The Maximum Flow Problem

Input: e adirected graph G = (V, E), source node s € V, sink node t € V

e edge capacities cap : E — IR>g

Goal: e compute a flow of maximal value, i.e.,

e a function f: F — IR>(satisfying the capacity constraints and the

flow conservation constraints

(1) 0 < f(e) < cap(e) for every edge e € E
(2) > fle) = > f(e) for every node v € V\{s,t}
e;target(e)=v e;source(e)=v

MPI Informatik

¢ and maximizing the net flow into t. furt Mehihorm

Cuts

e a subset S of the nodes is called a cut. Let T =V \ S
e Siscalled an (s,t)-cutif s€ Sandt e T.

e the capacity of a cut is the total capacity of the edges leaving the cut,

cap(S) = Z cap(e).

e€EEN(SXT)

e acut S is called saturated if f(e) = cap(e) for all e € EN (S x T) and
fle)=0forallec EN(T xS).

S O
2/2 2/1 2/2 2/2
O O

MPI Informatik 4 Kurt Mehlhorn

Some Notation and First Properties

e the excess of a node v: excess(v) = > fle) — > f(e)

e;target(e)=v e;source(e)=v

e in a flow: all nodes except s and t have excess zero.

e the value of a flow = val(f) = excess(t)

Clearly: the net flow into ¢ is equal to the next flow out of s.
Lemma 1 excess(t) = —excess(s)

The proof is short and illustrates an important technique

excess(s) + excess(t) = Z excess(v) =0

e the first equality holds since excess(v) = 0 for v # s,t.
e the second equality holds since the flow accross any edge e = (v, w) appears
twice in this sum

— positively in ezcess(w) and negatively in excess(v)

MPI Informatik 3 Kurt Mehlhorn

Cuts and Flows

Lemma 2 For any flow f and any (s,t)-cut
e val(f) < cap(9).
e if S is saturated, val(f) = cap(S).
Proof: We have

val(f) = —excess(s) = fZe:ccess(u)

u€eS
= Yoo fle— D fle) < D> caple)
e€ EN(SXT) e€c EN(TXS) e€ EN(SXT)
= cap(9).
For a saturated cut, the inequality is an equality.]

Remarks:

e A saturated cut proves the maximality of a flow.

vrg iFgmetery maximal flow there is a 8aturated cut proving its maxim#liy iefriess)

The Residual Network

e let f beaflowin G = (V, E)
o the residual network G captures possible changes to f
— same node set as G
— for every edge e = (v, w) up to two edges ¢’ and €¢” in Gy
* if cap(e) < f(e), we have an edge e’ = (v, w) € Gy
residual capacity r(e’) = cap(e) — f(e).
* if f(e) > 0, we have an edge ¢ = (w,v) € Gy
residual capacity r(e”) = f(e).

e two flows and the corresponding residual networks

@
e«»@
2/2 3/1
O

MPI Informatik 6 Kurt Mehlhorn

Max-Flow-Min-Cut: The Proof of Part a)

If ¢ is reachable from s in G¢, f is not maximal
e Let p be any simple path from s to ¢ in Gy
e Let 6 be the minimum residual capacity of any edge of p. Then § > 0.

e We construct a flow f’ of value val(f)+ d. Let (see Figure on preceding slide)

fle)+4 if e isin p
f'le)=19 fle)=¢ ife’isin p
f(e) if neither €’ nor e’ belongs to p.

e f'is aflow and val(f") = val(f) + 9.

a path in Gy: S—>UV] —> Uy —> V3 —> Uy —> V5 —> T
the corresponding path in G:

MPI Informatik 8 Kurt Mehlhorn

The Max-Flow-Min-Cut Theorem

Theorem 1 Let f be an (s,t)-flow, let G5 be the residual network with respect to
f, and let S be the set of nodes that are reachable from s in G.

a) Ift € S then f is not mazimum.

b) Ift ¢ S then S is a saturated cut and f is mazimum.

An illustration of part a)

MPI Informatik 7 Kurt Mehlhorn

Max-Flow-Min-Cut: The Proof of Part b)

If t cannot be reached from s in Gy, f is maximal.
e Let S be the set of nodes reachable from s and let 7=V \ S.
e There is no edge (v, w) in Gy with v € S and w € T..

e Hence
— f(e) = cap(e) for any e with e € EN (S x T) and
— f(e) =0 for any e withe € EN (T x 5)

Thus S is saturated and f is maximal.

