
MPI Informatik 1 Kurt Mehlhorn

The Maximum Flow ProblemInput: � a direted graph G = (V;E), soure node s 2 V , sink node t 2 V� edge apaities ap : E ! IR�0
s t2/2 1/11/0

2/1
1/1

Goal: � ompute a ow of maximal value, i.e.,� a funtion f : E ! IR�0 satisfying the apaity onstraints and theow onservation onstraints(1) 0 � f(e) � ap(e) for every edge e 2 E(2) Pe;target(e)=v f(e) = Pe;soure(e)=v f(e) for every node v 2 V nfs; tg� and maximizing the net ow into t. MPI Informatik 3 Kurt Mehlhorn

Some Notation and First Properties� the exess of a node v: exess(v) = Pe;target(e)=v f(e) � Pe;soure(e)=v f(e)� in a ow: all nodes exept s and t have exess zero.� the value of a ow = val(f) = exess(t)Clearly: the net ow into t is equal to the next ow out of s.Lemma 1 exess(t) = �exess(s)The proof is short and illustrates an important tehniqueexess(s) + exess(t) =Xv2V exess(v) = 0

� the �rst equality holds sine exess(v) = 0 for v 6= s; t.� the seond equality holds sine the ow aross any edge e = (v; w) appearstwie in this sum{ positively in exess(w) and negatively in exess(v)

MPI Informatik 4 Kurt Mehlhorn

Cuts� a subset S of the nodes is alled a ut. Let T = V n S� S is alled an (s; t)-ut if s 2 S and t 2 T .� the apaity of a ut is the total apaity of the edges leaving the ut,ap(S) = Xe2E\(S�T) ap(e):� a ut S is alled saturated if f(e) = ap(e) for all e 2 E \ (S � T) andf(e) = 0 for all e 2 E \ (T � S).

s t2/2 1/11/0
2/1

1/1 s t2/2 1/01/1
2/2

1/1

MPI Informatik 5 Kurt Mehlhorn

Cuts and FlowsLemma 2 For any ow f and any (s; t)-ut� val(f) � ap(S).� if S is saturated, val(f) = ap(S).Proof: We haveval(f) = �exess(s) = �Xu2S exess(u)= Xe2E\(S�T) f(e)� Xe2E\(T�S) f(e) � Xe2E\(S�T) ap(e)= ap(S):For a saturated ut, the inequality is an equality.

Remarks:� A saturated ut proves the maximality of a ow.� For every maximal ow there is a saturated ut proving its maximality (=))

MPI Informatik 6 Kurt Mehlhorn

The Residual Network� let f be a ow in G = (V;E)� the residual network Gf aptures possible hanges to f{ same node set as G{ for every edge e = (v; w) up to two edges e0 and e00 in Gf� if ap(e) < f(e), we have an edge e0 = (v; w) 2 Gfresidual apaity r(e0) = ap(e)� f(e).� if f(e) > 0, we have an edge e00 = (w; v) 2 Gfresidual apaity r(e00) = f(e).� two ows and the orresponding residual networks

s t2/2 1/11/0
2/1

1/1 s t2/2 1/01/1
2/2

1/1

MPI Informatik 7 Kurt Mehlhorn

The Max-Flow-Min-Cut TheoremTheorem 1 Let f be an (s; t)-ow, let Gf be the residual network with respet tof , and let S be the set of nodes that are reahable from s in Gf .a) If t 2 S then f is not maximum.b) If t =2 S then S is a saturated ut and f is maximum.

s t ts ts

G Gf G

2/1
2/2

2/2
2/11/1 1

1
12

2
11 2/2
2/21/02/2
2/2

An illustration of part a)

MPI Informatik 8 Kurt Mehlhorn

Max-Flow-Min-Cut: The Proof of Part a)If t is reahable from s in Gf , f is not maximal� Let p be any simple path from s to t in Gf� Let Æ be the minimum residual apaity of any edge of p. Then Æ > 0.� We onstrut a ow f 0 of value val(f) + Æ. Let (see Figure on preeding slide)

f 0(e) = 8>><>>: f(e) + Æ if e0 is in pf(e)� Æ if e00 is in pf(e) if neither e0 nor e00 belongs to p:� f 0 is a ow and val(f 0) = val(f) + Æ.

a path in Gf : s �! v1 �! v2 �! v3 �! v4 �! v5 �! tthe orresponding path in G: MPI Informatik 9 Kurt Mehlhorn

Max-Flow-Min-Cut: The Proof of Part b)If t annot be reahed from s in Gf , f is maximal.� Let S be the set of nodes reahable from s and let T = V n S.� There is no edge (v; w) in Gf with v 2 S and w 2 T .� Hene{ f(e) = ap(e) for any e with e 2 E \ (S � T) and{ f(e) = 0 for any e with e 2 E \ (T � S)� Thus S is saturated and f is maximal.

