to think of F |T as a formula with n variables (only some of the variables do not
appear explicitly). We shall also use the extension of this notation and refer to F |σ, where σ is
a sequence of elements of [n]. For a ΠΣ formula F =

∧t
j=1

∨
q∈Sj

q and T ⊆ [n], F |T will denote
the formula obtained from F as follows: if some Sj contains a variable in T , that Sj will not
appear in F |T ; if some Sj contains the negation of a variable that appears in T , that variable
will be deleted from Sj . The formula F |σ, where σ is a sequence of elements of [n], is obtained
similarly.

4

3.2 ΣΠΣ formulas of large thresholds

Suppose that k is a large positive number, n ≥ 2k, and F is a ΣΠΣ formula computing Tn
k . Let

F =
∨p

i=1

∧ti
j=1

∨
q∈Sij

q. Let Ai =
∧ti

j=1

∨
q∈Sij

q, for i = 1, . . . , p. Since F is (k − 1)-immune
each Ai is (k − 1)-immune. Further, every input accepted by F is accepted by at least one of
the Ai, i = 1, 2, . . . , p.

To show the lower bound on size(F) we proceed as follows. We first show that a (k − 1)-
immune ΠΣ formula of small size cannot accept many k-sets. More precisely, we show that a
(k − 1)-immune ΠΣ formula A accepts at most

(
size(A)

n
) exp(−

√
k

3
)

(
n

k

)
(1)

of the k-sets. Since F accepts every k-set, it will follow that size(F) ≥ exp(
√

k
3)n.

Instead of directly estimating the number of k-sets accepted by a ΠΣ formula A, we will
find it more convenient to estimate the probability that a randomly chosen sequence σ ∈ [n]k
is accepted by A. We shall divide such a sequence σ into subsequences σL and σR, so that
σ = σLσR. The right subsequence σR will have length k′ and the left subsequence σL will have
length k − k′, where k′ =

⌊√
k
⌋
.

Assume A =
∧t

j=1

∨
q∈Sj

q is a (k − 1)-immune ΠΣ formula, and σ is chosen from [n]k with
uniform distribution. We say that

∨
q∈Sj

q is a big OR if |S+
j | ≥ n

2
√

k
. Lemma 3.1 shows that if σ

is chosen at random then A|σL is unlikely to have a big OR. Lemma 3.2 shows that if A|σL has
no big OR then A is unlikely to accept σ. These two facts, when combined, give the bound (1).

Lemma 3.1 Pr[A|σL has a big OR] ≤ 2
√

k(size(A)
n) exp(−k−k′

2
√

k
).

Proof: Let σ be chosen randomly from [n]k. For any fixed big OR
∨

q∈S q of A, the probability
that σL contains no variables in S+ is at most (1− 1

2
√

k
)k−k′ . Thus the probability that there is

some big OR in A|σL is at most (number of big ORs in A)(1− 1
2
√

k
)k−k′ . It follows that

Pr[A|σL has a big OR] ≤ 2
√

k(
size(A)

n
)(1− 1

2
√

k
)k−k′ ≤ 2

√
k(

size(A)
n

) exp(−k − k′

2
√

k
).

2

Lemma 3.2 Pr[A|σLσR ≡ 1 | A|σL has no big OR] ≤ k′ exp(−k′).

Proof: Consider a σL such that A|σL has no big OR. We shall show that the number of
extensions σR of σL such that A|σLσR ≡ 1 is at most(

n

2
√

k

)k′

k′!. (2)

On the other hand, the number of all extensions is at least (n− k + k′)k′ ≥ (n
2)k′ . We may then

complete the proof of the lemma by noting that

Pr[A|σLσR ≡ 1 | A|σL has no big OR] ≤

(
n

2
√

k

)k′

k′!(
n
2

)k′ ≤
(

1√
k

)k′ (k′

e

)k′

k′ ≤ k′ exp(−k′).

We still have to show the bound (2) on the number of extensions σR. The following nonde-
terministic procedure generates such extensions.

5

1. Initially set σ′R ←empty.

2. Repeat the following steps until some condition for stopping is met.

(a) If A|σLσ′
R

is identically 0, stop.

(b) If |σ′R| = k′, stop and output σ′R.

(c) Since A is a (k− 1)-immune formula, there must be an OR of A|σLσ′
R

that now contains

only non-negated variables; for otherwise, A would accept the sequence σLσ′R of length
at most k − 1. Take the first such OR, say X0, and extend σ′R to σ′Rv, where v is a
variable that appears in X0.

We claim that for every extension σR of σL, such that A accepts σLσR, we can find a sequence
σ′R produced by the above procedure that is a reordering of σR. To justify this, we shall show
that there is a sequence of choices in step (c) that produces a σ′R that is a reordering of σR.
Since initially σ′R is empty, it is contained in σR. It will suffice to show that in each iteration
we can extend σ′R by a new choice v so that σ′Rv is contained in σR. Suppose we are at the ith
iteration for some i ≤ k′ and σ′R is contained in σR. Now A accepts σLσR. Hence when we are
in step (c) of the ith iteration, one of the choices must be a variable in σR. Thus we may extend
σ′R with a variable v so that σ′Rv is contained in σR.

We may, therefore, estimate the number of such extensions σR by multiplying by k′! the
number of σ′R produced by the procedure. To bound the number number of σ′R produced, we
observe that the number of choices in each iteration of step (c) is at most n

2
√

k
. Thus the number

of of σ′R generated by the above procedure is at most (n
2
√

k
)k′ . Hence the number of extensions

σR for a fixed σL is at most (n
2
√

k
)k′k′!, establishing the bound (2). This completes the proof of

the lemma. 2

Lemma 3.3 The number of k-sets accepted by A is at most

(
size(A)

n
) exp(−

√
k

3
)

(
n

k

)
.

Proof: We have two cases. If size(A) < n
2 then there are at most n

2 variables that appear
in A. Since A is (k − 1)-immune every k-set accepted by A must contain the variables that
explicitly appear in A. The number of such sets is at most

(n
2
k

)
. Since for k large this is less

than exp(−
√

k
3)
(n
k

)
, the claim of the lemma holds in this case.

For the second case we have size(A) ≥ n
2 . Let σ be chosen from [n]k with uniform distribution.

Then

Pr[A|σ ≡ 1] ≤ Pr[A|σL has a big OR] + Pr[A|σLσR ≡ 1 | A|σL has no big OR].

Thus, using Lemma 3.1 and Lemma 3.2 we have

Pr[A|σ ≡ 1] ≤ 2
√

k(
size(A)

n
) exp(−k − k′

2
√

k
) + k′ exp(−k′)

≤ (
size(A)

n
)[2
√

k exp(−k − k′

2
√

k
) + 2k′ exp(−k′)]

≤ (
size(A)

n
)4
√

k exp(−k − k′

2
√

k
).

6

The last inequality holds because
√

k ≥ k′ and
k−b

√
kc

2
√

k
≤
⌊√

k
⌋
. For k large enough, we have

that

4
√

k exp(−k − k′

2
√

k
) ≤ exp(−

√
k

3
).

Since each k-set corresponds to precisely k! sequences in [n]k, and every sequence in [n]k corre-
sponds to some k-set, we have that the number of k-sets accepted by A is at most

(
size(A)

n
) exp(−

√
k

3
)

(
n

k

)
.

This completes the proof of the lemma. 2

Theorem 3.4 For all large k and n ≥ 2k, every ΣΠΣ formula computing Tn
k has size at least

exp(
√

k
3)n.

Proof: Let F =
∨p

i=1

∧ti
j=1

∨
q∈Sij

q be a ΣΠΣ formula computing Tn
k . For i = 1, . . . , p, let Ai

denote the subformula
∧ti

j=1

∨
q∈Sij

q. As discussed above each Ai is (k − 1)-immune and every
k-set is accepted by one of the Ai. Using Lemma 3.3 we have that

p∑
i=1

(
size(Ai)

n
) exp(−

√
k

3
)

(
n

k

)
≥
(

n

k

)
.

