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Abstract. We consider a matching problem in a hospitals/residents instance G, i.e., a many-to-one
matching instance, where every vertex has a strict ranking of its neighbors and hospitals have capacities.
A matching M is said to be popular if M does not lose an election against any matching where vertices
cast votes for one matching versus another. There are efficient algorithms to find popular matchings
in G but it is NP-hard to find a min-cost popular matching when edges have costs. When preferences
are complete, there is a polynomial-time algorithm for this problem in the one-to-one setting, i.e., when
every hospital has capacity 1. Interestingly, the set of popular matchings in a many-to-one instance
can be richer than the set of popular matchings in the corresponding one-to-one instance (obtained
by cloning vertices) and no polynomial-time algorithm is currently known for the min-cost popular
matching problem with complete preferences in the many-to-one setting. We show a polynomial-time
algorithm for this problem. Our algorithm includes a subroutine for computing a min-cost popular
perfect matching—this subroutine also works for instances with incomplete preferences.

1 Introduction

We consider a matching problem in a bipartite graphG = (R∪H,E) whereR is a set of residents and
H is a set of hospitals. Every vertex v ∈ R∪H has a strict ranking of its neighbors. Every resident r
seeks to be matched to a hospital while every hospital h has an integral capacity cap(h) ≥ 1 and
seeks to be matched to cap(h) many residents. Such a graph G is called a hospitals/residents
instance and this is a very well-studied model in two-sided matching markets. This model includes
several real-world settings such as matching students to schools and colleges [1,3] and residents to
hospitals [7,34].

Definition 1. A matching M in G = (R ∪H,E) is a subset of E such that |M(r)| ≤ 1 for each
r ∈ R and |M(h)| ≤ cap(h) for each h ∈ H, where M(v) = {u : (u, v) ∈M} for any v ∈ R ∪H.

There is a function cost : E → R, so cost(r, h) is the cost of matching resident r to hospital h.
The cost of a matching M is the sum of costs of edges in M , i.e., cost(M) =

∑
e∈M cost(e). Our

goal is to define “best matchings” with respect to vertex preferences and design a polynomial-time
algorithm to find a min-cost best matching.

An efficient algorithm for the min-cost best matching problem will enable us to efficiently solve
a variety of best matching problems such as finding an egalitarian best matching or finding a best
matching that contains as many of our favorite edges as possible and so on. In the setting of two-
sided preferences, stable matchings are typically considered to be the best matchings. A matching
M is stable if there is no edge that “blocks” M : an edge (r, h) is said to block M if (i) either r is
unmatched or it prefers h to its partner in M and (ii) either h has less than cap(h) partners or it
prefers r to its worst partner in M .

⋆ Part of this work (Section 3) appeared in FSTTCS 2023 [27]. Section 2 and our main result (Theorem 3) are new.



Stable matchings always exist in G and the classic Gale-Shapley algorithm [14] finds one. How-
ever stability is a strong and rather restrictive notion, thus we may miss out on matchings with lower
cost (say, more egalitarian matchings) by defining only stable matchings to be the best matchings.
There are several applications such as assigning projects to trainees or students where stability may
be relaxed for the sake of obtaining matchings with lower cost or improved utility.

Popularity. A well-studied relaxation of stability is the notion of popularity. Popularity is based on
voting by vertices on matchings. In the one-to-one (also called the marriage) setting, the preferences
of a vertex over its neighbors extend naturally to preferences over matchings—so every vertex orders
matchings in the order of its partners in these matchings and being unmatched is its worst option.
Popular matchings are (weak) Condorcet winners [11,29] in this voting instance where vertices are
voters and matchings are candidates. Thus a popular matching M does not lose a head-to-head
election against any matching N where each vertex either casts a vote for the matching in {M,N}
that it prefers or it abstains from voting if its assignment is the same in M and N .

Recall that we are in the many-to-one or hospitals/residents setting, i.e., hospitals have capac-
ities. So we need to specify how a hospital votes over different subsets of its neighbors. Thus for
a hospital h, we need to compare two subsets M(h) and N(h) of Nbr(h), where Nbr(h) is the set
of neighbors of h. We will follow the method from [6] for this comparison. The definition in [6] of
voting by a hospital h between two subsets of Nbr(h) is the following:

– First, all residents that are contained in both sets are removed and then a bijection from the
first set to the second set is determined.3 Every vertex is compared with its image under this
bijection, thus the vote depends on the bijection that is chosen.

Voting by vertices. Let us first formally define how a resident r casts its vote between two
neighbors h and h′. The function voter(h, h

′) is 1 if r prefers h to h′, it is −1 if r prefers h′ to h,
and it is 0 otherwise, i.e., h = h′. The function voter(·, ·) that compares two neighbors of r extends
naturally to any pair of matchings M and N as voter(M,N) = voter(M(r), N(r)). Note that M(r)
(resp., N(r)) is null if r is unmatched in M (resp., N) and this is the worst state for any vertex.
Every resident casts a vote in {0,±1} in the M -vs-N election.

A hospital h with capacity cap(h) is allowed to cast up to cap(h) many votes. Let S and T be
two subsets of Nbr(h); hospital h compares these two subsets as follows:

– a bijection ψ is chosen from S′ = S \ T to T ′ = T \ S;
– every resident r ∈ S′ is compared with ψ(r) ∈ T ′;
– the number of wins minus the number of losses is h’s vote for S versus T .

The bijection ψ that is chosen will be the one that minimizes h’s vote for S′ versus T ′. More
formally, the vote of h for S versus T , denoted by voteh(S, T ), is defined as follows where |S′| =
|T ′| = k and Π[k] is the set of permutations on {1, . . . , k}:

voteh(S, T ) = min
σ∈Π[k]

k∑
i=1

voteh(S
′[i], T ′[σ(i)]), (1)

where S′[i] is the i-th ranked resident in S′ and T ′[σ(i)] is the σ(i)-th ranked resident in T ′.

3 If the sets are not of equal size, then dummy vertices that are less preferred to all non-dummy vertices are added
to the smaller set.
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For example, let S = {r1, r3, r4} and let T = {r2, r3, r5} where r1 ≻ r2 ≻ r3 ≻ r4 ≻ r5 is h’s
preference order. So h prefers r1 to r2 and so on. Then S′ = {r1, r4} and T ′ = {r2, r5}. The bijection
ψ : S′ → T ′ would be as follows: ψ(r1) = r5 and ψ(r4) = r2 as this is the most adversarial way of
comparing S′ with T ′. This results in voteh(S, T ) = voteh(r1, r5) + voteh(r4, r2) = 1− 1 = 0.