Gf G

MPI Informatik 10 Kurt Mehlhorn

The Ford-Fulkerson Algorithm� start with the zero ow, i.e., f(e) = 0 for all e.� onstrut the residual network Gf� hek whether t is reahable from s.{ if not, stop{ if yes, inrease ow along an augmenting path, and iterate� eah iteration takes time O(n+m)� if apaities are arbitrary reals, the algorithm may run forever� integral apaities, say in [0 :: C℄, v� = value of the maximum ow � nC{ all ows onstruted are integral (and hene �nal ow is integral)� Proof by indution: if urrent ow is integral, residual apaities areintegral and hene next ow is integral{ every augmentation inreases ow value by at least one{ running time is O((n+m)v�); this is good if v� is small MPI Informatik 11 Kurt Mehlhorn

Bipartite Mathing� given a bipartite graph G = (A [B;E), �nd a maximal mathing� mathing M , a subset of the edges, no two of whih share an endpoint� redues easily to network ow{ add a soure s, edges (s; a) for a 2 A, apaity one{ add a sink t, edges (b; t) for b 2 B, apaity one{ diret edges in G from A to B, apaity +1{ integral ows orrespond to mathings{ Ford-Fulkerson takes time O(nm) sine v� � n, an be improved to O(pnm)0123
4567

0123
4567

MPI Informatik 12 Kurt Mehlhorn

The Theorem of HallTheorem 2 A bipartite graph G = (A [B;E) has an A-perfet mathing (= amathing of size jAj) i� for every subset A0 � A, j�(A0)j � jA0j, where �(A0) isthe set of neighbors of the nodes in A0.ondition is learly neessary; we need to show suÆieny� assume that there is no A-perfet mathing� then ow in the graph de�ned on preeding slide is less than jAj� and hene minimum ut has apaity less than jAj.� onsider a minimum (s; t)-ut (S; T).� let A0 = A \ S, A00 = A \ T , B0 = B \ S, B00 = B \ T

� no (!!!) edge from A0 to B00 and hene �(A0) � B0� ow = jB0j+ jA00j < jAj = jA0j+ jA00j� thus jB0j < jA0j

A Theoretial Improvement for Integral Capaities� modify Ford-Fulkerson by always augmenting along a ow of maximalresidual apaity� essentially replaes v� by m log v� in time bound, good for large v�� pratial value is minor, but proof method is interesting� Lemma 3 Max-res-ap-path an be determined in time O(m logm).� Lemma 4 O(m+m logdv�=me) augmentations suÆe� Theorem 3 running time beomes: T = O((m+m logdv�=me)m logm)

Lemma 5 Max-res-ap-path an be determined in time O(m logm).� sort the edges of Gf in dereasing order of residual apaity� let e1, e2, : : : , em0 be the sorted list of edges� want to �nd the minimal i suh that fe1; : : : ; eig ontains a path from s to t� for �xed i we an test existane of path in time O(n+m)� determine i by binary searh in O(logm) rounds.

Lemma 6 O(m+m logdv�=me) augmentations suÆe� a ow an be deomposed into at most m paths{ start with a maximal ow f{ repeatedly onstrut a path from s to t, saturate it, and subtrat from f� augmentation along max-res-ap-path inreases ow by at least 1=m of distto v�� let gi be the di� between v� and the ow value after the i-th iteration� g0 = v�� if gi > 0, gi+1 � gi �max(1; gi=m) � min(gi � 1; (1� 1=m)gi)� gi � (m�1m)ig0 and hene gi � m if i is suh that (m�1m)ig0 � m.� this is the ase if i � logm=(m�1)(v�=m) = log(v�=m)logm=(m�1)� log(m=(m� 1)) = log(1 + 1=(m� 1)) � 1=(2m) for m � 10� number of iterations � m+ 2m log(v�=m)

Dini's Algorithm (1970), General Capaities� start with the zero ow f� onstrut the layered subgraph Lf of Gf� if t is not reahable from s, stop� onstrut a bloking ow fb in Lf and augment to f , repeat