G, G

MPI Informatik 9 Kurt Mehlhorn

MPI Informatik

The Ford-Fulkerson Algorithm

start with the zero flow, i.e., f(e) = 0 for all e.
construct the residual network Gy

check whether ¢t is reachable from s.
— if not, stop

— if yes, increase flow along an augmenting path, and iterate

each iteration takes time O(n + m)
if capacities are arbitrary reals, the algorithm may run forever

integral capacities, say in [0.. C], v* = value of the maximum flow < nC

— all flows constructed are integral (and hence final flow is integral)
x Proof by induction: if current flow is integral, residual capacities are
integral and hence next flow is integral
— every augmentation increases flow value by at least one

— running time is O((n + m)v*); this is good if v* is small
10 Kurt Mehlhorn

The Theorem of Hall

Theorem 2 A bipartite graph G = (AU B, E) has an A-perfect matching (= a
matching of size |A|) iff for every subset A" C A, [T'(A")| > |A’|, where I'(A’) is
the set of neighbors of the nodes in A'.

condition is clearly necessary; we need to show sufficiency

vre tthusiB’| < |A'| 12

assume that there is no A-perfect matching

then flow in the graph defined on preceding slide is less than |A|
and hence minimum cut has capacity less than |A]|.

consider a minimum (s, t)-cut (S, 7).

let A'=ANS, A" = ANT, B'=BnS,B"=BNT

no (M) edge from A’ to B” and hence T'(A”) C B’
flow = |B'[+ [A"| < |A] = [A"] + [A"|

Kurt Mehlhorn

MPI Informatik 11

Bipartite Matching

e given a bipartite graph G = (AU B, F), find a maximal matching
e matching M, a subset of the edges, no two of which share an endpoint

e reduces easily to network flow

— add a source s, edges (s,a) for a € A, capacity one
— add a sink ¢, edges (b,t) for b € B, capacity one

— direct edges in G from A to B, capacity +oo

— integral flows correspond to matchings

— Ford-Fulkerson takes time O(nm) since v* < n, can be improved to O(y/nm)

Kurt Mehlhorn

A Theoretical Improvement for Integral Capacities

modify Ford-Fulkerson by always augmenting along a flow of maximal

residual capacity

essentially replaces v* by mlogv* in time bound, good for large v*
practical value is minor, but proof method is interesting

Lemma 3 Maz-res-cap-path can be determined in time O(mlogm).
Lemma 4 O(m + mlog[v*/m]) augmentations suffice

Theorem 3 running time becomes: T = O((m + mlog[v*/m])mlogm)

Lemma 5 Maz-res-cap-path can be determined in time O(mlogm).

sort the edges of Gy in decreasing order of residual capacity

let e, €2, ..., e, be the sorted list of edges

want to find the minimal ¢ such that {e,...,e;} contains a path from s to ¢
for fixed ¢ we can test existance of path in time O(n + m)

determine 7 by binary search in O(log m) rounds.

Dinic’s Algorithm (1970), General Capacities

start with the zero flow f
construct the layered subgraph Ly of G
if ¢ is not reachable from s, stop

construct a blocking flow f; in Ly and augment to f, repeat

in Ly nodes are on layers according to their BFS-distance from s and only
edges going from layer ¢ to layer i + 1 are retained

Ly is constructed in time O(m) by BFS

blocking flow: a flow which saturates one edge on every path from s to ¢

the number of rounds is at most n, since the depth of Ly grows in each round
(without proof, but see analysis of # of saturating pushes in preflow-push alg)
a blocking flow can be computed in time O(nm)

T = O(n?*m)

Lemma 6 O(m + mlog[v*/m]) augmentations suffice

e a flow can be decomposed into at most m paths

— start with a maximal flow f

— repeatedly construct a path from s to ¢, saturate it, and subtract from f

augmentation along max-res-cap-path increases flow by at least 1/m of dist

to v*

let g; be the diff between v* and the flow value after the i-th iteration
go = v*

if g; >0, git1 < gi —max(1,g;/m) <min(g; — 1,(1 —1/m)g;)

gi < (mT*I) go and hence g; < m if 7 is such that (" LYigy < m.

log(v™ /m)
logm/(m—1)

log(m/(m —1)) =log(1+1/(m —1)) > 1/(2m) for m > 10

this is the case if 7 > log,,, /(;,_1)(v"/m) =

number of iterations < m + 2mlog(v*/m)

An Example Run of Dinic’s Algorithm

I will illustrate the sequence of residual graphs and residual level graphs.