For any pair of matchings M and N in G, let voteh(M,N) = voteh(S, T ), where S =M(h) and
T = N(h). So voteh(M,N) counts the number of votes by h for M(h) versus N(h) when the two
sets M(h) \N(h) and N(h) \M(h) are compared in the order that is most adversarial or negative
for M . The two matchings M and N are compared using ∆(M,N) =

∑
v∈R∪H votev(M(v), N(v)).

We will say matching M is better or more popular than matching N if ∆(M,N) > 0.

Definition 2. A matching M is popular if ∆(M,N) ≥ 0 for all matchings N in G.

Popular matchings will be our “best matchings”. Every stable matching in G is popular [6].
Thus popular matchings always exist in a hospitals/residents instance G = (R ∪ H,E) and it is
easy to find one. Our problem is to compute a min-cost popular matching in G where cost : E → R
is part of the input.

Recall that a one-to-one matching instance is also called a marriage instance. A polynomial-time
algorithm to compute a min-cost popular matching in a marriage instance with complete preferences
is known [10]. When preferences are incomplete, it is NP-hard to find a min-cost popular matching in
a marriage instance [12]. In light of this hardness result, let us assume that every resident is adjacent
to all hospitals—thus the underlying graph is the complete bipartite graph. No polynomial-time
algorithm is currently known for the min-cost popular matching problem with complete preferences
in the many-to-one setting.

A first attempt to solve this problem would be to reduce it to the min-cost popular matching
problem in the marriage setting. Suppose we construct the marriage instance G′ obtained from G
where each hospital h is replaced by cap(h) many clones h1, . . . , hcap(h); moreover, we will have
h1 ≻r · · · ≻r hcap(h) for all residents r (Section 1.4 has more details). There is a natural map
p from the set of popular matchings in the marriage instance G′ to the set of matchings in the
hospitals/residents instanceG, where for any popular matchingM ′ inG′, the many-to-one matching
M = p(M ′) is obtained by identifying all the clones of the same hospital. It can be shown that the
resulting matching M is popular in G.

Thus p : {popular matchings in G′} → {popular matchings in G}. Is p surjective? If so, then
we can obtain a min-cost popular matching in G by computing a min-cost popular matching in G′.

1.1 An interesting example

Consider the following example where R = {r, r′} and H = {h, h′} with cap(h) = 1 and cap(h′) = 2.
Vertex preferences are as follows.

r : h ≻ h′ h : r ≻ r′

r′ : h ≻ h′ h′ : r ≻ r′

Both residents prefer h to h′ and both hospitals prefer r to r′. We claim M = {(r, h′), (r′, h)}
is popular. Let us compare M with N = {(r, h), (r′, h′)}: M gets the vote of r′ and a single vote
from h′ while N gets the votes of r and h. So ϕ(M,N) = ϕ(N,M) = 2 and the M -vs-N election
is a tie. Another matching of size 2 here is T = {(r, h′), (r′, h′)}: M gets the votes of r′ and h in
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the M -vs-T election while T gets a single vote from h′, so M is more popular than T . It is easy to
check that M does not lose against any smaller matching, thus M is a popular matching in G.

Let us construct the marriage instance G′ = (R∪H ′, E′) corresponding to G where E′ = R×H ′,
R = {r, r′}, and H ′ = {h, h′1, h′2}. Vertex preferences in G′ are as follows: note that h′ gets replaced
by h′1 ≻ h′2 in the preference orders of all residents and the preference lists of h′1 and h′2 are the
same as the preference list of h′.

r : h ≻ h′1 ≻ h′2 h′1 : r ≻ r′ h : r ≻ r′

r′ : h ≻ h′1 ≻ h′2 h′2 : r ≻ r′

The matching M in G has two realizations in G′: these are M ′ = {(r, h′1), (r′, h)} and M ′′ =
{(r, h′2), (r′, h)}. We show below that neither M ′ nor M ′′ is popular in G′.

– M ′ is more popular than M ′′ since r and h′1 prefer M ′ to M ′′ while h′2 prefers M ′′ to M ′ and
the vertices r′ and h are indifferent between M ′ and M ′′.

– N ′ = {(r, h), (r′, h′2)} is more popular than M ′ since the vertices r, h, and h′2 prefer N ′ to M ′

while the vertices r′ and h′1 prefer M ′ to N ′.

Hence though M = {(r, h′), (r′, h)} is popular in G, neither of its realizations is popular in G′.
The instance G′ has a unique stable matching P ′ = {(r, h), (r′, h′1)} which is also the unique popular
matching in G′.

The above example shows that p : {popular matchings in G′} → {popular matchings in G} is
not surjective. Solving the min-cost popular matching problem in the above instance G′ would have
yielded P = {(r, h), (r′, h′)} in G because P ′ = {(r, h), (r′, h′1)} is the only popular matching in G′.
The matching P – though popular in G – need not be a min-cost popular matching in G because
M is also popular and edge costs can be easily set so that cost(M) < cost(P ). Thus solving the
min-cost popular matching problem in G′ does not solve our problem in G.

The following theorem is our main result.

Theorem 3. Let G = (R ∪H,E) be a hospitals/residents instance with a function cost : E → R,
where every vertex in R ∪H has complete and strict preferences. A min-cost popular matching in
G can be computed in polynomial time.

1.2 Incomplete preferences

The assumption that every resident has to rank all hospitals in a strict order of preference is
reasonable in some settings such as the assignment of trainees to projects where every trainee is
asked to rank all projects. But there are other settings, say while matching students to schools,
where the instance G need not be the complete bipartite graph because a student may not want to
go to a school that is too far away from home. One of the main steps in our algorithm in Theorem 3
involves finding a min-cost popular (many-to-one) matching in an instance that admits a perfect
matching, i.e., one where every vertex is fully matched.