� in Lf nodes are on layers aording to their BFS-distane from s and onlyedges going from layer i to layer i+ 1 are retained� Lf is onstruted in time O(m) by BFS� bloking ow: a ow whih saturates one edge on every path from s to t� the number of rounds is at most n, sine the depth of Lf grows in eah round(without proof, but see analysis of # of saturating pushes in preow-push alg)� a bloking ow an be omputed in time O(nm)� T = O(n2m) MPI Informatik 17 Kurt Mehlhorn

An Example Run of Dini's AlgorithmI will illustrate the sequene of residual graphs and residual level graphs.

0 1 2
34

5

1 1 13 1 21 1

MPI Informatik 18 Kurt Mehlhorn

The Computation of Bloking Flows� maintain a path p starting at s, initially p = �, let v = tail(p)� if v = t, inrease fb by saturating p, remove saturated edges, set p to theempty path (breakthrough)� if v = s and v has no outgoing edge, stop� if v 6= t and v has an outgoing edge, extend p by one edge� if v 6= t and v has no outgoing edge, retreat by removing last edge from p.

� running time is #extends +#retreats + n �#breakthroughs� #breakthroughs � m, sine at least one edge is saturated� #retreats � m, sine one edge is removed� #extends � #retreats + n �#breakthroughs, sine a retreat anels one extendand a breakthrough anels n extends� running time is O(m+ nm) = O(nm) MPI Informatik 19 Kurt Mehlhorn

Preow-Push Algorithms� f is a preow (Karzonov (74)): exess(v) � 0 for all v 6= s; t� residual network with respet to a preow is de�ned as for ows� Idea: preows give additional exibilitys v t

� manipulate a preow by operation push(e; Æ){ Preonditions:� e is residual, i.e., e = (v; w) 2 Ef� v has exess, i.e, exess(v) > 0� Æ is feasible, i.e, Æ � min(exess(v); resf (e)){ Ation: push Æ units of ow from v to w� derease exess(v) by Æ, inrease exess(w) by Æ, modify f and adaptEf (remove e if it now saturated, add its reversal)� Question: Whih push to make?� Answer: push towards t, but what does this mean?

MPI Informatik 20 Kurt Mehlhorn

The Level Funtion (Goldberg/Tarjan)� a simple and highly e�etive notion of \towards t"� arrange the nodes on levels, d(v) = level number of v 2 IN� at all times: d(t) = 0, d(s) = n� all an edge e = (v; w) eligible i� e 2 Ef and d(w) < d(v)� and only push aross eligible edges, i.e., from higher to lower level

Question: What to do when v has positive exess but no outgoing eligible edge?Answer: lift it up, i.e., inrease d(v) by one (relabel v)

MPI Informatik 21 Kurt Mehlhorn

The Generi Push-Relabel Algorithmset f(e) = ap(e) for all edges with soure(e) = s;set f(e) = 0 for all other edges;set d(s) = n and d(v) = 0 for all other nodes;while there is a node v 6= s; t with positive exessf let v be any suh node node;if there is an eligible edge e = (v; w) in Gff push Æ aross e for some Æ � min(exess(v); res ap(e)); gelsef relabel v; gg � obvious hoie for Æ: Æ = min(exess(v); res ap(e))� push with Æ = res ap(e) saturating push� push with Æ < res ap(e) non-saturating push� need to bound the number of relabels and the number of pushes

MPI Informatik 22 Kurt Mehlhorn

A Sample Run

s a t2 1and here omes the sequene of residual graphs (residual apaities are shown)
MPI Informatik 23 Kurt Mehlhorn

No Steep Edgesan edge e = (v; w) 2 Gf is alled steep if d(w) < d(v)� 1, i.e., if it reahes downby two or more levels.Lemma 7 The algorithm maintains a preow and does not generate steep edges.The nodes s and t stay on levels 0 and n, respetively.Proof:� the algorithm maintains a preow by the restrition on Æ� after initialization: edges in Gf go sidewards or upwards� when v is relabeled, no edge in Gf out of v goes down. After relabeling,edges out of v go down at most one level.� a push aross an edge e = (v; w) 2 Gf may add the edge (w; v) to Gf . Thisedge goes up.� s and t are never relabeled