It follows that size(F) =
∑p

i=1 size(Ai) ≥ exp(
√

k
3)n. The theorem follows from this. 2

3.3 ΣΠΣ formulas for small thresholds

In the previous section we showed a lower bound of exp(Ω(
√

k))n on the size of any ΣΠΣ formula
computing Tn

k . However, for small values for k this bound is weak. For example, a lower bound
of n log n is known on the size of any formula computing Tn

2 , even when no restrictions are
imposed on the depth. For constant k, the result of the previous section does not give any
superlinear lower bound. In this section we shall show better lower bounds for small values of
k. The main result of this section is the following. For k and n large enough, k < (log log n)2,
every ΣΠΣ formula computing Tn

k has size at least

exp(δ(k))n log n,

where δ(k) = 1
50

√
k

ln k .
We shall show this bound by combining the counting argument of the last section and the

entropy arguments used in the proof of the Fredman-Komlós bound [5, 10, 15]. However, as
will become clear later, the counting argument needed is much more technical than in the last
section.

3.3.1 Preliminaries

Let k and n be fixed. With each formula on n variables we associate a graph. Under this
association the graph of a formula computing Tn

k will have high entropy.

Definition 3.5 (Fredman-Komlós graph) Let f be a formula on n variables. For k ≥ 2,
the graph G(f, k) is defined by

V (G(f, k)) = {(C, x) : C ∈
(

[n]
k − 2

)
and x ∈ [n]− C};

E(G(f, k)) = {((C, x), (D, y)) : C = D and f accepts C ∪ {x, y}}.

7

In the special case of k = 2 we may think of G(f, k) as a graph with vertex set [n] where (i, j)
is an edge if and only if {i, j} is accepted by f . In our discussion, the parameter k in the above
definition will often be clear from the context. For notational convenience, we will then write
G(f) instead of G(f, k).

Let f be a formula computing Tn
k . Then G(f, k) consists of

(n
k−2

)
components, where each

component is a complete graph on n−k+2 vertices. The following lemma is a direct consequence
of Lemma 2.5 and Lemma 2.9(a).

Lemma 3.6 If f is a formula computing Tn
k for k ≥ 2, then H(G(f, k)) = log(n− k + 2). 2

In general, for any formula f , the subgraph of G(f, k) induced by those vertices (C, x) that have
the same value for C will be called a block of G(f, k). Thus, there are

(n
k−2

)
blocks, one for each

C ∈
([n]
k−2

)
.

A ΠΣ formula f is k-optimal if f is (k−1)-immune and no (k−1)-immune ΠΣ formula g (on
the same set of variables as f) satisfies size(g) < size(f) and G(f, k) is a subgraph of G(g, k).

Lemma 3.7 Let k ≥ 2 and let f =
∧t

j=1

∨
q∈Sj

q be a k-optimal formula. Then no Sj has more
than k − 1 negated variables.

Proof: Suppose some Sj , say Sj0 , has at least k negated variables. Consider the formula g
obtained by omitting Sj0 . We claim that g is (k − 1)-immune. To justify this, first note that∨

q∈Sj0
q accepts all sets T with |T | < k. Then, since f ≡ g ∧

∨
q∈Sj0

q and f is (k − 1)-immune
(because f is k-optimal), it follows that g is also (k− 1)-immune. Clearly, G(f, k) is a subgraph
of G(g, k) and size(g) < size(f). But this contradicts the optimality of f . Hence, no Sj has
more than k − 1 negated variables. 2

Lemma 3.8 Let f =
∧t

j=1

∨
q∈Sj

q be a 2-optimal formula. Then no two Sj have the same
negated variable.

Proof: Suppose Si and Sj (i 6= j) have the same negated variable, say x1. By the previous
lemma they have no other negated variable. Let g be the formula obtained from f by omitting
Si. As before, G(f, 2) is a subgraph of G(g, 2) and size(g) < size(f). We claim that g is 1-
immune. First, note that if g accepts T and 1 6∈ T then f accepts T . Also, g does not accept
{1} because

∨
q∈Sj

q evaluates to 0 on {1} (Since f is optimal, Sj cannot contain x1). Thus if g
accepts T and |T | < 2 then so does f . Since f is 1-immune, it follows that g is 1-immune. But
this contradicts the optimality of f . The lemma follows from this. 2

3.3.2 The lower bound

Consider the ΣΠΣ formula F =
∨p

i=1

∧ti
j=1

∨
q∈Sij

q. Suppose that F computes Tn
k . Then G(F)

consists of
(n
k−2

)
disjoint complete graphs of size n− k + 2 and has entropy log(n− k + 2). Let

Ai =
∧ti

j=1

∨
q∈Sij

q. Note that G(F) is the union of the graphs G(Ai), i = 1, . . . , p. Roughly
speaking, we shall show that if the size of Ai is small then H(G(Ai)) is also small. Thus we
shall obtain a lower bound on

∑p
i=1 size(Ai), since the subadditivity of graph entropy provides

us the lower bound,
∑p

i=1 H(G(Ai)) ≥ H(G(F)) = log(n− k + 2), on the sum of the entropies.
To relate size(Ai) to H(G(Ai)), we need to show two results. The first is a combinatorial

result which shows, roughly speaking, that if size(Ai) is small then only a small number of
blocks are nonempty in G(Ai). Due to technical difficulties, introduced by the presence of
negated variables, we actually show that if some edges are deleted from G(Ai) then most of
the blocks are empty. The edges deleted from the different G(Ai) put together are so few that

8

they do not contribute significantly to the entropy of the final graph. This result, stated as the
Combinatorial Lemma (Lemma 3.21), is discussed in detail in section 3.3.3.

However, this result in itself is not sufficient to complete the proof of the lower bound. Even
if the number of nonempty blocks is small, each such block may be very dense and G(Ai) could
still have entropy which is not small enough for our purposes. The reader may recall that in the
proof of the Fredman-Komlós bound as stated in Körner [10] (see also [15]), we were faced with
a very similar situation. There, it turned out that the edges within one block were arranged as
a bipartite graph and therefore had small entropy. In our case, we cannot make such a strong
claim. Instead, to bound the entropy of a block, we observe that the edges contained in a block
correspond to the edges accepted by a certain 1-immune ΠΣ formula. For example, the edges
contained in the block corresponding to C ∈

([n]
k−2

)
are in direct correspondence with the edges

of G(Ai|C , 2). Lemma 3.9 relates the size of a 1-immune ΠΣ formula with the entropy of its
graph.

Lemma 3.9 Let A =
∧t

j=1

∨
q∈Sj

q be a 1-immune ΠΣ formula on n variables. Then

H(G(A, 2)) ≤ 2L(
size(A)

n
).

Proof: Let B be the smallest 1-immune ΠΣ formula (on the same variables as A) such that
G(A, 2) is a subgraph of G(B, 2). Then B is 2-optimal and size(B) ≤ size(A). Now, if the
statement of the lemma is true for all 2-optimal formulas, then we have, using Lemma 2.6, that

H(G(A, 2)) ≤ H(G(B, 2)) ≤ 2L(
size(B)

n
) ≤ 2L(

size(A)
n

),

and the statement is true for A also. Hence it is sufficient to prove the lemma under the
assumption that A is 2-optimal.

Assume that A is 2-optimal. By Lemma 3.7 an Sj may have at most one negated variable.
Since A does not accept the empty set, not all Sj have a negated variable. By Lemma 3.8 no
two Sj have the same negated variable. Let S1, S2, . . . , St′ not have any negated variable and
St′+1, St′+2, . . . , St have some negated variable. Further, let the negated variable in St′+j be xj

for 1 ≤ j ≤ t− t′.
Let G1 be the subgraph of G(A, 2) with vertex set [n] and consisting of all edges that have

at least one end in {1, 2, . . . , t − t′}. Let G2 be the graph with vertex set [n] consisting of the
remaining edges of G(A, 2).