There are several natural scenarios where a hospitals/residents instance with incomplete prefer-
ences admits a perfect matching, e.g., the “lab rotation” problem where each student gets assigned
to a lab during training. At certain intervals, based on the preferences of students and those in
charge of labs, there may be a reassignment of students to labs. Every student in our instance is
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adjacent to her current lab and labs that she prefers to her current lab, thus preferences need not
be complete here. The set of feasible solutions is the set of perfect matchings. The instance admits
a perfect matching which is the current assignment of students to labs. In such applications we seek
a “best perfect matching”. Though the instance admits perfect matchings, it could be the case that
no perfect matching is popular [23]. A natural candidate for a best perfect matching is a popular
perfect matching defined below.

Definition 4. A perfect matching M is a popular perfect matching if ∆(M,N) ≥ 0 for all perfect
matchings N in G.

Thus a popular perfect matching M need not be popular – it may lose elections – but no
perfect matching defeats M . For any hospitals/residents instance G, there is a natural function f
(analogous to p) from the set of popular perfect matchings in the corresponding marriage instance
G′ to the set of popular perfect matchings in G. We show the following structural result.

Theorem 5. For any popular perfect matchingM in a hospitals/residents instance G = (R∪H,E)
with strict preferences (these can be incomplete), there is always some realization of M that is a
popular perfect matching in the corresponding marriage instance G′ = (R ∪H ′, E′).

Thus, unlike the map p (see the example in Section 1.1), the map f is surjective. In other words,
the set of popular perfect matchings in G is not richer than the set of popular perfect matchings in
G′. There is a polynomial-time algorithm to find a min-cost popular perfect matching in a marriage
instance [26]. Hence Theorem 5 leads to a polynomial-time algorithm to find a min-cost popular
perfect matching in a hospitals/residents instance G = (R ∪H ′, E′) with a function cost : E → R.

Theorem 6. Let G = (R ∪H,E) be a hospitals/residents instance where vertices have strict pref-
erences (perhaps incomplete) and there is a function cost : E → R. If G admits a perfect matching
then a min-cost popular perfect matching in G can be computed in polynomial time.

1.3 Background

The notion of popularity was proposed by Gärdenfors [16] in 1975 in the stable marriage problem
(i.e., in the one-to-one setting) where he observed that every stable matching is popular. When
preferences include ties (even one-sided ties), popular matchings need not always exist and it is
NP-hard to decide if one exists [4,9].

It was shown in [19] that stable matchings are min-size popular matchings in a marriage in-
stance. Polynomial-time algorithms to find a max-size popular matching were given in [19,23]. A
subclass of max-size popular matchings called dominant matchings was studied in [10]. A popular
matchingM is dominant ifM is more popular than every larger matching. Every popular matching
in an instance with complete preferences is a maximum matching (hence, dominant) and a charac-
terization of dominant matchings as stable matchings in another graph yielded a polynomial-time
algorithm in [10] for the min-cost popular matching in marriage instances with complete prefer-
ences. When preferences are incomplete, even in the special case of marriage instances that admit
perfect matchings, it is NP-hard to find a min-cost popular matching [12].

It was shown in [23] that popular maximum matchings, i.e., maximum matchings that are
popular within the set of maximum matchings, always exist in a marriage instance. It follows from
[23,26] that a maximum matching M in a marriage instance G is a popular maximum matching if
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and only ifM can be realized as a stable matching in an auxiliary instance. Thus, in contrast to the
NP-hardness of the min-cost popular matching problem in instances with incomplete preferences,
there is a polynomial-time algorithm for the min-cost popular maximum matching problem in all
marriage instances. We refer to [8] for a survey on results in popular matchings in the marriage
setting.

The stable matching problem has been extensively studied in the hospitals/residents setting
and also in the many-to-many setting [2,5,13,17,18,20,21,35,37]. In contrast to min-cost popular
matchings, a min-cost stable matching in a hospitals/residents instance (and also in a many-to-
many instance) with incomplete preferences can be computed in polynomial time [13,18,36,38]. The
notion of popularity was extended from the marriage setting to the many-to-many setting in [6]
and [33], independently. A polynomial-time algorithm to compute a max-size popular matching in
the many-to-many setting was given in [6]. It was also shown in [6] that every stable matching in a
many-to-many instance is popular; so though a rather strong definition of popularity was adopted
here, it was shown that popular matchings always exist. The definition of popularity considered
in [33] is weaker than the one in [6]; in order to compare a pair of matchings M0 and M1, every
hospital h uses the bijection that compares the top neighbor inM0(h)\M1(h) with the top neighbor
in M1(h) \M0(h), and so on, i.e., the permutation σ in Eq. (1) is the identity permutation.

Popular matchings where vertices have capacity lower bounds have been studied in the hos-
pitals/residents setting and in the many-to-many setting [30,31,32], where it is only matchings
that satisfy these lower bounds that are feasible. It was shown in these works that popular feasible
matchings always exist and can be computed in polynomial time. Note that it is not always the case
that the tractability of a matching problem in the one-to-one setting translates to its tractability in
the many-to-one setting. It was very recently shown that it is NP-hard to find a matching that max-
imizes Nash social welfare (i.e., the geometric mean of edge utilities) in a many-to-one instance [22].
Note that the maximum weight matching algorithm solves this problem in the one-to-one setting.4

1.4 Our techniques

For any hospitals/residents instance G = (R∪H,E) with strict preferences, there is a corresponding
marriage instance G′, i.e., each vertex in G′ has capacity 1. The vertex set of G′ is R ∪H ′ where
H ′ = ∪h∈H{h1, . . . , hcap(h)}. The set of neighbors of each hi in G

′ is exactly the same as the set of
h’s neighbors in G. So G′ = (R∪H ′, E′) is a marriage instance where E′ = {(r, hi) : (r, h) ∈ E and
1 ≤ i ≤ cap(h)}. Every vertex in G′ has a strict preference order over its neighbors as described
below.

– For h ∈ H and 1 ≤ i ≤ cap(h): the preference order of hi in G′ is exactly the same as h’s
preference order in G.

– For r ∈ R: the preference order of r in G′ is the same as r’s preference order in G where every
neighbor h in G gets replaced by all its clones in the order h1 ≻ h2 ≻ · · · ≻ hcap(h). So if r’s
preference order in G is h ≻ h′ then r’s preference order in G′ is:

h1 ≻ h2 ≻ · · · ≻ hcap(h) ≻ h′1 ≻ h′2 ≻ · · · ≻ h′cap(h′).

