
Combinatorial Optimization Jan – May, 2025

Lecture 1: Bipartite Matching

Lecturer: T. Kavitha Scribe: Soham Chatterjee

A graph 𝐺 (𝑉 ,𝐸) is bipartite if the vertex set is partitioned into two sets 𝑉 = 𝐿 ⊔ 𝑅 and the edges are between

the two partitions i.e. 𝐸 ⊆ 𝐿 × 𝑅. Here we will look two main problems in Bipartite graphs: Maximum Matching and

Minimum cost Perfect Matching.

1 MaximumMatching

Bipartite Maximum Matching

Input: Graph 𝐺 = (𝐿 ⊔ 𝑅,𝐸)
Question: Find a maximum matching𝑀 ⊆ 𝐸 of 𝐺

First we will solve finding maximum matching in bipartite graphs first. Then we will extend the algorithm to

general graphs. We will

1.1 Using Max Flow
One approach to find amaximummatching is by using themax-flow algorithm. For this we introduce 2 new vertices 𝑠 and 𝑡

where there is an edge from 𝑠 to every vertex in 𝐿 and there is an edge from every vertex in𝑅 to 𝑡 and all edges have capacity

1. Let the constructed graph is 𝐺 ′ = (𝑉 ′,𝐸′) where 𝑉 ′ = 𝐿 ∪ 𝑅 ∪ {𝑠 , 𝑡} and 𝐸′ = 𝐸 ∪ {(𝑠 , 𝑣) : 𝑣 ∈ 𝐿} ∪ {(𝑣 , 𝑡) : 𝑣 ∈ 𝑅}.
Then the max-flow for this directed graph is the maximum matching of the bipartite graph. In the following claim

we will prove that this indeed gives the maximum matching.

Lemma 1.1.1
For a max-flow the flow through any edge is either 0 or 1.

Proof: The Edmonds-Karp algorithm takes a 𝑠 ⇝ 𝑡 path in the residual graph and send the flow equal to the minimum

of all the capacities of edges in that path. Since the capacities are all 1 the flow also equals to 1. Therefore at each iteration

of Edmonds-Karp the amount of flow added is also integral. Therefore in the final max-flow the flow through each edge

is integral. Now since the flow in any edge is always less than or equal to the capacity it is either 0 or 1. ■

Therefore the max-flow of the modified graph is always some non-negative integer. Now we have a lemma that

value of max-flow gives a maximum matching.

Lemma 1.1.2
There exists a max-flow of value 𝑘 in the modified graph𝐺 ′ = (𝑉 ′,𝐸′) if and only there is a maximum matching of

size 𝑘 in 𝐺 ′ (𝐿 ∪ 𝑅,𝐸).

Proof: Suppose 𝐺 ′ has a matching𝑀 of size 𝑘 . Let𝑀 = {(𝑢𝑖 , 𝑣𝑖) : 𝑖 ∈ [𝑘]} where 𝑢𝑖 ∈ 𝐿 and 𝑣𝑖 ∈ 𝑅 for all 𝑖 ∈ [𝑘]. Then

we have the flow 𝑓 , 𝑓 (𝑠 ,𝑢𝑖) = 𝑓 (𝑢𝑖 , 𝑣𝑖) = 𝑓 (𝑣𝑖 , 𝑡) = 1 for all 𝑖 ∈ [𝑘]. This flow has value 𝑘 . Now suppose the max-flow is

more than 𝑘 . Let the value of the max-flow is 𝑙 , 𝑙 > 𝑘 . Since each edge has capacities 1 and by previous lemma each edge

has integral flow there are 𝑙 vertices in 𝐿 which have positive flow from 𝑠 . Then from each of these 𝑙 vertices there is only

one edge going to a vertex in 𝑅 which has positive flow. Now it is not possible that from two vertices of 𝐿 the flow goes

to one vertex in 𝑅 since for all edges joining vertices of 𝑅 and 𝑡 has capacity 1. Therefore from each of those vertices of

𝐿 they goes to distinct 𝑙 vertices of 𝑅. Therefore these 𝑙 edges create a matching of 𝐺 . So we have a matching which has

size more than the maximum matching. Contradiction. Therefore the value of the max-flow is 𝑘 .