Now, for 1 ≤ j ≤ t − t′, if (i, j) ∈ E(G1) then xi ∈ St′+j . It follows that |E(G1)| ≤∑t−t′

j=1(|St′+j | − 1) ≤ size(A). By Corollary 2.12 we have that H(G1) ≤ L(size(A)
n).

Next we consider the entropy of G2. Let χ : [n]→ [t′] be defined as follows.

χ(j) =

{
1 if 1 ≤ j ≤ t− t′;
min{r : Sr does not contain xj} if t− t′ < j ≤ n.

Since A is 1-immune, every variable xj not appearing in the negated form in A satisfies xj 6∈ Sr

for some r, 1 ≤ r ≤ t′. Thus χ is well defined. We claim that χ is a coloring of G2. Let
(i1, i2) ∈ E(G2). Since vertices 1, . . . , t − t′ are isolated in G2, t − t′ < i1, i2 ≤ n. Suppose
χ colors both i1 and i2 by the same color, say r. Then

∨
q∈Sr

q evaluates to 0 on {i1, i2} and
hence (i1, i2) is not an edge of G(A, 2) and therefore not an edge in G2. This contradicts our
assumption. Hence χ is a coloring of G2. By our definition

∑n
j=1(χ(j)−1) ≤ size(A). Thus if the

random variable X takes values in [n] with uniform distribution then E(χ(X)− 1) ≤ size(A)/n.
It follows from Lemma 2.8 and Lemma 2.10 that

H(G2) ≤ H(χ(X)) = H(χ(X)− 1) ≤ L(
size(A)

n
).

9

Using Lemma 2.4 we have H(G(A, 2)) ≤ H(G1) + H(G2) ≤ 2L(size(A)
n). 2

We now state the combinatorial result to be proved in the next section.
Lemma 3.21 (Combinatorial Lemma) Let A =

∧t
j=1

∨
q∈Sj

q be a (k − 1)-immune ΠΣ

formula. Let Γ = {γ ∈
([n]

k

)
: A accepts γ}. Let α(k) = 1

6

⌊√
k

e4 ln k

⌋
.

(a) Suppose size(A) ≤ n
2 . Let

Ψ = {a ∈
(

[n]
k − 2

)
: ∃x, y such that a ∪ {x, y} ∈ Γ}.

Then |Ψ| ≤
(size(A)

n

)
e−α(k)

(n
k−2

)
.

(b) Suppose size(A) > n
2 . Then there exists a set ∆ ⊆ Γ, |∆| ≤ n−

1
3
(n
k

)
, such that if

Ψ = {a ∈
(

[n]
k − 2

)
: ∃x, y such that a ∪ {x, y} ∈ Γ−∆},

then |Ψ| ≤
(size(A)

n

)
e−α(k)

(n
k−2

)
.

This result is useful for the following reason. Consider part (b) of the statement. Notice
that a set in ∆ contributes exactly

(k
2

)
edges to the graph G(A, k). Hence, roughly speaking, we

can infer that if we remove
(k
2

)
n−

1
3
(n
k

)
edges from G(A, k), then the number of nonempty blocks

in the remaining graph is small.

Lemma 3.10 Let A be a (k − 1)-immune ΠΣ formula on n variables. Let G′ be a subgraph of
G(A, k) with at most (size(A)

n)e−α(k)
(n
k−2

)
nonempty blocks. Then

H(G′) ≤ size(A)
n

exp(−α(k))2L(
size(A)

n− k + 2
) if size(A) ≤ n exp(α(k));

H(G′) ≤ 2L(
size(A)

n− k + 2
) if size(A) > n exp(α(k)).

Proof: We think of G′ as consisting of
(n
k−2

)
disjoint blocks G′

D, one for each D ∈
([n]
k−2

)
.

There is a natural correspondence between the vertex sets of G′ and G(A|D, 2) and, with this
correspondence, E(G′

D) ⊆ E(G(A|D, 2)). (Here we think of A|D as a formula on n − k + 2
variables). Since A is (k−1)-immune A|D is 1-immune. By Lemma 2.6 and Lemma 3.9 we have

H(G′
D) ≤ 2L(

size(A|D)
n− k + 2

) ≤ 2L(
size(A)

n− k + 2
).

Since the number of nonempty blocks in G′ is at most size(A)
n e−α(k)

(n
k−2

)
, we can conclude from

Lemma 2.4 that
H(G′) ≤ size(A)

n
e−α(k)2L(

size(A)
n− k + 2

).

Since the number of nonempty blocks is at most
(n
k−2

)
we always have

H(G′) ≤ 2L(
size(A)

n− k + 2
).

2

We are now ready to prove the main result of this section.

10

Theorem 3.11 Assume k and n are large numbers such that k < (log log n)2. Suppose that
F =

∨p
i=1

∧ti
j=1

∨
q∈Sij

q computes Tn
k . Then

size(F) ≥ exp(δ(k))n log n,

where δ(k) = 1
50

√
k

ln k .

Proof: Let Ai ≡
∧ti

j=1

∨
q∈Sij

q. Let

I1 = {i : size(Ai) ≤
n

2
};

I2 = {i :
n

2
< size(Ai) ≤ neα(k)};

I3 = {i : size(Ai) > neα(k)}.

For i ∈ I2, using the Combinatorial Lemma, we write G(Ai) = G1(Ai) ∪G2(Ai), where G1(Ai)
has at most size(Ai)

n e−α(k)
(n
k−2

)
nonempty blocks and G2(Ai) has at most

(k
2

)
n−

1
3
(n
k

)
edges. Now

G(F) =
⋃
i

G(Ai) =
⋃
i∈I1

G(Ai) ∪
⋃
i∈I2

G1(Ai) ∪
⋃
i∈I2

G2(Ai) ∪
⋃
i∈I3

G(Ai).

Let G′ =
⋃

i∈I2 G2(Ai). Thus |E(G′)| ≤ |I2|
(k
2

)
n−

1
3
(n
k

)
and

|E(G′)|
|V (G′)|

≤
|I2|
(k
2

)
n−

1
3
(n
k

)(n
k−2

)
(n− k + 2)

=
n−

1
3 |I2|(n− k + 1)

2
≤ |I2|n

2
3 .

By Lemma 2.4 and Lemma 3.6 we have that∑
i∈I1

H(G(Ai)) +
∑
i∈I2

H(G1(Ai)) + H(G′) +
∑
i∈I3

H(G(Ai)) ≥ H(G(F)) = log(n− k + 2).

By Corollary 2.12, Lemma 3.10 and Lemma 3.21 we have∑
i∈I1∪I2

size(Ai)
n

e−α(k)2L(
size(Ai)

n− k + 2
) + L(

|E(G′)|
|V (G′)|

) +
∑
i∈I3

2L(
size(Ai)

n− k + 2
) ≥ log(n− k + 2).

Therefore, at least one of the following cases holds.

Case 1 ∑
i∈I1∪I2

size(Ai)
n

e−α(k)2L(
size(Ai)

n− k + 2
) ≥ 1

8
log(n− k + 2)

i .e.
∑

i∈I1∪I2

size(Ai) ≥
neα(k) log(n− k + 2)

16L(eα(k)n
n−k+2)

.

Case 2

L(
|E(G′)|
|V (G′)|

) ≥ 3
4

log(n− k + 2)

i .e. L(|I2|n
2
3) ≥ 3

4
log(n− k + 2)

i .e. |I2| ≥
(n− k + 2)

3
4 − e

en
2
3

Since k ≤ (log log n)2, it follows that

size(F) ≥
∑
i∈I2

size(Ai) ≥
n

2
|I2| ≥ eδ(k)n log n, for large n.