MPI Informatik 24 Kurt Mehlhorn

The Maximum Level Stays Below 2nLemma 8 If v is ative then there is a path from v to s in Gf . No distane labelever reahes 2n.Proof: Let S be the set of nodes that are reahable from v in Gf and letT = V nS. ThenXu2S exess(u) = Xe2E\(T�S) f(e)� Xe2E\(S�T) f(e);There is no edge (v; w) 2 Gf with v 2 S and w =2 S. Thus, f(e) = 0 for everye 2 E \ (T � S). We onlude Pu2S exess(v) � 0.Sine s is the only node whose exess may be negative and sine exess(v) > 0 wemust have s 2 S.Assume that a node v is moved to level 2n. Sine only ative nodes are relabeledthis implies the existene of a path (and hene simple path) in Gf from a node onlevel 2n to s (whih is on level n). Suh a path must ontain a steep edge. MPI Informatik 25 Kurt Mehlhorn

Partial CorretnessTheorem 4 When the algorithm terminates, it terminates with a maximum ow.Proof: When the algorithm terminates, all nodes di�erent from s and t haveexess zero and hene the algorithm terminates with a ow. Call it f .In Gf there an be no path from s to t sine any suh path must ontain a steepedge (sine s is on level n, t is on level 0). Thus, f is a maximum ow by themax-ow-min-ut theorem.

In order to prove termination, we bound the number of relabels, the number ofsaturating pushes and the number of non-saturating pushes.The former two quantities are easily bounded.We have to work harder for the number of non-saturating pushes.

MPI Informatik 26 Kurt Mehlhorn

On the Number of Relabels and Saturating PushesLemma 9 There are at most 2n2 relabels and at most nm saturating pushes.Proof:� no distane label ever reahes 2n.� therefore, eah node is relabeled at most 2n times� the number of relabels is therefore at most 2n2.

� a saturating push aross an edge e = (v; w) 2 Gf removes e from Gf .� Claim: v has to be relabeled at least twie before the next push aross e andhene there an be at most n saturating pushes aross any edge.{ only a push aross erev an again add e to Gf .{ for this to happen w must be lifted by two levels, : : :

MPI Informatik 27 Kurt Mehlhorn

On the Number of Non-Saturating Pushes: Saling/* saling push-relabel algorithm (Ahuja-Orlin) for integral apaities */set f(e) = ap(e) for all edges with soure(e) = s and f(e) = 0 for all other edges;set d(s) = n and d(v) = 0 for all other nodes;set � = 2dlogmaxe ap(e)e;while (� > 1)f while there is a node v 6= s; t with exess(v) � �=2f let v be the lowest (!!!) suh node;if there is an eligible edge e = (v; w) in Gff push Æ aross e for Æ = min(�=2; res ap(e)); gelsef relabel v; gg� = �=2;g � exesses are bounded by �, i.e., at all times and for all v 6= t: exess(v) � �� a non-saturing push moves �=2 units of ow

MPI Informatik 28 Kurt Mehlhorn

On the Number of Saturating Pushes in Ahuja-OrlinLemma 10 The number of non-saturating pushes is at most 4n2 + 4n2dlogUe,where U is the largest apaityWe use a potential funtion argument (let V 0 = V n fs; tg)� = Xv2V 0 d(v)exess(v)�� � � 0 always, � = 0 initially� total derease of � � total inrease of �� a relabel inreases � by at most one� every push dereases �� a non-saturating push dereases � by 1=2� a hange of � inreases � by at most 2n2� � is hanged dlogUe times� (1=2)#non sat pushes � total derease � total inrease � 2n2 + 2n2dlogUe MPI Informatik 29 Kurt Mehlhorn

On the Number of Sat Pushes in the Generi Algorithm� pushes are made as large as possible, i.e., � = min(exess(v); res ap(e))� a non-saturating push deativates the soure of the push� (persistene) when an ative node v is seleted, pushes out of v are performeduntil either v beomes inative (beause of a non-saturating push out of v) oruntil there are no eligible edges out of v anymore. In the latter ase v isrelabeled.� we study three rules for the seletion of ative nodes.Arbitrary : an arbitrary ative node is seleted.#non sat pushes = O(n2m), Goldberg and TarjanFIFO: the ative nodes are kept in a queue and the �rst node in the queue isalways seleted. When a node is relabeled or ativated the node is added tothe rear of the queue, #non sat pushes = O(n3), Goldberg.Highest-Level : an ative node on the highest level, i.e., with maximal d-value isseleted, #non sat pushes = O(n2pm), Cheriyan and Maheshwari

