
MPI Informatik 1 Kurt Mehlhorn

The Maximum Flow ProblemInput: � a dire
ted graph G = (V;E), sour
e node s 2 V , sink node t 2 V� edge
apa
ities
ap : E ! IR�0
s t2/2 1/11/0

2/1
1/1

Goal: �
ompute a
ow of maximal value, i.e.,� a fun
tion f : E ! IR�0 satisfying the
apa
ity
onstraints and the
ow
onservation
onstraints(1) 0 � f(e) �
ap(e) for every edge e 2 E(2) Pe;target(e)=v f(e) = Pe;sour
e(e)=v f(e) for every node v 2 V nfs; tg� and maximizing the net
ow into t. MPI Informatik 3 Kurt Mehlhorn

Some Notation and First Properties� the ex
ess of a node v: ex
ess(v) = Pe;target(e)=v f(e) � Pe;sour
e(e)=v f(e)� in a
ow: all nodes ex
ept s and t have ex
ess zero.� the value of a
ow = val(f) = ex
ess(t)Clearly: the net
ow into t is equal to the next
ow out of s.Lemma 1 ex
ess(t) = �ex
ess(s)The proof is short and illustrates an important te
hniqueex
ess(s) + ex
ess(t) =Xv2V ex
ess(v) = 0

� the �rst equality holds sin
e ex
ess(v) = 0 for v 6= s; t.� the se
ond equality holds sin
e the
ow a

ross any edge e = (v; w) appearstwi
e in this sum{ positively in ex
ess(w) and negatively in ex
ess(v)

MPI Informatik 4 Kurt Mehlhorn

Cuts� a subset S of the nodes is
alled a
ut. Let T = V n S� S is
alled an (s; t)-
ut if s 2 S and t 2 T .� the
apa
ity of a
ut is the total
apa
ity of the edges leaving the
ut,
ap(S) = Xe2E\(S�T)
ap(e):� a
ut S is
alled saturated if f(e) =
ap(e) for all e 2 E \ (S � T) andf(e) = 0 for all e 2 E \ (T � S).

s t2/2 1/11/0
2/1

1/1 s t2/2 1/01/1
2/2

1/1

MPI Informatik 5 Kurt Mehlhorn

Cuts and FlowsLemma 2 For any
ow f and any (s; t)-
ut� val(f) �
ap(S).� if S is saturated, val(f) =
ap(S).Proof: We haveval(f) = �ex
ess(s) = �Xu2S ex
ess(u)= Xe2E\(S�T) f(e)� Xe2E\(T�S) f(e) � Xe2E\(S�T)
ap(e)=
ap(S):For a saturated
ut, the inequality is an equality.

Remarks:� A saturated
ut proves the maximality of a
ow.� For every maximal
ow there is a saturated
ut proving its maximality (=))

MPI Informatik 6 Kurt Mehlhorn

The Residual Network� let f be a
ow in G = (V;E)� the residual network Gf
aptures possible
hanges to f{ same node set as G{ for every edge e = (v; w) up to two edges e0 and e00 in Gf� if
ap(e) < f(e), we have an edge e0 = (v; w) 2 Gfresidual
apa
ity r(e0) =
ap(e)� f(e).� if f(e) > 0, we have an edge e00 = (w; v) 2 Gfresidual
apa
ity r(e00) = f(e).� two
ows and the
orresponding residual networks

s t2/2 1/11/0
2/1

1/1 s t2/2 1/01/1
2/2

1/1

MPI Informatik 7 Kurt Mehlhorn

The Max-Flow-Min-Cut TheoremTheorem 1 Let f be an (s; t)-
ow, let Gf be the residual network with respe
t tof , and let S be the set of nodes that are rea
hable from s in Gf .a) If t 2 S then f is not maximum.b) If t =2 S then S is a saturated
ut and f is maximum.

s t ts ts

G Gf G

2/1
2/2

2/2
2/11/1 1

1
12

2
11 2/2
2/21/02/2
2/2

An illustration of part a)