11

Case 3 ∑
i∈I3

2L(
size(Ai)

n− k + 2
) ≥ 1

8
log(n− k + 2).

For i ∈ I3, let ri = size(Ai)
n−k+2 e−α(k). It can be easily verified that L(rx) ≤ rL(x) for r ≥ 1

and x ≥ 0. Now for each i ∈ I3, ri > 1. Hence

L(
size(Ai)

n− k + 2
) = L(rie

α(k)) ≤ riL(eα(k)).

Thus,
∑

i∈I3 ri ≥ log(n−k+2)

16L(eα(k))
and

∑
i∈I3

size(Ai) ≥
(n− k + 2)eα(k) log(n− k + 2)

16L(eα(k))
.

Since k and n are large numbers and k < (log log n)2, we have size(F) ≥ exp(δ(k))n log n in
each case. 2

3.3.3 Proof of the combinatorial lemma

Consider a (k − 1)-immune ΠΣ formula A =
∧t

j=1

∨
q∈Sj

q. Our final goal, roughly speaking, is
to show that if size(A) is small then there are not many (k − 2)-sets C that can be extended to
a set C ∪ {x, y} accepted by A. As in the proof of Theorem 3.4, it will be more convenient to
estimate the number of σ ∈ [n]k−2 that can be extended to a sequence σxy accepted by A.

In the following we will set

k′ =

√ k

e4 ln k

 ;

α(k) =
1
6
k′.

As before, we pick a σL ∈ [n]k−k′−2 at random. Then we extend it to a sequence σ = σLσR ∈
[n]k−2. We classify the Sj ’s of A into two kinds, small and big, based on the number of non-
negated variables they contain. If the size of A is not very big then there cannot be too many
big Sj ’s. If big and small are suitably defined, then we shall show, using arguments similar to
the proof of Lemma 3.1, that for randomly chosen σL, Pr[A|σL has a big Sj] is very small. Now
consider A|σL . Clearly, A|σL is a (k′ + 1)-immune formula. We will show that for a (k′ + 1)-
immune ΠΣ formula B with no big Sj there are very few σ ∈ [n]k′ such that B accepts σxy for
some x and y.

In the following B will denote a ΠΣ formula on n variables. We shall assume that B has the
following properties. Let B =

∧t
j=1

∨
q∈Sj

q.

(P1) B is (k′ + 1)-immune.

(P2) size(B) ≤ n exp(α(k)).

(P3) |Sj | ≥ 1 for j = 1, . . . , t.

(P4) Every Sj has at most nk′

k non-negated variables.

12

A sequence b ∈ [n]k′ is called extendible if B accepts bxy for some x, y. Our first goal is to
show that there are very few extendible sequences. To clarify the main idea of the proof we first
make some simplifying assumptions. Let us assume that there are no negations in B. Further,
suppose a uniformity condition holds: all variables appearing in any sequence bxy accepted by
B appear in the same number of Sj ’s.

Since the number of Sj ’s in B is t, the average number of occurrences of a variable is at most
t
n

nk′

k = tk′

k . On the other hand, if bxy ∈ [n]k′+2 is accepted by B, every Sj must include one of
the variables in bxy. Thus a variable in bxy appears in at least t

k′+2 of the Sj ’s. For our choice
of k′, tk′

k is smaller than t
k′+2 by a factor of about ln k. This suggests that the variables that

appear in bxy are not typical. Since all the variables in bxy appear in the same number of Sj ’s,
no variable in b is typical. The main idea of the proof is to exploit this fact and show that most
sequences b are not extendible.

Even without the uniformity condition, reasoning as before, we can conclude that there is
at least one extraordinary element in bxy. But this is not enough to conclude that b is also
atypical, because it may be that the extraordinary element is one of x and y. In our argument,
this difficulty is surmounted by identifying such exceptional elements and eliminating them from
the counting argument. The detailed argument, formalizing the rough sketch given above, is
described below. Technical difficulties arise mainly because the uniformity condition need not
hold and the formula may contain negations.

An Sj in the description of a ΠΣ formula will be called positive if it is not empty and it
has no negated variables. If it contains a negated variable it will be called negative. Let r be
a sequence of variables. We say that Sj intersects r if some non-negated variable of Sj appears
in r. Let r satisfy the following condition. (Note that B is ΠΣ formula and we assume the
conventions described in section 3.1 when we refer B|r.)

B|r has no empty Sj . (3)

Definition 3.12 (Exception sequence) For such a sequence r, the exception sequence for B
after r, denoted by Qr, is given by the following procedure.

1. Initially set Qr ←empty.

2. Repeat the following steps until some condition for stopping is met.

(a) If B accepts rQr, then stop.

Let Sav = n
l be the average size of a positive Sj of B|rQr

. Let t∗ be the number of
positive Sj ’s in B|rQr

. Call a pair of variables {x, y} safe for B|rQr
if {x, y} ⊆ [n]−rQr

and {x, y} does not include all the variables that appear negated in some negative Sj

of B|rQr
.

(b) If some safe pair of variables {x, y} intersects more than t∗(1− k
2lk′) of the positive Sj ’s

of B|rQr
, then let {x0, y0} be the lexicographically first such pair; set Qr ← Qrx0y0.

(c) Otherwise, that is, if no such pair exists, stop.

Note that this procedure always terminates because eventually there will be no safe pair left.

Lemma 3.13 Let r be a sequence of variables satisfying condition (3). If |r| ≤ k′

2 then |Qr| ≤
k′

2 + 1 and B|rQr
has a positive Sj .

Proof: By condition (3), B|r has no empty Sj . Our definition of safe pair ensures that if some
Sj of B|r has negated variables, then not all of them are included in Q|r. It follows that B|rQr

13

has no empty Sj . Thus, at any stage in the execution of the above procedure, if B|rQr
has no

positive Sj then B accepts rQr. We shall make use of this last observation.
Suppose, for contradiction, that |r| ≤ k′

2 but |Qr| > k′

2 + 1. Suppose p iterations of step (b)
of the above procedure were performed to produce Qr. In each iteration of step (b), exactly two
variables are added to Qr. It follows that p ≥

⌊
k′

4

⌋
+ 1

Let the value of t∗ at the beginning of the ith iteration be t∗i , for i = 1, 2, . . . , p; similarly, let
the value of Sav at the beginning of the ith iteration be n

li
. Using the observation made above,

we conclude that if at the beginning of any iteration B|rQr
has no positive Sj , then B accepts

rQr, and we stop in step (a). Since p iterations of step (b) were performed, t∗i > 1 and li is well
defined (<∞), for i = 1, 2, . . . , p.

The condition in step (b) implies that

t∗i+1 ≤ t∗i − t∗i (1−
k

2lik′
) =

k

2k′li
t∗i ,

for i = 1, 2, . . . , p− 1. Hence, for i = 1, 2, . . . , p− 1, we have

t∗i ≥
2k′li

k
t∗i+1.

Applying this inequality repeatedly and noting that t∗p ≥ 1, we have

t∗1 ≥
2k′l1

k
t∗2 ≥

2k′l1
k

2k′l2
k

t∗3 ≥ . . . ≥
(

2k′

k

)p−1

l1 . . . lp−1t
∗
p ≥

(
2k′

k

)p−1

l1l2 . . . lp−1. (4)

By property (P4), n
li
≤ nk′

k , that is, li ≥ k
k′ . It follows from the definition of t∗1 and n

l1
that

size(B) ≥ t∗1(
n
l1

). Using (4) we get

size(B) ≥ t∗1(
n

l1
) ≥ 2p−1 k′l1

k
(
n

l1
).

Since p− 1 =
⌊

k′

4

⌋
and 4 log e < 6, we have for large enough k that

size(B) ≥ n
k′

k
exp(

p− 1
log e

) ≥ n
k′

k
exp(

k′ − 4
4 log e

) ≥ n exp(
k′ − 4
4 log e

− ln k) > n exp(
k′

6
).

