
Combinatorial Optimization Jan – May, 2025

Lecture 2: Bipartite Min Cost Perfect Matching

Lecturer: T. Kavitha Scribe: Soham Chatterjee

1 MaximumMatching

We have the following theorem relating the sizes of minimum vertex cover and maximum matching in a bipartite graph

from last lecture:

Theorem 1.1 König-Egerváry, 1931

In a bipartite graph, the size of a maximum matching is equal to the size of minimum vertex cover.

We will use König-Egerváry Theorem to prove Hall’s Marriage Theorem, which establishes a necessary and suffi-

cient condition for the existence of a perfect matching in a bipartite graph.

Theorem 1.2 Hall’s Theorem, 1935

A bipartite graph 𝐺 = (𝐿 ∪ 𝑅,𝐸) has an 𝐿-perfect matching if and only if for all 𝑆 ⊆ 𝐿: |𝑁 (𝑆) | ≥ |𝑆 |

Proof: Suppose 𝐺 has a 𝐿-perfect matching. Let 𝑀 be the 𝐿-perfect matching. Then let 𝑆 ⊆ 𝐿. Then 𝑁 (𝑆) ⊇ 𝑇 where

𝑇 B {𝑣 ∈ 𝑅 : (𝑢, 𝑣) ∈ 𝑀 ,𝑢 ∈ 𝑆}. Then |𝑇 | = |𝑆 |. Therefore we have |𝑁 (𝑆) | ≥ |𝑇 | = |𝑆 |.
Now suppose for all 𝑆 ⊆ 𝐿, |𝑆 | ≤ |𝑁 (𝑆) |. Suppose 𝐺 doesn’t have a perfect matching. Let 𝑀 be a maximum

𝐿-matching in 𝐺 . So |𝑀 | < |𝐿 |. Let 𝐶 be the minimum vertex cover. By König-Egerváry Theorem |𝐶 | = |𝑀 |. Therefore

|𝐶 | < |𝐿 |. Hence take 𝑆 = {𝑢 ∈ 𝐿 : 𝑢 ∉ 𝐶} and take 𝑇 = 𝑅 ∩𝐶 . Therefore we have 𝑁 (𝑆) ⊆ 𝑇 . Hence we have

|𝐶 | = |𝐿 ∩𝐶 | + |𝑇 | = |𝐿 | − |𝑆 | + |𝑇 | =⇒ |𝑆 | = |𝐿 | − |𝐶 | + |𝑇 | > |𝑇 | ≥ |𝑁 (𝑆) |

Hence we got a set 𝑆 ⊆ 𝐿 for which |𝑆 | > |𝑁 (𝑆) |. Hence contradiction E . Therefore 𝐺 has a 𝐿-perfect matching. ■

2 Minimum Cost Perfect Matching

Bipartite Min Cost Perfect Matching

Input: Graph 𝐺 = (𝐿 ⊔ 𝑅,𝐸) with |𝐿 | = |𝑅 | and cost function 𝑐 : 𝐸 → R.

Question: Find a perfect matching 𝑀 with minimum cost 𝑐 (𝑀) = ∑
𝑒∈𝑀

𝑐 (𝑒)

WLOG we can always assume 𝐺 is the complete bipartite graph. Since if its not complete then we can add those

edges with their cost being∞. So from now on we will assume 𝐺 is a complete bipartite graph.

1



2.1 Constructing an LP
We will first write a integer program for this problem. Since the bipartite graph is complete we will take a 𝑛 ×𝑛 symbolic

matrix 𝑋 and cost function is also a 𝑛 ×𝑛 matrix 𝐶 where 𝑐𝑖 ,𝑗 = 𝑐 (𝑖 , 𝑗) for the edge (𝑖 , 𝑗) ∈ 𝐸.