MPI Informatik 8 Kurt Mehlhorn

Max-Flow-Min-Cut: The Proof of Part a)If t is rea
hable from s in Gf , f is not maximal� Let p be any simple path from s to t in Gf� Let Æ be the minimum residual
apa
ity of any edge of p. Then Æ > 0.� We
onstru
t a
ow f 0 of value val(f) + Æ. Let (see Figure on pre
eding slide)

f 0(e) = 8>><>>: f(e) + Æ if e0 is in pf(e)� Æ if e00 is in pf(e) if neither e0 nor e00 belongs to p:� f 0 is a
ow and val(f 0) = val(f) + Æ.

a path in Gf : s �! v1 �! v2 �! v3 �! v4 �! v5 �! tthe
orresponding path in G: MPI Informatik 9 Kurt Mehlhorn

Max-Flow-Min-Cut: The Proof of Part b)If t
annot be rea
hed from s in Gf , f is maximal.� Let S be the set of nodes rea
hable from s and let T = V n S.� There is no edge (v; w) in Gf with v 2 S and w 2 T .� Hen
e{ f(e) =
ap(e) for any e with e 2 E \ (S � T) and{ f(e) = 0 for any e with e 2 E \ (T � S)� Thus S is saturated and f is maximal.

Gf G

MPI Informatik 10 Kurt Mehlhorn

The Ford-Fulkerson Algorithm� start with the zero
ow, i.e., f(e) = 0 for all e.�
onstru
t the residual network Gf�
he
k whether t is rea
hable from s.{ if not, stop{ if yes, in
rease
ow along an augmenting path, and iterate� ea
h iteration takes time O(n+m)� if
apa
ities are arbitrary reals, the algorithm may run forever� integral
apa
ities, say in [0 :: C℄, v� = value of the maximum
ow � nC{ all
ows
onstru
ted are integral (and hen
e �nal
ow is integral)� Proof by indu
tion: if
urrent
ow is integral, residual
apa
ities areintegral and hen
e next
ow is integral{ every augmentation in
reases
ow value by at least one{ running time is O((n+m)v�); this is good if v� is small MPI Informatik 11 Kurt Mehlhorn

Bipartite Mat
hing� given a bipartite graph G = (A [B;E), �nd a maximal mat
hing� mat
hing M , a subset of the edges, no two of whi
h share an endpoint� redu
es easily to network
ow{ add a sour
e s, edges (s; a) for a 2 A,
apa
ity one{ add a sink t, edges (b; t) for b 2 B,
apa
ity one{ dire
t edges in G from A to B,
apa
ity +1{ integral
ows
orrespond to mat
hings{ Ford-Fulkerson takes time O(nm) sin
e v� � n,
an be improved to O(pnm)0123
4567

0123
4567

MPI Informatik 12 Kurt Mehlhorn

The Theorem of HallTheorem 2 A bipartite graph G = (A [B;E) has an A-perfe
t mat
hing (= amat
hing of size jAj) i� for every subset A0 � A, j�(A0)j � jA0j, where �(A0) isthe set of neighbors of the nodes in A0.
ondition is
learly ne
essary; we need to show suÆ
ien
y� assume that there is no A-perfe
t mat
hing� then
ow in the graph de�ned on pre
eding slide is less than jAj� and hen
e minimum
ut has
apa
ity less than jAj.�
onsider a minimum (s; t)-
ut (S; T).� let A0 = A \ S, A00 = A \ T , B0 = B \ S, B00 = B \ T

� no (!!!) edge from A0 to B00 and hen
e �(A0) � B0�
ow = jB0j+ jA00j < jAj = jA0j+ jA00j� thus jB0j < jA0j

A Theoreti
al Improvement for Integral Capa
ities� modify Ford-Fulkerson by always augmenting along a
ow of maximalresidual
apa
ity� essentially repla
es v� by m log v� in time bound, good for large v�� pra
ti
al value is minor, but proof method is interesting� Lemma 3 Max-res-
ap-path
an be determined in time O(m logm).� Lemma 4 O(m+m logdv�=me) augmentations suÆ
e� Theorem 3 running time be
omes: T = O((m+m logdv�=me)m logm)