MPI Informatik 17 Kurt Mehlhorn

MPI Informatik 18

MPI Informatik 20

The Computation of Blocking Flows

e maintain a path p starting at s, initially p = €, let v = tail(p)

e if v = t, increase f, by saturating p, remove saturated edges, set p to the
empty path (breakthrough)

e if v = s and v has no outgoing edge, stop
e if v #t and v has an outgoing edge, extend p by one edge

e if v # t and v has no outgoing edge, retreat by removing last edge from p.

hd running time is #eztends + #ratreats +n- #breakth'r’oughs
® Hircakthroughs < M, since at least one edge is saturated
o Hoctreats < M, since one edge is removed

i #emtends < #retreats +n- #breakthraughs; since a retreat cancels one extend
and a breakthrough cancels n extends

e running time is O(m 4+ nm) = O(nm)
Kurt Mehlhorn

The Level Function (Goldberg/Tarjan)

e a simple and highly effective notion of “towards t”

e arrange the nodes on levels, d(v) = level number of v € IN
e at all times: d(t) =0, d(s) =n

e call an edge e = (v, w) eligible iff e € E¢ and d(w) < d(v)

e and only push across eligible edges, i.e., from higher to lower level

Question: What to do when v has positive excess but no outgoing eligible edge?

Answer: lift it up, i.e., increase d(v) by one (relabel v)

Kurt Mehlhorn

Preflow-Push Algorithms

f is a preflow (Karzonov (74)): excess(v) > 0 for all v # s,t

residual network with respect to a preflow is defined as for flows

Idea: preflows give additional flexibility

manipulate a preflow by operation push(e, d)
— Preconditions:
* e is residual, i.e., e = (v,w) € Ef
* v has excess, i.e, excess(v) > 0
* ¢ is feasible, i.e, § < min(ezcess(v), res(e))
— Action: push § units of flow from v to w
* decrease excess(v) by d, increase excess(w) by §, modify f and adapt
E; (remove e if it now saturated, add its reversal)

e Question: Which push to make?

MPI Informatik

1 . Kurt Mehlhorn
e Answer: push towards ¢, but what does this mean?

The Generic Push-Relabel Algorithm

set f(e) = cap(e) for all edges with source(e) = s;
set f(e) = 0 for all other edges;
set d(s) = n and d(v) = 0 for all other nodes;

while there is a node v # s,t with positive excess
{ let v be any such node node;
if there is an eligible edge e = (v,w) in Gy
{ push § across e for some § < min(ezxcess(v), res_cap(e)); }
else
{ relabel v; }
}
e obvious choice for §: § = min(ezcess(v), res_cap(e))
e push with § = res_cap(e) saturating push
non-saturating push

e push with § < res_cap(e)

e need to bound the number of relabels and the number of pushes

MPI Informatik 21 Kurt Mehlhorn

A Sample Run

and here comes the sequence of residual graphs (residual capacities are shown)

MPI Informatik 22 Kurt Mehlhorn

The Maximum Level Stays Below 2n

Lemma 8 Ifv is active then there is a path from v to s in G¢. No distance label

ever reaches 2n.

Proof: Let S be the set of nodes that are reachable from v in Gy and let
T =V\S. Then

Z excess(u) = Z fle) — Z f(e),

u€s e€EN(TXS) e€EN(SXT)
There is no edge (v, w) € Gy with v € S and w ¢ S. Thus, f(e) = 0 for every
e€ EN(T x S). We conclude), s excess(v) < 0.

Since s is the only node whose excess may be negative and since ezcess(v) > 0 we
must have s € S.

Assume that a node v is moved to level 2n. Since only active nodes are relabeled
this implies the existence of a path (and hence simple path) in Gy from a node on
level 2n to s (which is on level n). Such a path must contain a steep edge. 1

MPI Informatik 24 Kurt Mehlhorn

No Steep Edges
an edge e = (v,w) € Gy is called steep if d(w) < d(v) — 1, i.e., if it reaches down
by two or more levels.