Integer Program:

minimize

∑︁
𝑖 ,𝑗

𝑐𝑖 ,𝑗𝑥𝑖 ,𝑗

subject to

𝑛∑︁
𝑗=1

𝑥𝑖 ,𝑗 = 1 ∀ 𝑖 ∈ [𝑛],

𝑛∑︁
𝑖=1

𝑥𝑖 ,𝑗 = 1 ∀ 𝑗 ∈ [𝑛],

𝑥𝑖 ,𝑗 ∈ {0, 1} ∀ 𝑖 , 𝑗 ∈ [𝑛]

We will see the LP-relaxation of this by replacing the constraint 𝑥𝑖 ,𝑗 ∈ {0, 1} by 0 ≤ 𝑥𝑖 ,𝑗 ≤ 1.

minimize

∑︁
𝑖 ,𝑗

𝑐𝑖 ,𝑗𝑥𝑖 ,𝑗

subject to

𝑛∑︁
𝑗=1

𝑥𝑖 ,𝑗 = 1 ∀ 𝑖 ∈ [𝑛],

𝑛∑︁
𝑖=1

𝑥𝑖 ,𝑗 = 1 ∀ 𝑗 ∈ [𝑛],

𝑥𝑖 ,𝑗 ≥ 0 ∀ 𝑖 , 𝑗 ∈ [𝑛]

Observation 1. The first two constraints of the LP suggests that the matrix 𝑋 is doubly stochastic.

The feasible region of the LP-relaxation contains all possible doubly stochastic matrix with each entry being non-

negative. The feasible region is a bounded polyhedron or polytope. We will call this polytope 𝑃 . We are optimizing a

linear constraint over a polytope the optimum will be attained at one of the “corners” or extreme points.

Definition 2.1.1: Extreme Point

𝑢 ∈ 𝑄 is an extreme point of a set 𝑄 if 𝑢 cannot be written as 𝜆𝑥 + (1 − 𝜆)𝑦 where 𝑥 ,𝑦 ∈ 𝑄 , 𝑥 ≠ 𝑦 and 𝜆 ∈ (0, 1).

2.2 Finding Extreme Point of the LP
We aim to show in the following theorem that the extreme points of the polytope 𝑃 correspond to perfect matchings in a

bipartite graph. Every perfect matching corresponds to a permutation matrix. Therefore specifically, we will prove that

any doubly stochastic matrix is a convex combination of permutation matrices. This implies that every extreme point of

𝑃 is a 0 − 1 vector, corresponding to a permutation matrix.

Theorem 2.2.1 Birkhoff-Von Neumann Theorem, 1946

Every doubly stochastic matrix can be written as a convex combination of permutation matrices.

Proof: Suppose there exists values 𝑢𝑖 ∀ 𝑖 ∈ 𝐿 and 𝑣 𝑗 ∀ 𝑗 ∈ 𝑅 such that

𝑢𝑖 + 𝑣 𝑗 ≤ 𝑐𝑖 ,𝑗 ∀ 𝑖 ∈ 𝐿, 𝑗 ∈ 𝑅

Then for any perfect matching 𝑀 we have ∑︁
(𝑖 ,𝑗 ) ∈𝑀

𝑐𝑖 ,𝑗 ≥
∑︁
𝑖∈𝐿

𝑢𝑖 +
∑︁
𝑗∈𝑅

𝑣 𝑗

2



Therefore

∑
𝑖∈𝐿

𝑢𝑖 +
∑
𝑗∈𝑅

𝑣 𝑗 gives a lower bound on the cost of minimum cost perfect matching for the bipartite graph. So to

get the best lower bound we would like to maximize this quantity. So we have the following LP:

maximize

∑︁
𝑖∈𝐿

𝑢𝑖 +
∑︁
𝑗∈𝑅

𝑣 𝑗

subject to 𝑢𝑖 + 𝑣 𝑗 ≤ 𝑐𝑖 ,𝑗 ∀ 𝑖 ∈ 𝐿, 𝑗 ∈ 𝑅

Let 𝐷 be the polyhedron generated by the constraint 𝑢𝑖 + 𝑣 𝑗 ≤ 𝑐𝑖 ,𝑗 ∀ 𝑖 ∈ 𝐿, 𝑗 ∈ 𝑅. Now consider any 𝑋 ∈ 𝑃 . Then we have∑︁
𝑖∈𝐿

