
Combinatorial Optimization: Assignment 1

Due date: Feb 21, 2025

———————————————————————————————————–

1. An edge cover of a graph G = (V,E) is a subset R of E such that every vertex of V is incident
to at least one edge in R. Let G be a bipartite graph with no isolated vertex. Show that
the size of a minimum edge cover R∗ of G is equal to |V | minus the size of the maximum
matching M∗ of G. Give an efficient algorithm to find a minimum edge cover of G. Does the
equation |R∗| = |V | − |M∗| also hold for non-bipartite graphs?

2. Consider a bipartite graph G = (A ∪ B,E). Assume that for some vertex sets A1 ⊆ A and
B1 ⊆ B, there exists a matching MA that matches all vertices in A1 and a matching MB that
matches all vertices in B1 . Prove that there exists a matching that matches all vertices in
A1 ∪B1.

3. Consider a bipartite graph G = (A ∪B,E) where each vertex has degree k. Prove that such
a graph always has a perfect matching in two different ways: (i) by using Hall’s theorem and
(ii) by using the linear programming formulation that inspired the primal-dual algorithm for
the assignment problem.

Using the above fact (that a perfect matching always exists in a k-regular bipartite graph),
show that the edges of a k-regular bipartite graph G can be partitioned into k matchings.
That is, the edge chromatic number of G is precisely k.

4. Prove that the running time of the primal-dual algorithm for the assignment problem is O(n3),
where n is the number of vertices on each side of the bipartite graph. Recall that our input
graph here was Kn,n.

5. Show that the running time of the maximum matching algorithm in a bipartite graph G =
(A ∪ B,E) can be improved to O(m

√
n), where |E| = m and |A ∪ B| = n. In the O(mn)

algorithm, we were building a Hungarian forest FA with unmatched vertices of A at level 0
and searching for an augmenting path.

Now find a maximal number of vertex-disjoint shortest length augmenting paths in FA in each
iteration and augment M along all of them. Show that one iteration can be implemented in
O(m) time (we assume G is connected, so m ≥ n− 1).

Show that the shortest length augmenting path with respect to M grows by at least 2 in

each iteration. So in b
√
n
2 c iterations, the shortest length augmenting path with respect to M

becomes at least
√
n− 1. Thus conclude that there are at most 2

√
n iterations.

6. Our algorithm for the assignment problem allows us to conclude that there is always an
integral solution to the linear program that inspired the primal-dual algorithm. Reprove this
result in the following way.

Take a possibly non-integral optimum solution x∗ . If there are many optimum solutions, then
take one with as few non-integral values x∗ij as possible. Show that if some coordinate of x∗

is non-integral, then there exists a cycle C with all edges e = (i, j) ∈ C having a non-integral



value x∗ij . Now show how to derive another optimum solution with fewer non-integral values,
leading to a contradiction.

7. Dulmage-Mendelsohn decomposition. Let M be a maximum matching in a bipartite graph
G = (A ∪B,E). Partition A ∪B into sets EM ,OM , and UM as follows:

� let EM be the set of vertices reachable by even length alternating paths with respect to
M from a vertex unmatched in M .

� let OM be the set of vertices reachable by odd length alternating paths with respect to
M from a vertex unmatched in M .

� let UM = (A ∪B)− EM ∪ OM .

Show that EM ∩OM = ∅. Let EM ′ ,OM ′ , and UM ′ be sets analogously defined with respect to
another maximum matching M ′ in G = (A ∪ B,E). Prove that EM = EM ′ , OM = OM ′ , and
UM = UM ′ .

8. Let G be any bipartite graph and let E denote the set EM of the previous exercise (where M
is any maximum matching in G) and let O denote the set OM of the previous exercise. Let
C be any minimum vertex cover of G. Show that O ⊆ C and C ∩ E = ∅.

9. Given a graph G = (V,E), an inessential vertex is a vertex u such that there exists a maximum
matching of G not matching u. Let E be the set of inessential vertices in G. Let O denote
the set of vertices not in E but adjacent to at least one vertex in E . Let U = V − (E ∪ O).
The triple 〈E ,O,U〉 is called the Edmonds-Gallai partition of V . Prove that the size of a
maximum matching in G equals 1

2(|V | + |O| − o(G −O)), where o(G −O) is the number of
connected components of odd size of G−O.

10. The previous exercise shows that O is a minimizer U in the Tutte-Berge theorem. Can there
be several such minimizers U? Either give an example with several sets U achieving the
minimum, or prove that the set U has to be the set O (which means the set U is unique).