Lemma 7 The algorithm maintains a preflow and does not generate steep edges.
The nodes s and t stay on levels 0 and n, respectively.

Proof:

e the algorithm maintains a preflow by the restriction on ¢

o after initialization: edges in Gy go sidewards or upwards

e when v is relabeled, no edge in G ¢ out of v goes down. After relabeling,
edges out of v go down at most one level.

e a push across an edge e = (v,w) € Gy may add the edge (w,v) to Gy. This
edge goes up.

s and t are never relabeled

MPI Informatik 23 Kurt Mehlhorn

Partial Correctness

Theorem 4 When the algorithm terminates, it terminates with a mazimum flow.

Proof: When the algorithm terminates, all nodes different from s and ¢ have

excess zero and hence the algorithm terminates with a flow. Call it f.

In G there can be no path from s to ¢ since any such path must contain a steep
edge (since s is on level n, ¢ is on level 0). Thus, f is a maximum flow by the

max-flow-min-cut theorem. 1

In order to prove termination, we bound the number of relabels, the number of
saturating pushes and the number of non-saturating pushes.

The former two quantities are easily bounded.

We have to work harder for the number of non-saturating pushes.

MPI Informatik 25 Kurt Mehlhorn

On the Number of Relabels and Saturating Pushes

Lemma 9 There are at most 2n? relabels and at most nm saturating pushes.
Proof:

e no distance label ever reaches 2n.

therefore, each node is relabeled at most 2n times

e the number of relabels is therefore at most 2n2.

a saturating push across an edge e = (v,w) € Gy removes e from Gy.

e Claim: v has to be relabeled at least twice before the next push across e and
hence there can be at most n saturating pushes across any edge.

TEev

— only a push across €™’ can again add e to Gy.

— for this to happen w must be lifted by two levels, ...

MPI Informatik 26 Kurt Mehlhorn

On the Number of Saturating Pushes in Ahuja-Orlin

Lemma 10 The number of non-saturating pushes is at most 4n* + 4n2[log U],
where U 1is the largest capacity

We use a potential function argument (let V! =V '\ {s,t})

&= Z d(v) excess(v)

A
veV’

e & > (0 always, ® = 0 initially

total decrease of ® < total increase of ®

a relabel increases ® by at most one
e every push decreases ®
e a non-saturating push decreases ® by 1/2

a change of A increases ® by at most 2n?

e A is changed [log U] times

i@ {2 #non sat pushes < total decrease < total increase < 2n? + 2n? [log Lefimom

On the Number of Non-Saturating Pushes: Scaling

/* scaling push-relabel algorithm (Ahuja-Orlin) for integral capacities */
set f(e) = cap(e) for all edges with source(e) = sand f(e) = 0 for all other edges;

set d(s) = n and d(v) = 0 for all other nodes;
set A = 2]'log max, cap(e)];

while (A >1)
{ while there is a node v # s,t with excess(v) > A/2
{ let v be the lowest () such node;
if there is an eligible edge e = (v, w) in Gy
{ push § across e for § = min(A/2, res_cap(e)); }
else
{ relabel v; }

}
A=A/2;
¥

e excesses are bounded by A, i.e., at all times and for all v # ¢: excess(v) < A

u? @ iemsaturing push moves A /2 ugits of flow Kurt Mehlhorn

On the Number of Sat Pushes in the Generic Algorithm

e pushes are made as large as possible, i.e., A = min(ezcess(v), res_cap(e))
e a non-saturating push deactivates the source of the push

e (persistence) when an active node v is selected, pushes out of v are performed
until either v becomes inactive (because of a non-saturating push out of v) or
until there are no eligible edges out of v anymore. In the latter case v is
relabeled.

e we study three rules for the selection of active nodes.

Arbitrary: an arbitrary active node is selected.
H#non sat pushes = O(n?m), Goldberg and Tarjan

FIFO: the active nodes are kept in a queue and the first node in the queue is
always selected. When a node is relabeled or activated the node is added to

the rear of the queue, #,0n sat pushes = O(n3), Goldberg.

Highest-Level: an active node on the highest level, i.e., with maximal d-value is
selected, #non sat pushes = O(n*y/m), Cheriyan and Maheshwari

MPI Informatik 29 Kurt Mehlhorn

The Arbitrary Rule

Lemma 11 When the Arbitrary-rule is used, the number of non-saturating
pushes is O(n’m).