∑︁
𝑗∈𝑅

𝑐𝑖 ,𝑗𝑥𝑖 ,𝑗 ≥
∑︁
𝑖∈𝐿

∑︁
𝑗∈𝑅
(𝑢𝑖 + 𝑣 𝑗 )𝑥𝑖 ,𝑗 =

(∑︁
𝑖∈𝐿

∑︁
𝑗∈𝑅

𝑥𝑖 ,𝑗

)
+

(∑︁
𝑗∈𝑅

𝑣 𝑗

∑︁
𝑖∈𝐿

𝑥𝑖 ,𝑗

)
=

∑︁
𝑖∈𝐿

𝑢𝑖 +
∑︁
𝑗∈𝑅

𝑣 𝑗

Therefore we have

min

perfect matching 𝑀

∑︁
(𝑖 ,𝑗 ) ∈𝑀

𝑐𝑖 ,𝑗 ≥ min

𝑥∈𝑃

∑︁
𝑖∈𝐿

∑︁
𝑗∈𝑅

𝑐𝑖 ,𝑗𝑥𝑖 ,𝑗 ≥ max

(𝑢,𝑣) ∈𝐷

∑︁
𝑖∈𝐿

𝑢𝑖 +
∑︁
𝑗∈𝑅

𝑣 𝑗

Thus we get a primal-dual relation between the two LP problems.

Now our goal is to come up with a perfect matching 𝑀 and (𝑢, 𝑣) ∈ 𝐷 such that

∑
(𝑖 ,𝑗 ) ∈𝑀

𝑐𝑖 ,𝑗 =
∑
𝑖∈𝐿

𝑢𝑖 +
∑
𝑗∈𝑅

𝑣 𝑗 . Then

𝑀 will be optimal solution to the LP-relaxation. Given solution 𝑢∗, 𝑣∗ of the dual LP a perfect matching 𝑀 would satisfy

equality if it contains only the edges (𝑖 , 𝑗) such that 𝑐𝑖 ,𝑗 = 𝑢𝑖 + 𝑣 𝑗 by complementary slackness. But for a given (𝑢, 𝑣) we

may not be able to find a perfect matching among the edges with 𝑐𝑖 ,𝑗 = 𝑢𝑖 + 𝑣 𝑗 .
We will describe an algorithm now which performs a series of iterations to obtain an appropriate 𝑢 and 𝑣 . It main-

tains a feasible solution for the dual problem and finds an “almost” primal feasible solution 𝑥 satisfying complementary

slackness. Satisfying complementary slackness we are working in the subgraph 𝐺 ′ = (𝑉 ,𝐸′) where 𝐸′ = {(𝑖 , 𝑗) : 𝑐𝑖 ,𝑗 =

𝑢𝑖 + 𝑣 𝑗 }.

Algorithm 1: Min-Cost-BPM

Input: Complete bipartite graph 𝐺 = (𝐿 ⊔ 𝑅,𝐸) with |𝐿 | = 𝑛 and cost function 𝑐 : 𝐸 → R

Output: Find minimum cost perfect matching

1 begin
2 Initialize 𝑢𝑖 ←− 0 ∀ 𝑖 ∈ 𝐿
3 𝑣 𝑗 ←− min

𝑖∈𝐿
𝑐𝑖 ,𝑗 ∀ 𝑗 ∈ 𝑅

4 willMatchingInc←− 𝑇𝑟𝑢𝑒
5 while True do
6 𝐸′ ←− {(𝑖 , 𝑗) : 𝑐𝑖 ,𝑗 = 𝑢𝑖 + 𝑣 𝑗 }
7 if willMatchingInc == 𝑇𝑟𝑢𝑒 then
8 𝑀 ←− Find-Maximum-Matching(𝐺 ′ = (𝑉 ,𝐸′))
9 if 𝑀 is perfect matching then
10 return𝑀

11 (𝑖 , 𝑗) ←− arg min

𝑖∈E𝐿
min

𝑗∈E𝑅∪U𝑅

(𝑐𝑖 ,𝑗 −𝑢𝑖 − 𝑣 𝑗 )

