Combinatorial Optimization: Assignment 1

Due date: Feb 21, 2025

- 1. An edge cover of a graph G = (V, E) is a subset R of E such that every vertex of V is incident to at least one edge in R. Let G be a bipartite graph with no isolated vertex. Show that the size of a minimum edge cover R^* of G is equal to |V| minus the size of the maximum matching M^* of G. Give an efficient algorithm to find a minimum edge cover of G. Does the equation $|R^*| = |V| - |M^*|$ also hold for non-bipartite graphs?
- 2. Consider a bipartite graph $G = (A \cup B, E)$. Assume that for some vertex sets $A_1 \subseteq A$ and $B_1 \subseteq B$, there exists a matching M_A that matches all vertices in A_1 and a matching M_B that matches all vertices in B_1 . Prove that there exists a matching that matches all vertices in $A_1 \cup B_1$.
- 3. Consider a bipartite graph $G = (A \cup B, E)$ where each vertex has degree k. Prove that such a graph always has a perfect matching in two different ways: (i) by using Hall's theorem and (ii) by using the linear programming formulation that inspired the primal-dual algorithm for the assignment problem.

Using the above fact (that a perfect matching always exists in a k-regular bipartite graph), show that the edges of a k-regular bipartite graph G can be partitioned into k matchings. That is, the edge chromatic number of G is precisely k.

- 4. Prove that the running time of the primal-dual algorithm for the assignment problem is $O(n^3)$, where n is the number of vertices on each side of the bipartite graph. Recall that our input graph here was $K_{n,n}$.
- 5. Show that the running time of the maximum matching algorithm in a bipartite graph $G = (A \cup B, E)$ can be improved to $O(m\sqrt{n})$, where |E| = m and $|A \cup B| = n$. In the O(mn) algorithm, we were building a Hungarian forest F_A with unmatched vertices of A at level 0 and searching for an augmenting path.

Now find a maximal number of vertex-disjoint shortest length augmenting paths in F_A in each iteration and augment M along all of them. Show that one iteration can be implemented in O(m) time (we assume G is connected, so $m \ge n-1$).

Show that the shortest length augmenting path with respect to M grows by at least 2 in each iteration. So in $\lfloor \frac{\sqrt{n}}{2} \rfloor$ iterations, the shortest length augmenting path with respect to M becomes at least $\sqrt{n} - 1$. Thus conclude that there are at most $2\sqrt{n}$ iterations.

6. Our algorithm for the assignment problem allows us to conclude that there is always an *integral* solution to the linear program that inspired the primal-dual algorithm. Reprove this result in the following way.

Take a possibly non-integral optimum solution x^* . If there are many optimum solutions, then take one with as few non-integral values x_{ij}^* as possible. Show that if some coordinate of x^* is non-integral, then there exists a cycle C with all edges $e = (i, j) \in C$ having a non-integral

value x_{ij}^* . Now show how to derive another optimum solution with fewer non-integral values, leading to a contradiction.

- 7. Dulmage-Mendelsohn decomposition. Let M be a maximum matching in a bipartite graph $G = (A \cup B, E)$. Partition $A \cup B$ into sets $\mathcal{E}_M, \mathcal{O}_M$, and \mathcal{U}_M as follows:
 - let \mathcal{E}_M be the set of vertices reachable by even length alternating paths with respect to M from a vertex unmatched in M.
 - let \mathcal{O}_M be the set of vertices reachable by odd length alternating paths with respect to M from a vertex unmatched in M.
 - let $\mathcal{U}_M = (A \cup B) \mathcal{E}_M \cup \mathcal{O}_M$.

Show that $\mathcal{E}_M \cap \mathcal{O}_M = \emptyset$. Let $\mathcal{E}_{M'}, \mathcal{O}_{M'}$, and $\mathcal{U}_{M'}$ be sets analogously defined with respect to another maximum matching M' in $G = (A \cup B, E)$. Prove that $\mathcal{E}_M = \mathcal{E}_{M'}, \mathcal{O}_M = \mathcal{O}_{M'}$, and $\mathcal{U}_M = \mathcal{U}_{M'}$.

- 8. Let G be any bipartite graph and let \mathcal{E} denote the set \mathcal{E}_M of the previous exercise (where M is any maximum matching in G) and let \mathcal{O} denote the set \mathcal{O}_M of the previous exercise. Let C be any minimum vertex cover of G. Show that $\mathcal{O} \subseteq C$ and $C \cap \mathcal{E} = \emptyset$.
- 9. Given a graph G = (V, E), an *inessential* vertex is a vertex u such that there exists a maximum matching of G not matching u. Let \mathcal{E} be the set of inessential vertices in G. Let \mathcal{O} denote the set of vertices not in \mathcal{E} but adjacent to at least one vertex in \mathcal{E} . Let $\mathcal{U} = V (\mathcal{E} \cup \mathcal{O})$. The triple $\langle \mathcal{E}, \mathcal{O}, \mathcal{U} \rangle$ is called the *Edmonds-Gallai* partition of V. Prove that the size of a maximum matching in G equals $\frac{1}{2}(|V| + |\mathcal{O}| o(G \mathcal{O}))$, where $o(G \mathcal{O})$ is the number of connected components of odd size of $G \mathcal{O}$.
- 10. The previous exercise shows that \mathcal{O} is a minimizer U in the Tutte-Berge theorem. Can there be several such minimizers U? Either give an example with several sets U achieving the minimum, or prove that the set U has to be the set \mathcal{O} (which means the set U is unique).