Lemma 5 Max-res-
ap-path
an be determined in time O(m logm).� sort the edges of Gf in de
reasing order of residual
apa
ity� let e1, e2, : : : , em0 be the sorted list of edges� want to �nd the minimal i su
h that fe1; : : : ; eig
ontains a path from s to t� for �xed i we
an test existan
e of path in time O(n+m)� determine i by binary sear
h in O(logm) rounds.

Lemma 6 O(m+m logdv�=me) augmentations suÆ
e� a
ow
an be de
omposed into at most m paths{ start with a maximal
ow f{ repeatedly
onstru
t a path from s to t, saturate it, and subtra
t from f� augmentation along max-res-
ap-path in
reases
ow by at least 1=m of distto v�� let gi be the di� between v� and the
ow value after the i-th iteration� g0 = v�� if gi > 0, gi+1 � gi �max(1; gi=m) � min(gi � 1; (1� 1=m)gi)� gi � (m�1m)ig0 and hen
e gi � m if i is su
h that (m�1m)ig0 � m.� this is the
ase if i � logm=(m�1)(v�=m) = log(v�=m)logm=(m�1)� log(m=(m� 1)) = log(1 + 1=(m� 1)) � 1=(2m) for m � 10� number of iterations � m+ 2m log(v�=m)

Dini
's Algorithm (1970), General Capa
ities� start with the zero
ow f�
onstru
t the layered subgraph Lf of Gf� if t is not rea
hable from s, stop�
onstru
t a blo
king
ow fb in Lf and augment to f , repeat

� in Lf nodes are on layers a

ording to their BFS-distan
e from s and onlyedges going from layer i to layer i+ 1 are retained� Lf is
onstru
ted in time O(m) by BFS� blo
king
ow: a
ow whi
h saturates one edge on every path from s to t� the number of rounds is at most n, sin
e the depth of Lf grows in ea
h round(without proof, but see analysis of # of saturating pushes in pre
ow-push alg)� a blo
king
ow
an be
omputed in time O(nm)� T = O(n2m) MPI Informatik 17 Kurt Mehlhorn

An Example Run of Dini
's AlgorithmI will illustrate the sequen
e of residual graphs and residual level graphs.

0 1 2
34

5

1 1 13 1 21 1

MPI Informatik 18 Kurt Mehlhorn

The Computation of Blo
king Flows� maintain a path p starting at s, initially p = �, let v = tail(p)� if v = t, in
rease fb by saturating p, remove saturated edges, set p to theempty path (breakthrough)� if v = s and v has no outgoing edge, stop� if v 6= t and v has an outgoing edge, extend p by one edge� if v 6= t and v has no outgoing edge, retreat by removing last edge from p.

� running time is #extends +#retreats + n �#breakthroughs� #breakthroughs � m, sin
e at least one edge is saturated� #retreats � m, sin
e one edge is removed� #extends � #retreats + n �#breakthroughs, sin
e a retreat
an
els one extendand a breakthrough
an
els n extends� running time is O(m+ nm) = O(nm) MPI Informatik 19 Kurt Mehlhorn

Pre
ow-Push Algorithms� f is a pre
ow (Karzonov (74)): ex
ess(v) � 0 for all v 6= s; t� residual network with respe
t to a pre
ow is de�ned as for
ows� Idea: pre
ows give additional
exibilitys v t

� manipulate a pre
ow by operation push(e; Æ){ Pre
onditions:� e is residual, i.e., e = (v; w) 2 Ef� v has ex
ess, i.e, ex
ess(v) > 0� Æ is feasible, i.e, Æ � min(ex
ess(v); resf (e)){ A
tion: push Æ units of
ow from v to w� de
rease ex
ess(v) by Æ, in
rease ex
ess(w) by Æ, modify f and adaptEf (remove e if it now saturated, add its reversal)� Question: Whi
h push to make?� Answer: push towards t, but what does this mean?