As seen in the example in Section 1.1, every popular matching in a hospitals/residents instanceG
with complete preferences need not have a realization as a popular matching in the corresponding
marriage instance G′.

4 For any edge (u, v), the weight of this edge is log of the product of utilities that u and v have for each other.
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– When |R| >
∑

h∈H cap(h), a simple observation shows that if M is a popular matching in G
then M has to be stable in G. Thus the min-cost stable matching algorithm in G solves the
min-cost popular matching problem in G.

– The non-trivial cases are when |R| ≤
∑

h∈H cap(h).

The case when |R| <
∑

h∈H cap(h) is quite different from the case when |R| =
∑

h∈H cap(h).

Combinatorial arguments. When |R| <
∑

h∈H cap(h), as seen in the example in Section 1.1,
the set of popular matchings in the many-to-one instance G can be richer than the set of popular
matchings in the corresponding one-to-one instance G′. We show that any popular matching M
in G has to be almost stable in G. That is, blocking edges (if any) can be incident to partners of one
particular hospital. This allows us to construct a new marriage instance G̃ and use combinatorial
arguments to show that a matching M is popular in G if and only if M has a realization as a stable
matching M̃ in G̃. Thus when |R| <

∑
h∈H cap(h), the min-cost stable matching algorithm in G̃

solves the min-cost popular matching problem in G. This result is shown in Section 2.
When |R| =

∑
h∈H cap(h), the graph G admits a perfect (many-to-one) matching and popular

matchings can be highly unstable. In other words, a popular matching can admit many blocking
edges that are incident to residents matched to different hospitals h, h′, h′′, . . . in G. Interestingly,
in contrast to the case |R| <

∑
h∈H cap(h), we will be able to show that each popular matching

in G has a realization as a popular matching in the marriage instance G′.
For any matching M in G, note that there is a natural realization of M in G′ defined as follows:

M ′ = ∪h∈H{(ri, hi) : 1 ≤ i ≤ cap(h) and ri is the i-th most preferred partner of h in M}.

ThoughM is a popular matching in the instanceG, the above realizationM ′ need not be popular
in the marriage instance G′. Consider the following instance where R = {p, q, r}, H = {h, h′} and
cap(h) = 2 while cap(h′) = 1.

p : h ≻ h′ h : p ≻ q ≻ r

q : h ≻ h′ h′ : p ≻ q ≻ r

r : h ≻ h′

It can be checked that M = {(p, h), (q, h′), (r, h)} is a popular matching in G. But the natural
realization M ′ = {(p, h1), (q, h′), (r, h2)} is not popular in G′ since N ′ = {(p, h′), (q, h2), (r, h1)} is
more popular than M ′; the four vertices q, r, h2, h

′ prefer N ′ to M ′ while the two vertices p and h1
prefer M ′ to N ′.

Stable matching problems in a hospitals/residents instance G can be easily translated into stable
matching problems in the corresponding marriage instance G′ since a matching M is stable in G if
and only if its natural realization M ′ is stable in G′. However popular matchings are more complex
than stable matchings and M can be popular in G though M ′ is not popular in G′. In the above
example, note that there is another realizationM ′′ = {(p, h2), (q, h′), (r, h1)} ofM that is a popular
matching in G′.

The LP method. We use LP duality to show that for any popular matching M in a hospi-
tals/residents instance G = (R ∪H,E) with |R| =

∑
h∈H cap(h), there is always some realization

M ′′ of M such that M ′′ is a popular matching in the marriage instance G′ = (R∪H ′, E′). Further-
more, by replacing popular matching with popular perfect matching, this result extends to instances
with incomplete preferences.
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It is known that every popular perfect matching in a marriage instance G′ has a dual certificate
α⃗ that certifies its optimality [26] (see Lemma 16 in Section 3.1). Every popular perfect matching
M in a hospitals/residents instance G has a weaker dual certificate γ⃗ that certifies its optimality.
We show how to transform the weaker certificate γ⃗ into a stronger certificate α⃗. This allows us to
obtain an appropriate realization M ′′ of M such that M ′′ is a popular perfect matching in G′ with
α⃗ as its dual certificate. This result is given in Section 3.

Thus we obtain the following characterization of popular matchings in a hospitals/residents
instance G = (R ∪H,E) with complete preferences. A matching M in G = (R ∪H,E) is popular
if and only if:

1. |R| >
∑

h∈H cap(h) and the natural realization M ′ is stable in G′.

2. |R| =
∑

h∈H cap(h) and M has a realization as a popular matching M ′′ in G′.

3. |R| <
∑

h∈H cap(h) and M has a realization as a stable matching M̃ in the new instance G̃.

2 A characterization of popular matchings

Our input is a many-to-one matching instance G = (R∪H,E) with strict and complete preferences,
every hospital h ∈ H has a capacity cap(h) ≥ 1. In order to characterize popular matchings in G, we
will use the one-to-one (or marriage) instance G′ = (R ∪H ′, E′) corresponding to G = (R ∪H,E).
In the instance G′, every h ∈ H is replaced by the clones h1, . . . , hcap(h) and every (r, h) ∈ E has
cap(h) many copies (r, hi) for 1 ≤ i ≤ cap(h). See Section 1.4 for details on vertex preferences.

Let M be a popular matching in G and let M ′ be any realization of M in G′. The subgraph
G′

M ′ = (R∪H ′, E′
M ′) of G′ from [6] will be very useful to us. The edge set E′

M ′ of this subgraph is
defined as follows:

E′
M ′ =M ′ ∪ {(r, hi) : (r, h) ∈ E \M and 1 ≤ i ≤ cap(h)}.

So for any edge (r, h) /∈M , all the cap(h) many copies (r, hi) where 1 ≤ i ≤ cap(h) are in E′
M ′

while for each edge (r, h) ∈ M , exactly one edge, which is the edge in M ′ (say, (r, hi)) is in E′
M ′ .

Thus E′
M ′ ⊆ E′ and every vertex in G′

M ′ inherits its preference order from G′.

The following edge weight function wtM ′ defined in G′
M ′ will be useful to us. For any e ∈ E′

M ′ :

let wtM ′(e) =


2 if e blocks M ′;

−2 if the endpoints of e prefer their partners in M ′ to each other;

0 otherwise.