Proof:

o = Z d(v).

veV /v is active
e & > (0 always, and ® = 0 initially.

e a non-saturating push decreases ® by at least one, since it deactivates the
source of the push (may activate the target)

e a relabeling increases ® by one.
e a saturating push increases ® by at most 2n, since it may activate the target
e total increase of ® < n? +nm2n = n%(1 + 2m)

® #non sat pushes < total increase of ®

MPI Informatik 30 Kurt Mehlhorn

Lemma 13 When the Highest-Level-rule is used, #non sat pushes = O(n*y/m).
Warning: Proof in Ahuja/Magnanti/Orlin is wrong, proof here Cheriyan/M
e let K = /m. For a node v, let d'(v) = |{w;d(w) < d(v)}|/K.

e potential function ® = > d'(v).

viv is active

e execution is split into phases

e phase = all pushes between two consecutive changes of

d* = max {d(v) ; v is active }

e phase is expensive if it contains more than K non-sat pushes, cheap otherwise.

‘We show:

(1) The number of phases is at most 4n?.

(2) The number of non-saturating pushes in cheap phases is at most 4n2K.
(3) ® > 0 always, and ® < n?/K initially.

(4) A relabeling or a sat push increases ® by at most n/K.

(5) A non-saturating push does not increase ®.

(6) An expensive phase with @ > K non-sat pushes decreases ® by at least Q.

The FIFO Rule

e active nodes are in a queue, head of queue is selected for pushing/relabeling

e relabeled and activated nodes are added to the rear of the queue

e we split the execution into phases

e first phase starts at the beginning of the execution

e a phase ends when all nodes that were active at the beginning of the phase
have been selected from the queue

e each node is selected at most once in each phase: #,0n sat pushes < T Fphases
Lemma 12 When the FIFO-rule is used, the number of phases is O(n?).
Proof: Use ® = max {d(v) ; v is active }

e & > 0 always, and ® = 0 initially.

e a phase containing no relabel operation decreases ® by at least one, since all
nodes on the hightest level become inactive.

e a phase containing a relabel operation increases ® by at most one, since a
relabel increases the highest level by at most one.

MPI Informatik 31 Kurt Mehlhorn

(1) The number of phases is at most 4n2.

(2) The number of non-saturating pushes in cheap phases is at most 4n?K.
(3) ® >0 always, and ® < n?/K initially.

(4) A relabeling or a sat push increases ® by at most n/K.

(5) A non-saturating push does not increase ®.

(6) An expensive phase with @ > K non-sat pushes decreases ® by at least Q.

Suppose that we have shown (1) to (6).

(4) and (5) imply total increase of ® < (2n? + mn)n/K

above + (3): total decrease can be at most this number plus n?/K

3 2 2
° #non sat pushes in expensive phases S (2’[’L +n®+mn)/K

above + (2) #non sat pushes < (20 + n? + mn?)/K + 4n’K
since n < m: #non sat pushes < 4mn?/K + 4n’K = 4n*(m/K + K)

K= Ve #non sat pushes S 8n2\/ m.

(1)

(2)

(3)
(4)

(5)

(6)

The number of phases is at most 4n?: we have d* = 0 initially, d* > 0 always,
and only relabels increase d*. Thus, d* is increased at most 2n? times,
decreased no more than this, and hence changed at most 4n? times.

The number of non-saturating pushes in cheap phases is at most 4n?K:
follows immediately from (1) and the definition of a cheap phase.

® > 0 always, and ® < n?/K initially: obvious

A relabeling or a sat push increases ® by at most n/K: follows from the
observation that d'(v) < n/K for all v and at all times.

A non-saturating push does not increase ®: observe that a non-sat push
across an edge (v, u) deactivates v, activates u (if it is not already active),
and that d’'(u) < d'(v).

An expensive phase with) > K non-sat pushes decreases ® by at least Q:
consider an expensive phase containing) > K non-sat pushes. d* is constant
during a phase and hence all () non-saturating pushes must be out of nodes
at level d*. The phase is finished either because level d* becomes empty or
because a node is moved from level d* to level d* + 1. In either case, we
conclude that level d* contains) > K nodes at all times during the phase.
Thus, each non-saturating push in the phase decreases ® by at least one
(since d'(u) < d'(v) — 1 for a push from v to u).