MPI Informatik 20 Kurt Mehlhorn

The Level Fun
tion (Goldberg/Tarjan)� a simple and highly e�e
tive notion of \towards t"� arrange the nodes on levels, d(v) = level number of v 2 IN� at all times: d(t) = 0, d(s) = n�
all an edge e = (v; w) eligible i� e 2 Ef and d(w) < d(v)� and only push a
ross eligible edges, i.e., from higher to lower level

Question: What to do when v has positive ex
ess but no outgoing eligible edge?Answer: lift it up, i.e., in
rease d(v) by one (relabel v)

MPI Informatik 21 Kurt Mehlhorn

The Generi
 Push-Relabel Algorithmset f(e) =
ap(e) for all edges with sour
e(e) = s;set f(e) = 0 for all other edges;set d(s) = n and d(v) = 0 for all other nodes;while there is a node v 6= s; t with positive ex
essf let v be any su
h node node;if there is an eligible edge e = (v; w) in Gff push Æ a
ross e for some Æ � min(ex
ess(v); res
ap(e)); gelsef relabel v; gg � obvious
hoi
e for Æ: Æ = min(ex
ess(v); res
ap(e))� push with Æ = res
ap(e) saturating push� push with Æ < res
ap(e) non-saturating push� need to bound the number of relabels and the number of pushes

MPI Informatik 22 Kurt Mehlhorn

A Sample Run

s a t2 1and here
omes the sequen
e of residual graphs (residual
apa
ities are shown)
MPI Informatik 23 Kurt Mehlhorn

No Steep Edgesan edge e = (v; w) 2 Gf is
alled steep if d(w) < d(v)� 1, i.e., if it rea
hes downby two or more levels.Lemma 7 The algorithm maintains a pre
ow and does not generate steep edges.The nodes s and t stay on levels 0 and n, respe
tively.Proof:� the algorithm maintains a pre
ow by the restri
tion on Æ� after initialization: edges in Gf go sidewards or upwards� when v is relabeled, no edge in Gf out of v goes down. After relabeling,edges out of v go down at most one level.� a push a
ross an edge e = (v; w) 2 Gf may add the edge (w; v) to Gf . Thisedge goes up.� s and t are never relabeled

MPI Informatik 24 Kurt Mehlhorn

The Maximum Level Stays Below 2nLemma 8 If v is a
tive then there is a path from v to s in Gf . No distan
e labelever rea
hes 2n.Proof: Let S be the set of nodes that are rea
hable from v in Gf and letT = V nS. ThenXu2S ex
ess(u) = Xe2E\(T�S) f(e)� Xe2E\(S�T) f(e);There is no edge (v; w) 2 Gf with v 2 S and w =2 S. Thus, f(e) = 0 for everye 2 E \ (T � S). We
on
lude Pu2S ex
ess(v) � 0.Sin
e s is the only node whose ex
ess may be negative and sin
e ex
ess(v) > 0 wemust have s 2 S.Assume that a node v is moved to level 2n. Sin
e only a
tive nodes are relabeledthis implies the existen
e of a path (and hen
e simple path) in Gf from a node onlevel 2n to s (whi
h is on level n). Su
h a path must
ontain a steep edge. MPI Informatik 25 Kurt Mehlhorn

Partial Corre
tnessTheorem 4 When the algorithm terminates, it terminates with a maximum
ow.Proof: When the algorithm terminates, all nodes di�erent from s and t haveex
ess zero and hen
e the algorithm terminates with a
ow. Call it f .In Gf there
an be no path from s to t sin
e any su
h path must
ontain a steepedge (sin
e s is on level n, t is on level 0). Thus, f is a maximum
ow by themax-
ow-min-
ut theorem.

In order to prove termination, we bound the number of relabels, the number ofsaturating pushes and the number of non-saturating pushes.The former two quantities are easily bounded.We have to work harder for the number of non-saturating pushes.