But this contradicts (P2). Thus we have established that |Qr| ≤ k′

2 + 1.
Next, suppose that |r| ≤ k′

2 and B|rQr
has no positive Sj . Then, by the observation above, B

accepts rQr. But |rQr| ≤ k′ + 1, contradicting (P1). This contradiction establishes the second
part of the lemma. 2

For convenience we shall adopt the following notation.

w(r, i) = the number of times the variable xi occurs in a positive Sj of B|rQr
.

n

l(r)
= the average size of a positive Sj in B|rQr

.

t∗(r) = number of positive Sj
′s in B|rQr

.

By Lemma 3.13 and (P3) all these are well defined, and l(r) < ∞, if |r| ≤ k′

2 . Note that
the expected number of occurrences of a variable among the positive Sj ’s of B|rQr

is precisely
Ev[w(r, v)] = t∗(r)/l(r).

Our approach to showing that the number of extendible sequences is small is the following.
We shall show that each extendible sequence can be reordered to form a special kind of sequence

14

called a π-sequence. A π-sequence a will consist of parts a1, a2, . . . , ah+1. Let r1 = empty
and rj+1 = rjaj . It will be ensured while reordering an extendible sequence b into a, that the
elements in ai are not typical in the following sense. For the indices j appearing in ai, the
weight w(ri, j) will be much higher than the expected value Ev[w(ri, v)]. We will then be able
to conclude that there are only few π-sequences. It will follow, then, that even the extendible
sequences that can be reordered to form π-sequences are few.

Below we first define a π-sequence precisely. Then we show that the number of π-sequences is
small (Lemma 3.16) and conclude that the number of sequences that can be reordered to form π-
sequences is also small (Lemma 3.17). These lemmas are direct consequences of our definitions
and are based on straight forward counting arguments. To complete the proof, however, we
still need to show that every extendible sequence can be reordered to form a π-sequence. To
accomplish this we need a technical lemma (Lemma 3.18). Finally, using Lemma 3.18, we show
in Lemma 3.19 that every extendible sequence can be reordered to form a π-sequence and hence
the number of extendible sequences is small.

The outline of the proof given above would have been accurate had there been no negations.
We, in reality, do not succeed in reordering all extendible sequences into π-sequences. Instead,
we show that the ones we fail to reorder cannot be extended in many ways. This is made precise
in the statement of Lemma 3.19.

Definition 3.14 (Good Partition) A sequence of integers π = (m1,m2, . . . ,mh,mh+1) is a
good partition if it satisfies the following conditions.

h+1∑
j=1

mj = k′; (5)

h∑
j=1

mj ≥ k′

2
; (6)

mj ≥ 1, for j = 1, . . . , h; (7)
mh+1 ≥ 0. (8)

Definition 3.15 (π-sequence) Let π = (m1,m2, . . . ,mh,mh+1) be a good partition. Let a ∈
[n]k′. Let a = a1a2 . . . ah+1, where |aj | = mj, for j = 1, . . . , h + 1. Set r1 = empty and
rj+1 = rjaj, j = 1, . . . , h− 1. We say a is a π-sequence if

w(rj , v) ≥ t∗(rj)
l(rj)

e3

(
k′

mj

) 1
mj

for j = 1, . . . , h and for all v ∈ aj . (9)

Lemma 3.16 For a good partition π = (m1,m2, . . . ,mh,mh+1) , the number of π-sequences is
at most

nk′e−
3k′
2

h∏
j=1

(
k′

mj

)−1

.

Proof: We shall show that only a few sequences satisfy (9), even if repetitions are permitted.
Clearly, this would give us an upper bound on the number of π-sequences.

It is convenient to state the proof in terms of probability. We wish to estimate the probability
that a sequence generated by randomly adding variables starting from an empty sequence is a
π-sequence. Suppose we have generated a1a2 . . . aj−1, 1 ≤ j ≤ h. We wish to estimate the
probability that each of the next mj random choices meets the condition (9) above. From the

15

definitions of t∗(rj) and n
l(rj)

we have that the expected number of occurrences of a variable
among the positive Sj ’s of BrjQrj

is given by

E(w(rj , v)) =
1
n

t∗(rj)
n

l(rj)
=

t∗(rj)
l(rj)

.

Thus, by Markov’s inequality,

Pr[w(rj , v) ≥ t∗(rj)
l(rj)

e3

(
k′

mj

) 1
mj

] ≤ e−3

(
k′

mj

)− 1
mj

.

It follows that

Pr[aj meets condition (9)] ≤ e−3mj

(
k′

mj

)−1

.

Thus

Pr[a1a2 . . . ah+1 is a π-sequence] ≤ e
−3
∑h

j=1
mj

h∏
j=1

(
k′

mj

)−1

.

By (6),
∑h

j=1 mj ≥ k′

2 . The lemma follows from this. 2

Let π = (m1,m2, . . . ,mh+1) be a good partition and let a = a1a2 . . . ah+1 be a π-sequence.
A sequence b is said to be derived from (π, a) if b is a reordering of the elements of a such that
each ai maintains its relative order. It is easy to see that the number of derived π-sequences
that can be obtained from a fixed π-sequence a is at most

h∏
j=1

(
k′

mj

)
.

Lemma 3.17 The number of sequences b that are derived π-sequences for some good partition
π is at most nk′e−

k′
2 .

Proof: The number of choices for π is at most 2k′ . To see this, consider the set of {0, 1}-
sequences of length k′ with at least one 1. With each such sequence σ, we shall associate a
partition of k′ as follows. Suppose σ contains h 1’s.

m1 = (the number of 0′s in σ before the 1st 1) + 1;
m2 = (the number of 0′s in σ between the 1st and 2nd 1) + 1;
m3 = (the number of 0′s in σ between the 2nd and 3rd 1) + 1;

...
mh = (the number of 0′s in σ between the (h− 1)st and hth 1) + 1;

mh+1 = (the number of 0′s in σ after the last 1).

Clearly,
∑h+1

j=1 mj = k′ and every good partition π = (m1,m2, . . . ,mh,mh+1) is associated with
some {0, 1}-sequence. Thus the number of good partitions is at most 2k′ .

For each choice of π, by Lemma 3.16 the number of π-sequences is at most

nk′e−
3
2
k′

h∏
j=1

(
k′

mj

)−1

.

16

As observed above, the number of derived π-sequences that can be obtained from any fixed
π-sequence is at most

∏h
j=1

(k′

mj

)
. Thus, the total number of derived π-sequences b is at most

2k′nk′e−
3
2
k′

h∏
j=1

(
k′

mj

)−1 h∏
j=1

(
k′

mj

)
≤ 2k′nk′e−

3
2
k′ ≤ nk′e−

k′
2 .

2

Lemma 3.18 (Technical Lemma) Let T be a nonempty subset of [n] of size at most k′. Let
δ be a positive real number. Let w be a weight function from T to the set of positive real
numbers. Set w(T) =

∑
i∈T w(i). Suppose w(T) ≥ δk

2k′ . Then ∃R ⊆ T, R 6= ∅, such that for
each i ∈ R,

w(i) ≥ δe3

(
k′

|R|

) 1
|R|

.

Proof: For j = 1, . . . , |T |, let Rj be the set of j elements of T with the largest weights. We
claim that one of the Rj meets the requirements of the lemma. Suppose for contradiction that
none of the Rj meets the requirements of the lemma. Let wj be the weight of the element of T
with the jth largest weight. Then we have that

wj < δe3

(
k′

j

) 1
j

≤ δe3 ek′

j
.

It follows that

w(T) =
|T |∑
j=1

wj < δe4k′
|T |∑
j=1

1
j
≤ δe4k′(1 + ln k′) ≤ δk

2k′
[
2e4(k′)2(1 + ln k′)

k
] ≤ δk

2k′
.