Now suppose there is a max-flow 𝑓 of value 𝑘 . Since flow through each edge is integral by the similar argument

as above we get a matching of size 𝑘 . Now if 𝑀 is a maximum matching which has size more than 𝑘 , suppose 𝑙 > 𝑘 then

consider the flow 𝑓 , 𝑓 (𝑠 ,𝑢𝑖) = 𝑓 (𝑢𝑖 , 𝑣𝑖) = 𝑓 (𝑣𝑖 , 𝑡) = 1 for all 𝑖 ∈ [𝑙] where𝑀 = {(𝑢𝑖 , 𝑣𝑖) : 𝑖 ∈ [𝑙]} has flow of value 𝑙 which

is greater than the max-flow. Hence contradiction. Therefore the maximum matching is has size 𝑘 . ■

1

Therefore from the max-flow if we take the edges from 𝐿 to 𝑅 which has positive flow they construct the maximum

matching. So we have the following algorithm:

Algorithm 1: BP-Max-Matching-Flow

Input: 𝐺 = (𝐿 ∪ 𝑅,𝐸) bipartite graph
Output: Find a maximum matching

1 begin
2 𝑉 ←− 𝐴 ∪ 𝐵 ∪ {𝑠 , 𝑡}, 𝐸′ ←− 𝐸

3 for 𝑣 ∈ 𝐿 do
4 𝐸′ ←− 𝐸′ ∪ {(𝑠 , 𝑣)}
5 for 𝑣 ∈ 𝑅 do
6 𝐸′ ←− 𝐸′ ∪ {(𝑣 , 𝑡)}
7 for 𝑒 ∈ 𝐸′ do
8 𝑐𝑒 ←− 1

9 𝑓 ←− Ford-Fulkerson(𝐺 ′ = (𝑉 ,𝐸′), {𝑐𝑒 : 𝑒 ∈ 𝐸′})
10 return {𝑒 : 𝑓 (𝑒) > 0, 𝑒 ∈ 𝐸}

Therefore the algorithm successfully returns a maximum matching of the bipartite graph. But we don’t know any

algorithm for finding maximum matching in general graphs using max-flow. In the next algorithm we will use something

called Augmenting paths to find a maximum matching which we will extend to general graphs.

1.2 Using Augmenting Paths

Definition 1.2.1: Alternating Path and Augmenting Path

In a graph𝐺 = (𝑉 ,𝐸) and𝑀 be a matching in𝐺 . Then an𝑀-alternating path is where the edges from𝑀 and 𝐸 \𝑀
appear alternatively.

An 𝑀-alternating path between two unmatched (also called exposed) vertices is called an 𝑀-augmenting

path.

Given a matching𝑀 and if there exists an𝑀-augmenting path 𝑝 then we can obtain a larger matching𝑀 ′ = 𝑀 ⊕ 𝑝 .
So if𝑀 is maximum matching then there is no augmenting path in 𝐺 .

Theorem 1.2.1
A matching𝑀 is maximum if and only if there are no𝑀-augmenting paths in 𝐺 .

Proof: Suppose𝑀 is maximum. If there is an𝑀-augmenting path 𝑝 in𝐺 then𝑀 ⊕ 𝑝 gives a matching with larger size.

But that contradicts the fact that𝑀 is a maximum matching. Hence there are no𝑀-augmenting paths in 𝐺 .

For the other direction we will show that if 𝑀 is not a maximum matching then there is an augmenting path. So

let’s assume that. Also assume that 𝑁 be a maximum matching. Then |𝑁 | > |𝑀 |. Consider the graph𝑀 ⊕ 𝑁 . In the graph

𝑀 ⊕ 𝑁 every vertex has degree at most 2. Therefore the connected components of𝑀 ⊕ 𝑁 are paths and cycles. Now since