So wtM ′(e) is the sum of votes of the endpoints of edge e for each other versus their respective
assignments in M ′ (recall that each vote is in {0,±1}). Note that each endpoint of an edge in M ′

casts a vote of 0 for the other endpoint; other than these pairs in M ′, it is only pairs (r, hi) where
(r, h) /∈M that are allowed to cast votes for each other—that is why the edge set of interest to us
has been restricted to E′

M ′ (instead of the entire set E′).

The following theorem is reminiscent of [28, Theorem 2.1] that characterized popular b-matchings
(i.e., vertices have capacities) using an auxiliary graph. Due to complete preferences, note that a
necessary condition for a matching M to be popular in our instance G is that M is a maximum
matching in G.

8



Theorem 7. Let M be any maximum matching in G. Then M is popular if and only if there is a
realization M ′ of M that satisfies the following two properties in G′

M ′.

1. There is no alternating cycle C with respect to M ′ in G′
M ′ such that wtM ′(C) > 0.

2. There is no alternating path ρ with an unmatched vertex as an endpoint such that (i) wtM (ρ) > 0
and (ii) the two endpoints of ρ are not clones of each other.

Proof. We will first prove these two properties are sufficient. Then we will show they are necessary.

Direction “⇐”. Since preferences are complete, it suffices to compare M against maximum
matchings to prove its popularity. Let M ′ be a realization of M that satisfies properties 1 and 2.
A realization N ′ of any maximum matching N can be obtained in G′

M ′ as follows.

– For every edge (r, h) ∈ N ∩M : the edge (r, hi) is in N
′ where (r, hi) ∈M ′.

– For every (r, h) ∈ N \M : in the evaluation of voteh(M,N) while comparing the setM(h)\N(h)
with the set N(h) \M(h), let r′ be the resident that h compares r with. So the matching M ′

contains the edge (r′, hi) for some i ∈ {1, . . . , cap(h)}; the edge (r, hi) will be included in N ′.5

Since M and N are maximum matchings, |M ′| = |N ′|; so the symmetric difference M ′ ⊕ N ′

is a collection of alternating cycles and even length alternating paths. Recall that ∆(M,N) =∑
v∈R∪H votev(M(v), N(v)). From the construction of the matching N ′, we have:∑

v∈R∪H
votev(M(v), N(v)) = −

∑
C

wtM ′(C)−
∑
ρ

(wtM ′(ρ)− 1),

where the first sum on the right is over all alternating cycles C and the second sum is over all even
length alternating paths ρ in M ′ ⊕N ′. Note that we are subtracting 1 from wtM ′(ρ) to count the
vote of the endpoint of ρ matched in M ′ but left unmatched in N ′ (this vote is in favor of M).

For each alternating cycle C ∈ M ′ ⊕ N ′, we have wtM ′(C) ≤ 0 by property 1. It follows from
our construction of N ′ that the endpoints of any even length alternating path ρ ∈M ′ ⊕N ′ (so one
endpoint of ρ is unmatched in M ′) are not clones of each other.6 Thus wtM ′(ρ) ≤ 0 by property 2.
Hence ∆(M,N) ≥ 0. So ∆(M,N) ≥ 0 for any maximum matching N and thus for all matchings
in G. Hence we can conclude that M is a popular matching in G.

Direction “⇒”. Suppose the matching M is popular in G. We will show any realization M ′ of
M satisfies properties 1 and 2 in the corresponding instance G′

M ′ . Suppose M ′ does not satisfy
property 1. Let C be an alternating cycle with respect to M ′ in G′

M ′ such that wtM ′(C) > 0.

– Let N ′ = M ′ ⊕ C. We have wtM ′(N ′) = wtM ′(C) > 0. By identifying all clones of the same
hospital, the matching N ′ in G′

M ′ becomes a matching N in G.

• For any hospital h with no clone in C, the two sets M(h) and N(h) are the same. For each
hospital h with one or more clones in C, the cycle C defines a bijection betweenM(h)\N(h)
and N(h)\M(h). Since wtM ′(C) > 0, this means for each h in C, there is a way of comparing
elements inM(h)\N(h) with those in N(h)\M(h) such that summed over all vertices in C,
the votes in favor of N outnumber the votes in favor of M .

5 If r′ =null then hi is any clone of h that is left unmatched in M .
6 For any hospital h, if |M(h)| ≤ |N(h)| then all clones of h matched in M ′ are matched in N ′ as well and similarly,
if |M(h)| > |N(h)| then any clone of h left unmatched in M ′ is left unmatched in N ′ as well.
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– Adding up the votes of all vertices in C for M versus N (as per the bijection defined by C), the
total number of votes for M is less than the total number of votes for N . Hence it follows from
the definition of the function vote (see Eq.(1)) that

∑
v∈C votev(M,N) < 0. So ∆(M,N) < 0

and this contradicts the fact that M is a popular matching in G.

Suppose M does not satisfy property 2. Let ρ be an even length alternating path with respect
to M ′ in G′

M ′ such that (i) wtM ′(ρ) > 0 and (ii) the endpoints of ρ are not clones of each other.

– Let N ′ = M ′ ⊕ ρ. We have wtM ′(N ′) = wtM ′(ρ) > 0. By identifying all the clones of the same
hospital, the matching N ′ in G′

M ′ becomes a matching N in G.
• As before, for any hospital h with no clone in ρ, the two sets M(h) and N(h) are the same.
For each hospital h with one or more clones in ρ, the path ρ defines a bijection between
M(h)\N(h) andN(h)\M(h). Observe that we are crucially using the fact that the endpoints
of ρ are not clones of the same vertex—if they were clones hi and hj of the same hospital h,
then in the M ′ vs N ′ comparison in G′

M ′ , we would have hi comparing r = M ′(hi) against
null along with hj comparing null against r′ = N ′(hj) whereas the correct M(h) vs N(h)
comparison in G would have weeded out null from the comparison.

– As argued above, since wtM ′(ρ) > 0 (so wtM ′(ρ) ≥ 2), for each h in ρ, there is a way of comparing
elements in M(h) \ N(h) with those in N(h) \M(h) such that summed over all vertices in ρ
and taking into account the vote of the endpoint of ρ left unmatched in N ′, the votes in favor
of N outnumber the votes in favor of M by at least 1. Thus, adding up the votes of all vertices
in ρ for M versus N (as per the bijection defined by ρ), the total number of votes for M is less
than the total number of votes for N . Hence it follows from the definition of vote (see Eq.(1))
that

∑
v∈ρ votev(M,N) ≤ −1. So ∆(M,N) < 0, a contradiction to M ’s popularity in G.