The last inequality holds because k′ =
⌊√

k
e4 ln k

⌋
. But this contradicts the condition that

w(T) ≥ δk
2k′ in the statement of the lemma, and the proof of the lemma is complete. 2

The main part of our argument will appear in the proof of the following lemma. For this
we will need the Lemma 3.13. Since that lemma was proved under the assumption that the
formula B had properties (P1)–(P4), we need to ensure that these properties hold when we
invoke that lemma. For easy reference, we state them again: (P1) B is (k′ + 1)-immune;
(P2) size(B) ≤ n exp(α(k)); (P3) |Sj | ≥ 1 for j = 1, . . . , t; (P4) Every Sj has at most nk′

k
non-negated variables. Also, recall that, for such a formula B and a sequence of variables r,
the exception sequence Qr was defined only if r satisfied the condition (3). We reproduce this
condition below for later reference.

B|r has no empty Sj . (3)

Lemma 3.19 Let F be a ΠΣ formula having the properties (P1)–(P4). Let

Γ = {γ ∈ [n]k′+2 : F accepts γ}.

Then there exists a set ∆ ⊆ Γ, |∆| ≤ n−
2
5 (n)k′+2 such that

|{b ∈ [n]k′ : ∃x, y such that bxy ∈ Γ−∆}| ≤ nk′e−
k′
2 .

17

Proof: Let bxy ∈ Γ. We wish to show that b is a derived π-sequence for some good partition
π. To do this, we describe a procedure which reorders b to produce a π-sequence a for a good
partition π. The procedure might fail for some elements of Γ; these we collect in the set ∆. In
the end we show that |∆| ≤ n−

2
5 (n)k′+2. The lemma will then follow from Lemma 3.17 because

there are only nk′e−
k′
2 derived π-sequences.

Let V ∗ be the variables in F that appear more than
√

n times. Using property (P2), we
have

|V ∗| ≤ exp(α(k))
√

n.

Let ∆0 = {γ ∈ Γ : γ ∩ V ∗ 6= ∅}. That is, ∆0 contains all the elements of Γ that include at least
one variable in V ∗. We have k′ + 2 possible positions for this variable, so

|∆0| ≤ (k′ + 2) exp(α(k))
√

n(n)k′+1. (10)

Let B be the formula obtained from F by fixing all the variables appearing in V ∗ at the value
0. Then, every sequence in Γ − ∆0 is accepted by B. If B is identically 0 then Γ ⊆ ∆0.
Then the lemma follows easily because |∆0| ≤ n−

2
5 (n)k′+2. (Recall k < (log log n)2, so that

(k′ + 2) exp(α(k)) ≤ log n.) Hence we may assume that B is not identically 0. It follows that
B has no empty Sj (that is, B has property (P3)). Since F is (k′ + 1)-immune, B is (k′ + 1)-
immune. We conclude that B has properties (P1)–(P4) and no variable in B appears more than√

n times.
Let bxy ∈ Γ − ∆0. We shall either show that b is a derived π-sequence or let bxy ∈ ∆1.

Finally, ∆ will be ∆0 ∪ ∆1. We construct a good partition π = (m1,m2, . . . ,mh,mh+1) and
rearrange b into a = a1a2 . . . ah+1, so that a is a π-sequence. Let the sequences ri be defined by
r1 = empty , ri+1 = riai. Recall (from Definition 3.12) that a pair of variables {x, y} is safe for
B|rQr

if {x, y} ∩ rQr = ∅ and {x, y} does not include all the negated variables in any negative
Sj of B|rQr

.
Initially set i = 1, r = empty and b̂ = b. {Throughout we shall maintain that r =

a1a2 . . . ai−1. Also, b̂ will be the sequence obtained by omitting r from b.} Repeat the following
four steps until some condition for stopping is met.

1. If |r| ≥ k′

2 , then set h = i− 1, ah+1 = b̂, mh+1 = |ah+1| and STOP.

2. If there is no pair {x̂, ŷ} that is safe for B|rQr
such that bx̂ŷ is accepted by B, then let

bxy ∈ ∆1, and STOP. {In particular, we have that {x, y} is not safe for B|rQr
. We will

need this observation when we estimate |∆1|.}

3. If such a pair exists, let {x̂, ŷ} be the lexicographically first such pair. Since B accepts
bx̂ŷ, B|r accepts b̂x̂ŷ. By our definition of exception sequence, Qr does not contain all
the negated variables of any negative Sj of B|r. Hence, B|rQr

also accepts b̂x̂ŷ. Since
{x̂, ŷ} is safe for B|rQr

, it follows from our definition of exception sequence that {x̂, ŷ}
intersects at most t∗(r)(1 − k

2k′l(r)) of the positive Sj ’s of B|rQr
. Hence, b̂ must intersect

the remaining at least t∗(r) − t∗(r)(1 − k
2k′l(r)) = t∗(r) k

2k′l(r) positive Sj ’s. With this we

invoke Lemma 3.18, setting w(v) = w(r, v), δ = t∗(r)
l(r) , and with T as the set of variables

appearing in b̂. (By Lemma 3.13, B|rQr
has at least one positive Sj , so δ > 0. Since b̂

intersects at least t∗(r) k
2k′l(r) positive Sj ’s, w(T) ≥ t∗(r) k

2k′l(r) ≥
δk
2k′ .) We conclude that

there is a non-empty subsequence ai of b̂ such that

w(r, v) ≥ t∗(r)
l(r)

e3

(
k′

|ai|

) 1
|ai|

, ∀v ∈ ai. (11)

18

4. Set mi = |ai|, r ← r ai, delete the elements of ai from b̂, and set i← i + 1.

Since none of the ai is empty, the procedure does terminate, and h ≤ k′

2 . Suppose bxy was
not put in ∆1. From (11) it follows that a = a1a2 . . . ah+1 is a π-sequence for the good partition
π = (m1,m2, . . . ,mh+1). Our construction thus ensures that b is a derived π-sequence.

It remains only to bound the size of ∆1. Suppose bxy ∈ ∆1. Then at some stage i in the
reordering process it was detected that {x, y} is not safe for B|riQri

. Note that the value of i

depends only on b and not on {x, y}. We have two possibilities (based on the definition of a safe
pair): (1) {x, y} intersects riQri ; (2) {x, y} includes all the negated variables of some negative
Sj of B|riQri

.

1. {x, y} intersects riQri . Since ri does not intersect {x, y}, {x, y} must intersect Qri . Let
R0 be the set of those sequences, bxy ∈ ∆1, where {x, y} intersects Qri . The number of
possibilities for {x, y} is at most 2|Qri |n. Now by Lemma 3.13, |Qri | ≤ (k′

2 + 1). Since
there are only (n)k′ possible values for b, we get that

|R0| ≤ 2|Qri |n(n)k′ ≤ 2(
k′

2
+ 1)n(n)k′ . (12)

2. Otherwise, {x, y} includes all the variables that appear negated in some negative Sj of
B|riQri

. In this case, Qrixy included all the variables that appear negated in some negative
Sj of B|ri . We have two cases. In the first case, {x, y} by itself includes all the variables
negated in some negative Sj of B|ri . Now B|ri accepts bxy; hence, in this case, bxy must
also include a non-negated variable in the Sj (so that

∨
q∈Sj

q evaluates to 1). For the
second case, we have that {x, y} and Qri both contain a variable negated in some Sj of
B|ri . Let

R1 = {bxy ∈ ∆1 : bxy includes all negations in some negative Sj of B}.

That is, R1 includes all the sequences considered in the first case above. Let

P = {(v, w) : ∃Sj v is negated and w is non-negated in Sj}.