𝐺 is bipartite the cycles in𝑀 ⊕ 𝑁 are of even length and the edges of𝑀 and 𝑁 appears alternatively in the cycles. So for

each cycle in 𝑀 ⊕ 𝑁 there are equal number of edges from 𝑀 and edges from 𝑁 . Now in the paths edges from 𝑀 and 𝑁

appears alternatively too. Therefore in an even path number of edges from𝑀 is equal to number of edges from 𝑁 . And in

a odd path either number of edges from 𝑁 is one more than the number of edges from𝑀 or the opposite. Since we know

|𝑁 | > |𝑀 | there must exists at least one odd path 𝑝 which has number of edges of 𝑁 is one more than the number of edges

from 𝑀 . In that case the path starts and ends with edges from 𝑁 . This path 𝑝 is an 𝑀-augmenting path. Therefore there

exists an𝑀-augmenting path in 𝐺 if𝑀 is not a maximum matching. ■

Now let 𝑀 is not a maximum matching. Then we will find a 𝑀-augmenting path in 𝐺 by constructing the Hun-
garian Forest. Our algorithm will be starting with empty set iteratively find augmenting paths and then take a symmetric

difference with the matching set and continue like this till we can not find an augmenting path.

2

Algorithm 2: Find-Maximum-Matching

Input: 𝐺 = (𝐿 ∪ 𝑅,𝐸)
Output: Find maximum matching𝑀 ⊆ 𝐸.

1 begin
2 𝑀 ←− ∅
3 while ∃ 𝑀-augmenting path do
4 𝑝 ←−𝑀-augmenting path

5 𝑀 ←− 𝑀 ⊕ 𝑝
6 return𝑀

1.2.1 Construction of Hungarian Forest

In the algorithm we will find an𝑀-augmenting path by constructing what is called a Hungarian Forest.

Level

0

1

2

3

4

5

Unmatched vertices

Matching edges

Unmatched edges

Figure 1: Hungarian Forest

We will start from each of unmatched vertices in 𝐿 then we will start Breadth-First-Search where we will not

repeat the vertices we have already visited and at odd level we will take matching edges and at even levels we will take

unmatched edges. We stop when no new vertices can be found. Then we do the same for the unmatched vertices in 𝑅

also. Now continuing like this starting at any unmatched vertex if we stop at odd level then we have already found a

augmenting path and otherwise all the paths from unmatched vertices end at an even level. Lets call the forest 𝐹 .

O𝐿 : Vertices of 𝐿 that occur in odd levels O𝑅 : Vertices of 𝑅 that occur in odd levels

E𝐿 : Vertices of 𝐿 that occur in odd levels E𝑅 : Vertices of 𝑅 that occur in even levels

U𝐿 : Vertices of 𝐿 that are unreachable U𝑅 : Vertices of 𝑅 that are unreachable

Following the construction of Hungarian Forest we have the following observations:

Observation 1. In the forest 𝐹 there are no edges between vertices at levels separated by 2.

Observation 2. All even vertices except the vertices in level 0 are matched.

1.2.2 Min Vertex Cover and MaximumMatching.

We have to show the algorithm always outputs a augmenting path. Instead of showing that we will show if the algorithm

can not find an𝑀-augmenting path then𝑀 is a maximum matching. We will show that using vertex cover.

Definition 1.2.2: Vertex Cover

𝐶 ⊆ 𝑉 is a vertex cover if every edge 𝑒 ∈ 𝐸 has at least one end point in 𝐶

3

Lemma 1.2.2
For any matching𝑀 and any vertex cover 𝐶 , |𝑀 | ≤ |𝐶 |

Proof: Since for every edge 𝑒 ∈ 𝐸, 𝑒 ∩𝐶 ≠ ∅ for all the edges in 𝑀 at least one end point of each edge is in 𝐶 therefore

|𝑀 | ≤ |𝐶 |. ■

Theorem 1.2.3 König-Egerváry, 1931

In a bipartite graph, the size of a maximum matching is equal to the size of minimum vertex cover.

Proof: Consider the set𝐶 = O𝐿 ∪O𝑅 ∪U𝐿 . Now |𝐶 | = |O𝐿 | + |O𝑅 | + |U𝐿 |. All the odd level vertices of 𝐿 ∪𝑅 are matched

by the construction of Hungarian forest. And all the unreachable vertices of 𝐿 are matched with unreachable vertices of

𝑅. Therefore |O𝐿 | + |O𝑅 | + |U𝐿 | = |𝑀 |. Hence if 𝐶 is a vertex cover then 𝐶 will be the minimum size vertex cover and 𝑀

will be the maximum matching. We will show that this is a vertex cover with the following claim:

Claim 1.2.4
O𝐿 ∪ O𝑅 ∪U𝐿 is a vertex cover.

