Combinatorial Optimization: Assignment 1

Due date: Feb 21, 2025

. An edge cover of a graph G = (V, F) is a subset R of E such that every vertex of V' is incident
to at least one edge in R. Let G be a bipartite graph with no isolated vertex. Show that
the size of a minimum edge cover R* of G is equal to |V| minus the size of the maximum
matching M* of G. Give an efficient algorithm to find a minimum edge cover of G. Does the
equation |R*| = |V| — |M*| also hold for non-bipartite graphs?

. Consider a bipartite graph G = (AU B, E). Assume that for some vertex sets A; C A and
By C B, there exists a matching M 4 that matches all vertices in A; and a matching Mp that
matches all vertices in By . Prove that there exists a matching that matches all vertices in
A1 U B;.

. Consider a bipartite graph G = (AU B, E) where each vertex has degree k. Prove that such
a graph always has a perfect matching in two different ways: (i) by using Hall’s theorem and
(ii) by using the linear programming formulation that inspired the primal-dual algorithm for
the assignment problem.

Using the above fact (that a perfect matching always exists in a k-regular bipartite graph),
show that the edges of a k-regular bipartite graph G can be partitioned into k& matchings.
That is, the edge chromatic number of G is precisely k.

. Prove that the running time of the primal-dual algorithm for the assignment problem is O(n?),
where n is the number of vertices on each side of the bipartite graph. Recall that our input
graph here was K, ;.

. Show that the running time of the maximum matching algorithm in a bipartite graph G =
(AU B, E) can be improved to O(m+/n), where |E| = m and |AU B| = n. In the O(mn)
algorithm, we were building a Hungarian forest F4 with unmatched vertices of A at level 0
and searching for an augmenting path.

Now find a maximal number of vertex-disjoint shortest length augmenting paths in F4 in each
iteration and augment M along all of them. Show that one iteration can be implemented in
O(m) time (we assume G is connected, so m >n — 1).

Show that the shortest length augmenting path with respect to M grows by at least 2 in
Vvn

each iteration. So in | 5" ] iterations, the shortest length augmenting path with respect to M
becomes at least v/n — 1. Thus conclude that there are at most 2/n iterations.

. Our algorithm for the assignment problem allows us to conclude that there is always an
integral solution to the linear program that inspired the primal-dual algorithm. Reprove this
result in the following way.

Take a possibly non-integral optimum solution z* . If there are many optimum solutions, then
take one with as few non-integral values x7; as possible. Show that if some coordinate of z*
is non-integral, then there exists a cycle C with all edges e = (i, j) € C having a non-integral



10.

value z7;. Now show how to derive another optimum solution with fewer non-integral values,
leading to a contradiction.

. Dulmage-Mendelsohn decomposition. Let M be a maximum matching in a bipartite graph

G = (AU B, E). Partition AU B into sets Ey, Opy, and Uy, as follows:

e let £y be the set of vertices reachable by even length alternating paths with respect to
M from a vertex unmatched in M.

e let Ops be the set of vertices reachable by odd length alternating paths with respect to
M from a vertex unmatched in M.

° letUMI(AUB)—EMUOM.

Show that Eyy N Oy = 0. Let Eppr, Opgr, and Uy be sets analogously defined with respect to
another maximum matching M’ in G = (AU B, E). Prove that £y = Eppr, Opr = Oy, and
Upnr = Uy

. Let G be any bipartite graph and let £ denote the set s of the previous exercise (where M

is any maximum matching in G) and let O denote the set Oy of the previous exercise. Let
C be any minimum vertex cover of G. Show that O C C and C N & = (.

. Given a graph G = (V, E), an inessential vertex is a vertex u such that there exists a maximum

matching of G not matching u. Let £ be the set of inessential vertices in G. Let O denote
the set of vertices not in £ but adjacent to at least one vertex in £&. Let U =V — (£ U O).
The triple (£,0,U) is called the Edmonds-Gallai partition of V . Prove that the size of a
maximum matching in G equals 1(|V|+ |O] — o(G — O)), where o(G — ) is the number of

connected components of odd size of G — O.

The previous exercise shows that O is a minimizer U in the Tutte-Berge theorem. Can there
be several such minimizers U? FEither give an example with several sets U achieving the
minimum, or prove that the set U has to be the set O (which means the set U is unique).