Thus properties 1 and 2 characterize popular matchings in G. ⊓⊔

We will use the above characterization of popular matchings to show the following simple lemma.

Lemma 8. If |R| >
∑

h∈H cap(h) then every popular matching in G has to be stable.

Proof. Suppose G has a popular matching M that is not stable. We assume M is a maximum
matching, so M fully matches all hospitals. Since |R| >

∑
h∈H cap(h), there is at least one resident

(call it s) left unmatched in M . Because M is not stable, there is a pair (r, h) that blocks M . So:

1. hospital h prefers resident r to its least preferred partner r′ in M and
2. either resident r is unmatched in M or it prefers hospital h to its partner h′ in M .

Let M ′ be a realization of M that obeys properties 1 and 2 (given in Theorem 7) in G′
M ′ .

Let (r′, hi) ∈ M ′ where r′ is the least preferred partner of h in M . Thus wtM ′(r, hi) = 2. If r is
unmatched in M then the length 2 alternating path ρ = r− hi ∼ r′ with respect to M ′ in G′

M ′ has
weight 2 + 0 = 2 (note that hi ∼ r′ denotes (r′, hi) ∈ M ′). This contradicts the assumption that
M ′ obeys property 2 (given in Theorem 7) in G′

M ′ . Thus r is matched in M . Let (r, h′j) ∈M ′.
Consider the length 4 alternating path ρ′ = s − h′j ∼ r − hi ∼ r′ with respect to M ′ in G′

M ′ .
Since s prefers being matched to h′j compared to being left unmatched, wtM ′(s, h′j) ≥ 0. So the
path ρ′ has weight at least 0+ 0+ 2+ 0 = 2. This again contradicts the assumption that M ′ obeys
property 2 (given in Theorem 7) in G′

M ′ . Hence it has to be the case that M is stable. ⊓⊔

Thus when |R| >
∑

h∈H cap(h), the min-cost stable matching algorithm solves the min-cost
popular matching problem in G. Let us now consider the case |R| <

∑
h∈H cap(h). This is a non-

trivial and technical case as we can have examples such as the one in Section 1.1 where the instance
G admits a popular matching that cannot be realized as a popular matching in G′.
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The case |R| <
∑

h∈H cap(h). Since preferences are complete, every popular matching matches
all residents; moreover, there is at least one hospital that is not fully matched here. The proofs of
Lemma 9 and Lemma 10 are given in the appendix.

Lemma 9. Let M and N be two popular matchings in G. For every hospital h, |M(h)| = |N(h)|.

Lemma 10. If there are two different hospitals (say, h′ and h′′) that are not fully matched in a
popular matching M , then M is stable.

Suppose two different hospitals h′ and h′′ are not matched up to capacity in a stable matching
in G. Since all popular matchings match every hospital to the same capacity (by Lemma 9), this
means neither h′ nor h′′ is fully matched in any popular matching in G. This implies every popular
matching in G has to be stable (by Lemma 10). Thus in this case, the min-cost stable matching
algorithm solves the min-cost popular matching problem in G.

In the rest of this section we will solve the min-cost popular matching problem in G when all
but one hospital are fully matched in a stable matching (say, S) in G.

All but one hospital h are fully matched in S. We will construct a multigraph G̃ = (R∪H ′, Ẽ)
such that the min-cost popular matching problem in G reduces to the min-cost stable matching
problem in G̃. The vertex set of G̃ is the same as the vertex set R ∪H ′ of G′. The edge set of Ẽ
is as follows. Let h ∈ H be the unique hospital that is not fully matched in the stable matching S
in G. Let |S(h)| = k < cap(h).

– Every edge e in G′ incident to h1, . . . , hk has two copies e+ and e− in G̃.
– Every other edge e′ ∈ G′ has only one copy e′+ in G̃.

So every negative subscript edge e− in G̃ has one of h1, . . . , hk as an endpoint. As done in [25],
it will be convenient to think of the two copies e+ and e− of any edge e as colored by different
colors (the colors are + and −): so e+ is the copy of e colored + and e− is the copy of e colored −.
Note that all hospitals other than h1, . . . , hk have only color + edges incident to them in G̃. Vertex
preferences in G̃ on incident edges are as follows:

∗ Every resident r prefers any color − edge to any color + edge. Among edges colored by the
same color, it is as per r’s original preference order in G′; so r prefers e− to e′− (and similarly,
e+ to e′+) if r prefers e to e′.

∗ Every hospital prefers any color + edge to any color − edge. Among edges colored by the same
color, it is as per the hospital’s original preference order in G′.

Recall the interesting example G = (R ∪ H,E) from Section 1.1. The corresponding instance
G̃ has vertex set R ∪ H ′ where R = {r, r′} and H ′ = {h, h′1, h′2}. Its edge set consists of the

8 edges (s, h)+, (s, h
′
1)+, (s, h

′
1)−, and (s, h′2)+ where s ∈ {r, r′}. Note that the instance G̃ has

two stable matchings: {(r, h)+, (r′, h′1)+} and {(r, h′1)−, (r′, h)+}. Ignoring the ± subscripts and
replacing all clones by the original hospital, we get the two popular matchings {(r, h), (r′, h′)} and
{(r, h′), (r′, h)} in G. The following theorem shows this is always the case in any hospitals/residents
instance G = (R ∪H,E) where vertices have complete preferences and |R| <

∑
h∈H cap(h).

Theorem 11. A matching M is popular in G if and only if there is a realization M̃ of M such
that M̃ is a stable matching in G̃.

Proof. We will first prove the sufficient condition and then the necessary condition for popularity.
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Direction “⇐”. Let M̃ be a stable matching in G̃. We claim M̃ matches all vertices inR∪H ′ except
hk+1, . . . , hcap(h). This is because for any stable matching S′ in G′, the matching S̃ = {e+ : e ∈ S′} is

stable in G̃. Since the stable matching S fully matches all hospitals in G except h (which is matched
to k < cap(h) many partners in S), it follows that all vertices in R ∪ H ′ except hk+1, . . . , hcap(h)
are matched in S′. Thus all vertices in R∪H ′ except hk+1, . . . , hcap(h) are matched in S̃. All stable

matchings in G̃ match the same subset of vertices [15].7 Thus the stable matching M̃ matches all
vertices in R ∪H ′ except hk+1, . . . , hcap(h).