MPI Informatik 26 Kurt Mehlhorn

On the Number of Relabels and Saturating PushesLemma 9 There are at most 2n2 relabels and at most nm saturating pushes.Proof:� no distan
e label ever rea
hes 2n.� therefore, ea
h node is relabeled at most 2n times� the number of relabels is therefore at most 2n2.

� a saturating push a
ross an edge e = (v; w) 2 Gf removes e from Gf .� Claim: v has to be relabeled at least twi
e before the next push a
ross e andhen
e there
an be at most n saturating pushes a
ross any edge.{ only a push a
ross erev
an again add e to Gf .{ for this to happen w must be lifted by two levels, : : :

MPI Informatik 27 Kurt Mehlhorn

On the Number of Non-Saturating Pushes: S
aling/* s
aling push-relabel algorithm (Ahuja-Orlin) for integral
apa
ities */set f(e) =
ap(e) for all edges with sour
e(e) = s and f(e) = 0 for all other edges;set d(s) = n and d(v) = 0 for all other nodes;set � = 2dlogmaxe
ap(e)e;while (� > 1)f while there is a node v 6= s; t with ex
ess(v) � �=2f let v be the lowest (!!!) su
h node;if there is an eligible edge e = (v; w) in Gff push Æ a
ross e for Æ = min(�=2; res
ap(e)); gelsef relabel v; gg� = �=2;g � ex
esses are bounded by �, i.e., at all times and for all v 6= t: ex
ess(v) � �� a non-saturing push moves �=2 units of
ow

MPI Informatik 28 Kurt Mehlhorn

On the Number of Saturating Pushes in Ahuja-OrlinLemma 10 The number of non-saturating pushes is at most 4n2 + 4n2dlogUe,where U is the largest
apa
ityWe use a potential fun
tion argument (let V 0 = V n fs; tg)� = Xv2V 0 d(v)ex
ess(v)�� � � 0 always, � = 0 initially� total de
rease of � � total in
rease of �� a relabel in
reases � by at most one� every push de
reases �� a non-saturating push de
reases � by 1=2� a
hange of � in
reases � by at most 2n2� � is
hanged dlogUe times� (1=2)#non sat pushes � total de
rease � total in
rease � 2n2 + 2n2dlogUe MPI Informatik 29 Kurt Mehlhorn

On the Number of Sat Pushes in the Generi
 Algorithm� pushes are made as large as possible, i.e., � = min(ex
ess(v); res
ap(e))� a non-saturating push dea
tivates the sour
e of the push� (persisten
e) when an a
tive node v is sele
ted, pushes out of v are performeduntil either v be
omes ina
tive (be
ause of a non-saturating push out of v) oruntil there are no eligible edges out of v anymore. In the latter
ase v isrelabeled.� we study three rules for the sele
tion of a
tive nodes.Arbitrary : an arbitrary a
tive node is sele
ted.#non sat pushes = O(n2m), Goldberg and TarjanFIFO: the a
tive nodes are kept in a queue and the �rst node in the queue isalways sele
ted. When a node is relabeled or a
tivated the node is added tothe rear of the queue, #non sat pushes = O(n3), Goldberg.Highest-Level : an a
tive node on the highest level, i.e., with maximal d-value issele
ted, #non sat pushes = O(n2pm), Cheriyan and Maheshwari

MPI Informatik 30 Kurt Mehlhorn

The Arbitrary RuleLemma 11 When the Arbitrary-rule is used, the number of non-saturatingpushes is O(n2m).Proof: � = Xv2V 0;v is a
tive d(v):� � � 0 always, and � = 0 initially.� a non-saturating push de
reases � by at least one, sin
e it dea
tivates thesour
e of the push (may a
tivate the target)� a relabeling in
reases � by one.� a saturating push in
reases � by at most 2n, sin
e it may a
tivate the target� total in
rease of � � n2 + nm2n = n2(1 + 2m)� #non sat pushes � total in
rease of �

MPI Informatik 31 Kurt Mehlhorn

The FIFO Rule� a
tive nodes are in a queue, head of queue is sele
ted for pushing/relabeling� relabeled and a
tivated nodes are added to the rear of the queue� we split the exe
ution into phases� �rst phase starts at the beginning of the exe
ution� a phase ends when all nodes that were a
tive at the beginning of the phasehave been sele
ted from the queue� ea
h node is sele
ted at most on
e in ea
h phase: #non sat pushes � n �#phasesLemma 12 When the FIFO-rule is used, the number of phases is O(n2).Proof: Use � = max fd(v) ; v is a
tive g� � � 0 always, and � = 0 initially.� a phase
ontaining no relabel operation de
reases � by at least one, sin
e allnodes on the hightest level be
ome ina
tive.� a phase
ontaining a relabel operation in
reases � by at most one, sin
e arelabel in
reases the highest level by at most one.

Lemma 13 When the Highest-Level-rule is used, #non sat pushes = O(n2pm).Warning: Proof in Ahuja/Magnanti/Orlin is wrong, proof here Cheriyan/M� let K = pm. For a node v, let d0(v) = jfw; d(w) � d(v)gj=K.� potential fun
tion � = Pv;v is a
tive d0(v).� exe
ution is split into phases� phase = all pushes between two
onse
utive
hanges ofd� = max fd(v) ; v is a
tive g� phase is expensive if it
ontains more than K non-sat pushes,
heap otherwise.We show:(1) The number of phases is at most 4n2.(2) The number of non-saturating pushes in
heap phases is at most 4n2K.(3) � � 0 always, and � � n2=K initially.(4) A relabeling or a sat push in
reases � by at most n=K.(5) A non-saturating push does not in
rease �.(6) An expensive phase with Q � K non-sat pushes de
reases � by at least Q.
(1) The number of phases is at most 4n2.(2) The number of non-saturating pushes in
heap phases is at most 4n2K.(3) � � 0 always, and � � n2=K initially.(4) A relabeling or a sat push in
reases � by at most n=K.(5) A non-saturating push does not in
rease �.(6) An expensive phase with Q � K non-sat pushes de
reases � by at least Q.� Suppose that we have shown (1) to (6).� (4) and (5) imply total in
rease of � � (2n2 +mn)n=K� above + (3): total de
rease
an be at most this number plus n2=K� #non sat pushes in expensive phases � (2n3 + n2 +mn2)=K.� above + (2) #non sat pushes � (2n3 + n2 +mn2)=K + 4n2Ksin
e n � m: #non sat pushes � 4mn2=K + 4n2K = 4n2(m=K +K)K = pm: #non sat pushes � 8n2pm.

(1) The number of phases is at most 4n2: we have d� = 0 initially, d� � 0 always,and only relabels in
rease d�. Thus, d� is in
reased at most 2n2 times,de
reased no more than this, and hen
e
hanged at most 4n2 times.(2) The number of non-saturating pushes in
heap phases is at most 4n2K:follows immediately from (1) and the de�nition of a
heap phase.(3) � � 0 always, and � � n2=K initially: obvious(4) A relabeling or a sat push in
reases � by at most n=K: follows from theobservation that d0(v) � n=K for all v and at all times.(5) A non-saturating push does not in
rease �: observe that a non-sat pusha
ross an edge (v; u) dea
tivates v, a
tivates u (if it is not already a
tive),and that d0(u) � d0(v).(6) An expensive phase with Q � K non-sat pushes de
reases � by at least Q:
onsider an expensive phase
ontaining Q � K non-sat pushes. d� is
onstantduring a phase and hen
e all Q non-saturating pushes must be out of nodesat level d�. The phase is �nished either be
ause level d� be
omes empty orbe
ause a node is moved from level d� to level d� + 1. In either
ase, we
on
lude that level d�
ontains Q � K nodes at all times during the phase.Thus, ea
h non-saturating push in the phase de
reases � by at least one(sin
e d0(u) � d0(v)� 1 for a push from v to u).