MPI Informatik 30 Kurt Mehlhorn

The Arbitrary RuleLemma 11 When the Arbitrary-rule is used, the number of non-saturatingpushes is O(n2m).Proof: � = Xv2V 0;v is ative d(v):� � � 0 always, and � = 0 initially.� a non-saturating push dereases � by at least one, sine it deativates thesoure of the push (may ativate the target)� a relabeling inreases � by one.� a saturating push inreases � by at most 2n, sine it may ativate the target� total inrease of � � n2 + nm2n = n2(1 + 2m)� #non sat pushes � total inrease of �

MPI Informatik 31 Kurt Mehlhorn

The FIFO Rule� ative nodes are in a queue, head of queue is seleted for pushing/relabeling� relabeled and ativated nodes are added to the rear of the queue� we split the exeution into phases� �rst phase starts at the beginning of the exeution� a phase ends when all nodes that were ative at the beginning of the phasehave been seleted from the queue� eah node is seleted at most one in eah phase: #non sat pushes � n �#phasesLemma 12 When the FIFO-rule is used, the number of phases is O(n2).Proof: Use � = max fd(v) ; v is ative g� � � 0 always, and � = 0 initially.� a phase ontaining no relabel operation dereases � by at least one, sine allnodes on the hightest level beome inative.� a phase ontaining a relabel operation inreases � by at most one, sine arelabel inreases the highest level by at most one.

Lemma 13 When the Highest-Level-rule is used, #non sat pushes = O(n2pm).Warning: Proof in Ahuja/Magnanti/Orlin is wrong, proof here Cheriyan/M� let K = pm. For a node v, let d0(v) = jfw; d(w) � d(v)gj=K.� potential funtion � = Pv;v is ative d0(v).� exeution is split into phases� phase = all pushes between two onseutive hanges ofd� = max fd(v) ; v is ative g� phase is expensive if it ontains more than K non-sat pushes, heap otherwise.We show:(1) The number of phases is at most 4n2.(2) The number of non-saturating pushes in heap phases is at most 4n2K.(3) � � 0 always, and � � n2=K initially.(4) A relabeling or a sat push inreases � by at most n=K.(5) A non-saturating push does not inrease �.(6) An expensive phase with Q � K non-sat pushes dereases � by at least Q.
(1) The number of phases is at most 4n2.(2) The number of non-saturating pushes in heap phases is at most 4n2K.(3) � � 0 always, and � � n2=K initially.(4) A relabeling or a sat push inreases � by at most n=K.(5) A non-saturating push does not inrease �.(6) An expensive phase with Q � K non-sat pushes dereases � by at least Q.� Suppose that we have shown (1) to (6).� (4) and (5) imply total inrease of � � (2n2 +mn)n=K� above + (3): total derease an be at most this number plus n2=K� #non sat pushes in expensive phases � (2n3 + n2 +mn2)=K.� above + (2) #non sat pushes � (2n3 + n2 +mn2)=K + 4n2Ksine n � m: #non sat pushes � 4mn2=K + 4n2K = 4n2(m=K +K)K = pm: #non sat pushes � 8n2pm.

(1) The number of phases is at most 4n2: we have d� = 0 initially, d� � 0 always,and only relabels inrease d�. Thus, d� is inreased at most 2n2 times,dereased no more than this, and hene hanged at most 4n2 times.(2) The number of non-saturating pushes in heap phases is at most 4n2K:follows immediately from (1) and the de�nition of a heap phase.(3) � � 0 always, and � � n2=K initially: obvious(4) A relabeling or a sat push inreases � by at most n=K: follows from theobservation that d0(v) � n=K for all v and at all times.(5) A non-saturating push does not inrease �: observe that a non-sat pushaross an edge (v; u) deativates v, ativates u (if it is not already ative),and that d0(u) � d0(v).(6) An expensive phase with Q � K non-sat pushes dereases � by at least Q:onsider an expensive phase ontaining Q � K non-sat pushes. d� is onstantduring a phase and hene all Q non-saturating pushes must be out of nodesat level d�. The phase is �nished either beause level d� beomes empty orbeause a node is moved from level d� to level d� + 1. In either ase, weonlude that level d� ontains Q � K nodes at all times during the phase.Thus, eah non-saturating push in the phase dereases � by at least one(sine d0(u) � d0(v)� 1 for a push from v to u).