12 if (𝑖 , 𝑗) ∈ E𝐿 ×U𝑅 then
13 willMatchingInc←− 𝐹𝑎𝑙𝑠𝑒

14 Relabel vertices to obtain O𝐿 ,O𝑅 , E𝐿 , E𝑅 ,U𝐿 ,U𝑅

15 𝛿 ←− 𝑐 (𝑖 ,𝑗 ) −𝑢𝑖 − 𝑣 𝑗
16 𝑢𝑖 ←− 𝑢𝑖 + 𝛿 , ∀ 𝑖 ∈ E𝐿
17 𝑣 𝑗 ←− 𝑣 𝑗 − 𝛿 , ∀ 𝑖 ∈ O𝑅

In the algorithm when 𝑀 is not a perfect matching then it updates 𝑢, 𝑣 to get a new feasible solution which has

value

∑
𝑖∈𝐿

𝑢𝑖 +
∑
𝑗∈𝑅

𝑣 𝑗 greater than before which we will prove now and then runs the while loop again.

In the Find-Maximum-Matching algorithm if 𝑀 is not a perfect matching then𝐶 = O𝐿 ∪O𝑅 ∪U𝐿 is the minimum

vertex cover of 𝐺 = (𝑉 ,𝐸′). In order to update 𝑢, 𝑣 to get 𝑢′, 𝑣 ′ we will use the information of the minimum vertex cover.

3



By the algorithm we obtain new 𝑢′, 𝑣 ′ where

𝑢′𝑖 =

{
𝑢𝑖 + 𝛿 ∀ 𝑖 ∈ E𝐿
𝑢𝑖 ∀ 𝑖 ∈ O𝐿 ∪U𝐿

𝑣 ′𝑗 =

{
𝑣𝑖 − 𝛿 ∀ 𝑖 ∈ O𝑅
𝑣𝑖 ∀ 𝑖 ∈ E𝑅 ∪U𝑅

Claim 2.2.2
(𝑢′, 𝑣 ′) is also a feasible solution of the LP

maximize

∑︁
𝑖∈𝐿

𝑢𝑖 +
∑︁
𝑗∈𝑅

𝑣 𝑗

subject to 𝑢𝑖 + 𝑣 𝑗 ≤ 𝑐𝑖 ,𝑗 ∀ 𝑖 ∈ 𝐿, 𝑗 ∈ 𝑅

with ∑︁
𝑖∈𝐿

𝑢′𝑖 +
∑︁
𝑗∈𝑅

𝑣 ′𝑗 >
∑︁
𝑖∈𝐿

𝑢𝑖 +
∑︁
𝑗∈𝑅

𝑣 𝑗

Proof: The edges in 𝐺 ′ = (𝑉 ,𝐸′) are in O𝐿 × E𝑅 , E𝐿 × O𝑅 and U𝐿 ×U𝑅 . Therefore E𝐿 ∪ E𝑅 ∪U𝑅 is an

independent set. Let after updating the vectors 𝑢, 𝑣 we denote it by 𝑢, 𝑣 . For edges in (𝑖 , 𝑗) ∈ 𝐸 ∩ (O𝐿 × E𝑅 ∪
U𝐿 ×U𝑅) we have 𝑢𝑖 = 𝑢𝑖 and 𝑣 𝑗 = 𝑣 𝑗 . Therefore

𝑢𝑖 + 𝑣 𝑗 = 𝑢𝑖 + 𝑣 𝑗 ≤ 𝑐𝑖 ,𝑗

For edges in (𝑖 , 𝑗) ∈ E𝐿 × O𝑅 we have 𝑢𝑖 = 𝑢𝑖 + 𝛿 and 𝑣 𝑗 = 𝑣 𝑗 − 𝛿 . Therefore

𝑢𝑖 + 𝑣 𝑗 = 𝑢𝑖 + 𝛿 + 𝑣 𝑗 − 𝛿 = 𝑢𝑖 + 𝑣 𝑗 ≤ 𝑐𝑖 ,𝑗

Therefore (𝑢, 𝑣) is a feasible solution of the LP.