Proof: Now there is no edge in E𝐿 × E𝑅 otherwise it will make an 𝑀-augmenting path. There is also no

edge in E𝐿 ×U𝑅 otherwiseU𝑅 will not be unreachable. Hence all the other edges are incident on at least one

of the three sets O𝐿 ,O𝑅 ,U𝐿 . So O𝐿 ⊔ O𝑅 ⊔U𝐿 is a vertex cover. ■

Therefore the minimum size vertex cover and the maximum matching has the same size. ■

Hence if the algorithm can not find an𝑀-augmenting path we have shown that we obtain a minimum size vertex

cover which has the same size as𝑀 which makes𝑀 to be the maximum matching. Hence the construction of Hungarian

Forest always returns a𝑀-augmenting path if𝑀 is not maximum matching.

Now in the algorithm construction of the Hungarian forest takes 𝑂 (|𝑉 | + |𝐸 |) time complexity. Therefore time to

find an𝑀-augmenting path in each iteration of the while loop takes𝑂 (|𝑉 | + |𝐸 |) time. Now in each iteration the matching

size increases by 1. So the while loop will go on for at most 𝑂 (|𝑉 |) iterations. Hence total time taken by the algorithm is

𝑂 (𝑚𝑛 +𝑛2) = 𝑂 (𝑚𝑛) where𝑚 = |𝐸 | and |𝑉 | = 𝑛.

2 Minimum Cost Perfect Matching

Bipartite Min Cost Perfect Matching

Input: Graph 𝐺 = (𝐿 ⊔ 𝑅,𝐸) with |𝐿 | = |𝑅 | and cost function 𝑐 : 𝐸 → R.

Question: Find a perfect matching𝑀 with minimum cost 𝑐 (𝑀) = ∑
𝑒∈𝑀

𝑐 (𝑒)

WLOG we can always assume 𝐺 is the complete bipartite graph. Since if its not complete then we can add those

edges with their cost being∞. So from now on we will assume 𝐺 is a complete bipartite graph.

We will first write a integer program for this problem. Since the bipartite graph is complete we will take a 𝑛 × 𝑛
4

symbolic matrix 𝑋 and cost function is also a 𝑛 ×𝑛 matrix 𝐶 .

Integer Program:

minimize

∑︁
𝑖 ,𝑗

𝑐𝑖 ,𝑗𝑥𝑖 ,𝑗

subject to

𝑛∑︁
𝑗=1

𝑥𝑖 ,𝑗 = 1 ∀ 𝑖 ∈ [𝑛],

𝑛∑︁
𝑖=1

𝑥𝑖 ,𝑗 = 1 ∀ 𝑗 ∈ [𝑛],

𝑥𝑖 ,𝑗 ∈ {0, 1} ∀ 𝑖 , 𝑗 ∈ [𝑛]

We will see the LP-relaxation of this by replacing the constraint 𝑥𝑖 ,𝑗 ∈ {0, 1} by 0 ≤ 𝑥𝑖 ,𝑗 ≤ 1.

minimize

∑︁
𝑖 ,𝑗

𝑐𝑖 ,𝑗𝑥𝑖 ,𝑗

subject to

𝑛∑︁
𝑗=1

𝑥𝑖 ,𝑗 = 1 ∀ 𝑖 ∈ [𝑛],

𝑛∑︁
𝑖=1

𝑥𝑖 ,𝑗 = 1 ∀ 𝑗 ∈ [𝑛],

𝑥𝑖 ,𝑗 ≥ 0 ∀ 𝑖 , 𝑗 ∈ [𝑛]

5

	1 Maximum Matching
	1.1 Using Max Flow
	1.2 Using Augmenting Paths
	1.2.1 Construction of Hungarian Forest
	1.2.2 Min Vertex Cover and Maximum Matching.

	2 Minimum Cost Perfect Matching