Consider the set M ′ of edges obtained by ignoring the ± edge colors in M̃ . Every edge in M ′

is an edge in E′ (with no ± subscripts), thus M ′ is a matching in G′. We will show that M ′ obeys
properties 1 and 2 (as given in Theorem 7) in G′

M ′ . By Theorem 7, this will imply the popularity
of M .

R+

R−

H ′
+

H ′
−

R H ′

Fig. 1. R = R+ ∪R− and H ′ = H ′
+ ∪H ′

−. Any blocking edge to M ′ in the instance G′ will be in R− ×H ′
+.

We will partition the sets R and H as follows (see Fig. 1): initialize R− = H ′
− = ∅. For every

edge e = (r, hi) ∈M ′, if e− ∈ M̃ then add the vertices r and hi to to R− and H ′
−, respectively. Let

R+ = R \R− and H ′
+ = H ′ \H ′

−. So R+ (resp., R−) is the set of residents matched along color +

(resp., color −) edges in M̃ and H ′
− ⊆ {h1, . . . , hk}. Observe that M ′ ⊆ (R+ ×H ′

+) ∪ (R− ×H ′
−).

Lemma 12. Every edge e ∈ R+ × H ′
− satisfies wtM ′(e) = −2 and every edge e ∈ (R+ × H ′

+) ∪
(R− ×H ′

−) satisfies wtM ′(e) ≤ 0.

The proof of Lemma 12 is given in the appendix. We are now ready to prove M ’s popularity.

1. Consider any alternating cycle C with respect to M ′ in G′
M ′ . Since every edge in M ′ is either

in R+×H ′
+ or in R−×H ′

−, the number of edges in the cycle C that belong to the set R−×H ′
+

is exactly equal to the number of edges in C that belong to the set R+ × H ′
−. Every edge

e ∈ R+ × H ′
− satisfies wtM ′(e) = −2 (by Lemma 12) and by the definition of wtM ′ , we have

wtM ′(e) ≤ 2 for any e ∈ R− ×H ′
+. Because wtM ′(e) ≤ 0 for any e ∈ (R+ ×H ′

+) ∪ (R− ×H ′
−)

(by Lemma 12), we have wtM ′(C) ≤ 0. Thus M ′ obeys property 1.
2. Consider any even length alternating path ρ with respect to M ′ in G′

M ′ with an unmatched
vertex as an endpoint. Since it is only hk+1, . . . , hcap(h) that are unmatched in M ′ (recall that
these vertices are in H ′

+), it is a clone of h that is one endpoint of ρ. If every vertex of ρ is in

7 This fact was proved in [15] for simple graphs. Note that our graph G̃ is not simple, it is a multigraph. However

this fact holds in G̃ as well because G̃ can be easily converted into a simple graph by using some dummy vertices.
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R+∪H ′
+ then wtM ′(ρ) ≤ 0 since every edge e ∈ R+×H ′

+ satisfies wtM ′(e) ≤ 0 (by Lemma 12).
Suppose ρ traverses an edge e ∈ R− × H ′

+. It may be the case that wtM ′(e) = 2. However if
any edge in R− × H ′

− is the last edge in ρ then the endpoints of the path ρ are clones of h.
In order to get an even length alternating path ρ with one endpoint unmatched and the other
endpoint not a clone of h, the path ρ needs to traverse an edge e ∈ R+×H ′

− and wtM ′(e) = −2
(by Lemma 12).

By the same reasoning as given for case 1, it follows that for any even length alternating path
ρ with one unmatched endpoint (so this is a clone of h) and the other endpoint not a clone
of h, the number of edges from R+ × H ′

− equals the number of edges from R− × H ′
+. Since

wtM ′(e) = −2 for every e ∈ R+×H ′
− and wtM ′(e) ≤ 0 for all edges e ∈ (R+×H ′

+)∪ (R−×H ′
−),

we can conclude that wtM ′(ρ) ≤ 0.

Thus M ′ satisfies properties 1 and 2 (as given in Theorem 7) in G′
M ′ . Hence it follows from

Theorem 7 that M is popular in G.

Direction “⇒”. Let M be a popular matching in G. Since the stable matching S in G fully
matches all hospitals in H \{h} and |S(h)| = k, it follows from Lemma 9 thatM also fully matches
all hospitals in H \ {h} and |M(h)| = k. We know from Theorem 7 that there is a realization M ′

of M that obeys properties 1 and 2 in G′
M ′ .

– Let r1 ≻h · · · ≻h rk be the partners of h in M .

– For each h′ ∈ H \ {h}, let s1 ≻h′ · · · ≻h′ scap(h′) be the partners of h′ in M .

Case 1. Suppose there is no edge in G′
M ′ that blocks M ′. Then we can construct a stable matching

M̃ in G̃ as follows: M̃ = M̃0 ∪ M̃1 where M̃0 and M̃1 are defined as follows.

M̃0 = ∪h′ ̸=h{(si, h′i)+ where (si, h
′) ∈M and 1 ≤ i ≤ cap(h′)}. (2)

M̃1 = {(ri, hi)+ where (ri, h) ∈M and 1 ≤ i ≤ k}. (3)

Recall that r1 ≻h · · · ≻h rk are the partners of h in M . So all edges in M̃ are color + edges and the
only vertices left unmatched in M̃ are hk+1, . . . , hcap(h). It is easy to show that M̃ is stable in G̃.

The difference between the matchings M̃ and M ′ is with respect to what clone of a hospital h′

gets matched to which resident in M(h′). For any h′ ∈ H in the matching M̃ : the i-th best clone of
h′ (which is h′i) gets the i-th best partner of h′ in M (which is si or ri). Thus for any (si, h

′) ∈M ,

the edge (si, h
′
j)+ does not block M̃ for any 1 ≤ j ≤ cap(h′).