Now we have ∑︁
𝑖∈𝐿

𝑢𝑖 +
∑︁
𝑗∈𝑅

𝑣 𝑗 −
∑︁
𝑖∈𝐿

𝑢𝑖 −
∑︁
𝑗∈𝑅

𝑣 𝑗 = 𝛿 ( |E𝐿 | − |O𝑅 |) = 𝛿 ( |𝐿 | − |𝐶 |) = 𝛿 (𝑛 − |𝐶 |)

Since every vertex of O𝑅 is matched and matched with vertices of E𝐿 and E𝐿 also contains the starting un-

matched vertices of 𝐿 we have |E𝐿 | > |O𝑅 |. Hence the value strictly increases. ■

Claim 2.2.3
In each iteration of while loop size of the edge set 𝐸′ increases by 1.

Proof: In any iteration of the while loop in the graph𝐺 ′ = (𝑉 ,𝐸′) none of the the edges in E𝐿 × (E𝑅 ∪U𝑅)
are present. Now in line 9 we are taking 𝛿 to be the minimum of 𝑐𝑖 ,𝑗 −𝑢𝑖 − 𝑣 𝑗 over all edges of E𝐿 × (E𝑅 ∪U𝑅).
Let that edge is (𝑖′, 𝑗 ′). Then 𝑐𝑖′ ,𝑗 ′ −𝑢𝑖 − 𝑣 𝑗 = 𝛿 . Then in line 10 the algorithm updates 𝑢𝑖′ = 𝑢𝑖′ + 𝛿 but 𝑣 𝑗 ′ is

unchanged since 𝑗 ′ ∈ E𝑅 ∪U𝑅 . Then in the next iteration of the while loop we have for the edge (𝑖′, 𝑗 ′)

𝑐𝑖′ ,𝑗 ′ −𝑢𝑖′ − 𝑣 𝑗 ′ = 𝑐𝑖′ ,𝑗 ′ −𝑢𝑖′ − 𝛿 − 𝑣 𝑗 ′ = 0

Therefore the edge (𝑖′, 𝑗 ′) is in the edge set constructed in line 5 in the next iteration of the while loop. The

edges in (E𝐿 × O𝑅) ∪ (O𝐿 × E𝑅) ∪ (U𝐿 ×U𝑅) continue to remain tight after our update of 𝑢𝑖 , 𝑣 𝑗 values. Since

each time one edge is becoming tight the edge set is increasing by 1 in each iteration of the while loop. ■

Since each time one edge is becoming tight the edge set is increasing by one and henceforth the algorithm terminates.

Therefore in after 𝑂 (𝑛2) iterations all the edges has been added and therefore the matching found is perfect.

Now if an edge of E𝐿 ×U𝑅 becomes tight then the maximum matching continues to remain maximum matching.

So only the labels of vertices are changed and new odd, even and unreachable sets are obtained. Therefore we don’t need

to run the algorithm for maximum matching again. So it takes 𝑂 (𝑛2) time for such iterations.

When an edge of E𝐿 × E𝑅 becomes tight then there exists an augmenting path and the size of the maximum

matching increases. In this case only we run the Find-Maximum-Matching algorithm on the tight edges. In each such

4



iterations the size of the maximum matching increases. Therefore there can be 𝑂 (𝑛) iterations of this kind. Therefore in

these iterations it takes 𝑂 (𝑛3).
Therefore the total time taken by the algorithm is 𝑂 (𝑛2) ×𝑂 (𝑛2) +𝑂 (𝑛) ×𝑂 (𝑛3) = 𝑂 (𝑛4). Now since carefully

choosing the cost function we can make any extreme point of the polytope of LP be the optimum solution of the linear

program this proves that all the extreme points are integral. ■

Therefore we have proved both that we can find the minimum cost perfect matching in a bipartite graph in 𝑂 (𝑛4)
times and every doubly stochastic matrix can be written as a convex combination of permutation matrix.

5


	1 Maximum Matching
	2 Minimum Cost Perfect Matching
	2.1 Constructing an LP
	2.2 Finding Extreme Point of the LP