Arguing as in the proof of Lemma 3.7, we may assume that there are at most k′ + 1
negations in any Sj . Thus |P | ≤ size(B)(k′ + 1). Each bxy ∈ R1 contains at least one
pair in P . As there are only (k′ + 2)(k′ + 1) possible positions for the pair, we get, using
property (P2), that

|R1| ≤ |P |(k′ + 2)(k′ + 1)(n)k′ ≤ n−
2
3 (n)k′+2. (13)

Let R2 = ∆1 − R1. That is, R2 includes all the sequences considered in the second case
above but not included in R1. Consider any b ∈ [n]k′ . We will estimate the number of
extensions bxy that belong to R2. Since we failed to rearrange b, at stage i some variable
in Qri and some variable in {x, y} both appear negated in a negative Sj of B|ri . Let

X = {v : ∃Sj ∃w ∈ Qri v and w both appear negated in Sj}.

By Lemma 3.13, |Qri | ≤ (k′

2 + 1). Since no variable occurs more than
√

n, times and since
there are at most (k′ − 1) negations in any Sj , we get that

|X| ≤ |Qri |(k′ − 1)
√

n ≤ (k′ − 1)(
k′

2
+ 1)
√

n. (14)

If bxy ∈ R2, then {x, y} ∩ X 6= ∅. The number of such extension for any b ∈ [n]k′ is at
most 2|X|n. Since there are only (n)k′ values for b, we have that |R2| ≤ 2|X|n(n)k′ .

19

Now k < (log log n)2, so that k′ ≤ log log n and exp(α(k)) ≤ log n. Thus, using (10), (12), (13),
and (14), we have

|∆| ≤ |∆0|+ |∆1|
≤ |∆0|+ |R0|+ |R1|+ |R2|

≤ (k′ + 2) exp(α(k))
√

n(n)k′+1 + 2(
k′

2
+ 1)
√

nn(n)k′ + n−
2
3 (n)k′+2 + 2|X|n(n)k′

≤ n−
2
5 (n)k′+2.

2

Lemma 3.20 Let A =
∧t

j=1

∨
q∈Sj

q be a (k − 1)-immune ΠΣ formula. Let Γ = {γ ∈ [n]k :
A accepts γ}.

(a) Suppose size(A) ≤ n
2 . Let

Ψ = {a ∈ [n]k−2 : ∃x, y such that axy ∈ Γ}.

Then

|Ψ| ≤
(

size(A)
n

)
exp(−k′

3
)nk−2.

(b) Suppose size(A) > n
2 . Then there exists a set ∆ ⊆ Γ, |∆| ≤ n−

1
3 (n)k such that if

Ψ = {a : ∃x, y such that axy ∈ Γ−∆},

then

|Ψ| ≤
(

size(A)
n

)
exp(−k′

3
)nk−2.

Proof: Suppose size(A) ≤ n
2 . Then the number of variables appearing explicitly in A is at most

n
2 . Let axy ∈ Γ. Then, since A is (k−1)-immune, a must contain only those variables that appear

explicitly in A. Thus the number of choices for a is at most (size(A))k−2 ≤
(size(A)

n

)
2−(k−3)nk−2,

and the lemma follows easily.
Now suppose that size(A) > n

2 . We may assume that size(A) ≤ n exp(k′

3) for otherwise the
lemma provides a bound greater than nk−2 which is trivial.

We say that an Sj is big if it has more than nk′

k non-negated variables. Thus A has at most

(size(A)k
nk′) big Sj . Let a ∈ [n]k−2. Let a = aLaR, where |aL| = k − 2− k′ and |aR| = k′. Let

B = {a ∈ [n]k−2 : A|aL
has a big Sj};

G = [n]k−2 − B.

Here, read G as good, for there are no big ORs after aL, and read B as bad, for there are big
ORs.

Now for a chosen randomly and a fixed big Sj

Pr[aL does not intersect Sj] ≤ (1− k′

k
)k−2−k′ ≤ exp(−k′

k
(k − 2− k′)) ≤ exp(−k′

2
).

Thus,

Pr[a ∈ B] ≤ (
size(A)k

nk′
)Pr[aL does not intersect a fixed big Sj] ≤ (

size(A)
n

) exp(−k′

2
).

20

It follows that

|B| ≤ (
size(A)

n
) exp(−k′

2
)nk−2. (15)

Let
Γ0 = {axy ∈ Γ : a ∈ B}.

Let GL = {aL : a ∈ G}. Let a ∈ G. We claim that A|aL
has property (P1), that is, A|aL

is
(k′+1)-immune. For suppose A|aL

accepts b and |b| ≤ (k′+1). We may assume that all variables
appearing in b also appear in some Sj of A|aL

. But then A, a (k − 1)-immune formula, accepts
aLb which has length at most k − 1. This contradiction establishes the claim. For aL ∈ GL, let

ΓaL
= {aLσxy : aLσxy ∈ Γ};

Γ
′
aL

= {σxy ∈ [n]k′+2 : A|aL
accepts σxy}.

Now,
Γ ⊆ Γ0 ∪

⋃
aL∈GL

ΓaL
.

If A|aL
has an empty Sj , then Γ

′
aL

= ∅. Suppose A|aL
has no empty Sj . Then it is easy to see

that A|aL
has properties (P1)–(P4). By Lemma 3.19 we may find ∆

′
aL
⊆ Γ

′
aL

of size at most

n−
2
5 (n)k′+2 such that if Ψ

′
aL

= {σ : ∃xy σxy ∈ Γ
′
aL
−∆

′
aL
}, then |Ψ′

aL
| ≤ exp(−k′

2)nk′ . Let

ΨaL
= {aLσ : σ ∈ Ψ

′
aL
};

∆aL
= {aLσ : σ ∈ ∆

′
aL
};

∆ =
⋃

aL∈GL

∆aL
.

Ψ1 =
⋃

aL∈GL

ΨaL
.

It follows from our definitions that (note that k < (log log n)2)

|∆| ≤ |GL|n−
2
5 (n)k′+2

≤ (n)k−k′−2n
− 2

5 (n)k′+2

≤ n−
1
3 (n)k

|Ψ1| ≤ |GL| exp(−k′

2
)nk′

≤ exp(−k′

2
)nk−2.

It is easy to verify that
Ψ = {a : ∃x, y axy ∈ Γ−∆} ⊆ B ∪Ψ1.

Thus using (15) we get that

|Ψ| ≤ |Ψ′| = |B|+ |Ψ1|

≤ (
size(A)

n
exp(−k′

2
) + exp(−k′

2
))nk−2

≤ 3
size(A)

n
exp(−k′

2
)nk−2

≤
(

size(A)
n

)
exp(−k′

3
)nk−2.

21

This completes the proof of the lemma. 2

After this, the proof of our combinatorial lemma is straight forward.

Lemma 3.21 (Combinatorial Lemma) Let A =
∧t

j=1

∨
q∈Sj

q be a (k − 1)-immune ΠΣ for-

mula. Let Γ = {γ ∈
([n]

k

)
: A accepts γ}. Let α(k) = 1

6

⌊√
k

e4 ln k

⌋
.

(a) Suppose size(A) ≤ n
2 . Let

Ψ = {a ∈
(

[n]
k − 2

)
: ∃x, y such that a ∪ {x, y} ∈ Γ}.

Then |Ψ| ≤
(size(A)

n

)
e−α(k)

(n
k−2

)
.

(b) Suppose size(A) > n
2 . Then there exists a set ∆ ⊆ Γ, |∆| ≤ n−

1
3
(n
k

)
, such that if

Ψ = {a ∈
(

[n]
k − 2

)
: ∃x, y such that a ∪ {x, y} ∈ Γ−∆},

then |Ψ| ≤
(size(A)

n

)
e−α(k)

(n
k−2

)
.

Proof: The only difference between this and the previous lemma is that here we consider sets
instead of sequences. Note that that every k-set corresponds to precisely (n)k sequences. For us
n is large and k < (log log n)2, so (n)k−2 ≥ 1

2nk−2. Our lemma is an immediate consequence of
Lemma 3.20. 2

4 The Upper Bound

In this section we show that there exist ΣΠΣ formulas for computing Tn
k , when k is small, of

size at most
e2

√
k ln kn log n.

Assume that k3/2 is an integer that divides n.
We construct the formulas in two stages. In the first stage we construct ΠΣ formulas. These

formulas are (k − 1)-immune and they accept a large proportion of all inputs that a formula
computing Tn

k must accept. In the next stage, we take the disjunction of random copies of this
formula and obtain a ΣΠΣ formula computing Tn

k . Let
([n]

k

)
denote the set of of all k sized

subsets of [n].

Lemma 4.1 There exists a ΠΣ formula computing T l2
l of size at most(

l2

l − 1

)
(l2 − l + 1).

Proof: Let
F =

∧
S∈([l2]

l2−l+1
)

∨
j∈S

xj .

It is easy to verify that F computes T l2
l correctly. Also,

size(F) =

(
l2

l − 1

)
(l2 − l + 1).

2

22

Lemma 4.2 There exists a (k − 1)-immune ΠΣ formula G such that size(G) ≤
(k√

k

)
n and G

accepts at least exp(−
√

k(ln
√

k + 2))
(n
k

)
sets of size k.

Proof: Let l =
√

k. Let D1, D2, . . . , Dl be a partition of [n] into l equal parts. For each
i = 1, . . . , l, let D1

i , D
2
i , . . . , D

l2
i be a partition of Di into l2 equal parts. Thus |Dj

i | = n
l3

.
Let Fi be the formula obtained from the formula F in Lemma 4.1 by replacing the variable

xj by
∨

q∈Dj
i
xq. That is,

Fi =
∧

S∈([l2]

l2−l+1
)

∨
j∈S

∨
q∈Dj

i

xq

Note that Fi is a ΠΣ formula and it is (
√

k − 1)-immune. Let G =
∧l

i=1 Fi. Note that G is a
ΠΣ formula and it is (k − 1)-immune. We have

size(Fi) =

(
l2

l − 1

)
(l2 − l + 1)

n

l3
;

size(G) =
l2 − l + 1

l2

(
l2

l − 1

)
n

≤
(

l2

l

)
n.

The number of sets of size k accepted by G is given by

l∏
i=1

(the number of sets of size l accepted by Fi) =

[(
l2

l

)
(
n

l3
)l

]l

≥
[
(l2)l

l!
nl

l3l

]l

≥
[
l2l(1− 1

l)
l

l!
nl

l3l

]l

≥ (
1

e2l
)l

(
n

l2

)
.

Since l2 = k, the proof is complete. 2

Theorem 4.3 There exists a ΣΠΣ formula of size at most e3
√

k log kn log n computing Tn
k .

Proof: Let r be a parameter to be chosen later. We take r independent copies of the formula
G described in Lemma 4.2 by randomly permuting the variable set. Let these random copies be
G1, G2, . . . , Gr. For any fixed set T of size k,

Pr[Gi does not accept T] ≤ 1− exp(−
√

k(ln
√

k + 2)), for i = 1, 2, . . . , r.

Since the Gi are independently chosen,

E[number of k-sets accepted by none of G1, G2, . . . , Gr] ≤
(

n

k

)
(1− exp(−

√
k(ln
√

k + 2)))r.

For r = k exp(
√

k(ln
√

k + 2)) lnn, this expected value is less than 1. Hence there must be some
r copies Ĝ1, Ĝ2, . . . , Ĝr, such that every set of size k is accepted by at least one of them. Let
our ΣΠΣ formula for Tn

k be F̂ =
∨r

i=1 Ĝi.

23

Clearly F̂ is (k− 1)-immune. It accepts every set of size k and by monotonicity every set of
size at least k. Further,

size(F̂) ≤
(

k√
k

)
(e2
√

k)
√

kkn log n ≤ e2
√

k ln kn log n.

2

Acknowledgment

I thank my advisor, Endre Szemerédi, for contributing so generously to this work. I am grate-
ful to the referees for their comments and suggestions, especially to Referee 3 for her patient
and sympathetic reading of the utterly unreadable first version of this paper. Shiva Chaud-
huri checked the proofs carefully, pointed out many errors and suggested several improvements.
Magnuús Halldòrsson’s suggestions contributed greatly to the presentation in this paper. I thank
them for their help. I thank Zoli Király, Ilan Newman, and Avi Wigderson for their comments.
The final version of this paper was prepared while I was visiting the Japan Advanced Institute
of Science and Technology, Hokuriku.

References

[1] R. B. Boppana. Optimal Separations Between Concurrent-Write Parallel Machines. Pro-
ceedings of the 23rd ACM STOC, 1989, pp. 320–326.

[2] R. B. Boppana. Amplification of Probabilistic Boolean Formulas. Advances in Computing
Research, Vol. 5, 1989, pp. 27–45.

[3] R. B. Boppana and Michael Sipser. The Complexity of Finite Functions. Chapter 14, The
Handbook of Theoretical Computer Science, (J. van Leeuven, ed.), Elsevier Science Pub-
lishers B. B., 1990, pp. 759–804.

[4] I. Csiszár and J. Körner. Information Theory, Coding Theorems for Discrete Memoryless
Systems. Académia Kiadó, Budapest, 1981.

[5] M. Fredman and J. Komlós. On the size of Separating Systems and Perfect Hash Functions.
Siam J. Alg. Disc. Meth., 1984, pp. 61–68.

[6] J. Hastad. Computational Limitations for Small Depth Circuits. MIT Press, 1986.

[7] G. Hansel. Nombre minimal de contacts de fermature nécessaires pour réaliser une fonction
booléenne symétrique de n variables. C. R. Acad. Sci. Paris 258 (1964), pp. 6037–6040.

[8] L. S. Khasin. Complexity Bounds for the Realization of Monotone Symmetrical Functions
by Means of Formulas in the Basis ∨, ∧, ¬. Sov. Phys. Dokl. 14 (1970), pp. 1149–1151.

[9] V. M. Khrapchenko. A method of obtaining lower bounds for the complexity π-schemes.
Math. Notes Acad. Sci. USSR 11 (1972), pp. 474–479.

[10] J. Körner. Fredman–Komlós Bound and Information Theory. Siam J. Alg. Disc. Meth.,
1986, pp. 560–570.

[11] R. E. Krichevskii. Complexity of contact circuits realizing a function of logical algebra. Sov.
Phys. Dokl. 8 (1964) pp. 770–772.

24

[12] I. Newman, P. Ragde, and A. Wigderson. Perfect Hashing, Graph Entropy and Circuit
Complexity Proceedings of the 5th annual conference on Structure in Complexity Theory,
1990, pp. 91–99.

[13] M. S. Paterson, N. Pippenger, and U. Zwick. Optimal carry save networks. Boolean Func-
tion Complexity: selected papers for the LMS symposium, Durham 1990. Cambridge
Univ. Press, 1992, pp. 174–201.

[14] J. Radhakrishnan. Better Bounds for Threshold Formulas. In the proceedings of the 32nd
IEEE FOCS, 1991, pp. 314-323.

[15] J. Radhakrishnan. Improved Bounds for Covering Complete Uniform Hypergraphs. Infor-
mation Processing Letters 41 (1992), pp. 203–207.

[16] M. Snir. The Covering Problem of Complete Uniform Hypergraphs. A note, Discrete Math.
27, 1979, pp. 103–105.

[17] L. G. Valiant. Short monotone formulae for the majority function. Journal of Algorithms
5, 1984, pp. 363–366.

[18] I. Wegener. The Complexity of Boolean Functions. Wiley-Teubner Series in Computer Sci-
ence, 1987.

25