For every edge (r′i, h
′) /∈ M , the edge (r′i, h

′
j) ∈ G′

M ′ for all 1 ≤ j ≤ cap(h′). Since no edge in

G′
M ′ blocksM ′, it follows that (r′i, h

′
j)+ does not block M̃ in G̃ for any h′ ∈ H ′ and 1 ≤ j ≤ cap(h′).

Thus no color + edge blocks M̃ . It is only h1, . . . , hk that have color − edges incident to them;
recall that each of them prefers any color + edge to any color − edge and each of these hospitals
is matched along a color + edge in M̃ . Thus no color − edge blocks M̃ .

Case 2. Suppose there exist one or more edges in G′
M ′ that block M ′. Our first claim is that if

resident r is an endpoint of an edge that blocks M ′, then (r, hi) ∈M ′ for some i ∈ {1, . . . , cap(h)}.
That is, r has to be matched inM ′ to a clone of h, where h is the unique hospital not fully matched
in M . Suppose not. Let (r, h′j) be a blocking edge to M ′ where (r, h′′ℓ ) ∈ M ′ and h′′ ̸= h. If h′ = h
then we have a length 2 alternating path ρ = ht − r ∼ h′′ℓ in G′

M ′ where ht is a clone of h left
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unmatched in M ′ such that wtM ′(ρ) = 2 + 0 = 2. Since h′′ ̸= h, the alternating path ρ violates
property 2, which is a contradiction to the fact that M ′ obeys properties 1 and 2 in G′

M ′ .

So let us assume that h′ ̸= h. Since all hospitals in H \ {h} are fully matched in M , there is an
edge (s, h′j) ∈M ′. Then we have a length 4 alternating path ρ′ = ht − s ∼ h′j − r ∼ h′′ℓ in G′

M ′ such
that wtM ′(ρ′) ≥ 0 + 0 + 2 + 0 = 2. Since h′′ ̸= h, the alternating path ρ′ violates property 2; this
contradicts the fact that M ′ obeys properties 1 and 2 in G′

M ′ .

Thus we have shown that every resident with a blocking edge incident to it in G′
M ′ has to be

matched in M ′ to a clone of h. Let r be the worst partner of h in M with a blocking edge (in G′
M ′)

with respect to M ′ incident to it. The following lemma (proof in the appendix) will be useful.

Lemma 13. If (r, hi) ∈M ′ then wtM ′(e) = −2 for every edge e = (r′, hi) in G
′
M ′ where r′ ̸= r.

Recall that r1 ≻h · · · ≻h rk are the partners of h in M . Let r = rℓ, where r is the worst partner
of h in M with a blocking edge incident to it in G′

M ′ .

Let M̃ = M̃0 ∪ M̃2 where M̃0 is defined above in (2) and the matching M̃2 is defined as follows:

M̃2 = {(ri, hk−ℓ+i)− : 1 ≤ i ≤ ℓ} ∪ {(rℓ+i, hi)+ : 1 ≤ i ≤ k − ℓ}.

So the best ℓ partners of h in M (these are r1, . . . , rℓ) are matched in M̃ along color − edges
to hk−ℓ+1, . . . , hk respectively; note that these are the worst ℓ clones of h matched in any stable
matching in G̃. On the other hand, the worst k − ℓ partners of h in M (these are rℓ+1, . . . , rk) are

matched in M̃ along color + edges to the best k − ℓ clones of h: these are h1, . . . , hk−ℓ.

Lemma 14. The matching M̃ is stable in G̃.

The proof of Lemma 14 is given in the appendix. This finishes the proof of the theorem. ⊓⊔

The following algorithm solves the min-cost popular matching problem in the hospitals/residents
instance G = (R ∪H,E) when |R| <

∑
h cap(h) and vertices have complete preferences.

1. Let S be a stable matching in G.

2. If there are two different hospitals not fully matched in S then

– Return a min-cost stable matching in G.

3. Else compute the instance G̃ and return p(M̃) where M̃ is a min-cost stable matching in G̃.

The correctness of the above algorithm follows from Lemma 10 and Theorem 11. Thus we know
how to solve the min-cost popular matching problem in G = (R ∪H,E) when |R| ≠

∑
h cap(h).

The remaining case. What is left is the case |R| =
∑

h cap(h). Since preferences are complete,
G admits a matching that fully matches all vertices in this case. Section 3 contains a polynomial-
time algorithm for the min-cost popular perfect matching problem in a hospitals/residents instance
G = (R ∪ H,E) that admits a perfect matching. We will reduce the min-cost popular perfect
matching problem in G to the min-cost popular perfect matching problem in the corresponding
marriage instance G′. There is a polynomial-time algorithm to solve the min-cost popular perfect
matching problem in G′ [26]. Thus this will yield a polynomial-time algorithm to solve the min-cost
popular matching problem in G = (R∪H,E) when |R| =

∑
h cap(h) and preferences are complete.
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Remark 15. Our reduction of the min-cost popular perfect matching problem from G to G′ will
not use complete preferences. For the min-cost popular matching problem in a hospitals/residents
instance with incomplete preferences, note that a reduction to the corresponding marriage instance
will not be interesting as it is NP-hard to solve the min-cost popular matching problem in a marriage
instance with incomplete preferences. As mentioned earlier, this hardness holds even in marriage
instances that admit perfect matchings [12].

3 Popular perfect matchings in a hospitals/residents instance

Let G = (R∪H,E) be a hospitals/residents instance where every vertex has a strict preference order
over its neighbors. In this section note that preferences need not be complete, i.e., the underlying
graph need not be the complete bipartite graph. Section 3.1 gives a characterization of popular
perfect matchings in G. We will use this characterization in Section 3.2 to show helpful dual
certificates for popular perfect matchings in G. These dual certificates will lead to our algorithm
for the min-cost popular perfect matching problem in G.

3.1 A characterization of popular perfect matchings

We describe dual certificates for popular perfect matchings in a marriage instance G0 = (A∪B,E0)
where vertices have strict (not necessarily complete) preferences. LetM ′ be a matching in G0. Recall
the edge weight function wtM ′ from Section 2 where wtM ′(e) = 2 if e blocks M ′, wtM ′(e) = −2 if
the endpoints of e prefer their partners in M ′ to each other, and wtM ′(e) = 0 otherwise.

It follows from the definition of wtM ′ that for any perfect matching N ′ we have wtM ′(N ′) =
∆(N ′,M ′). So for any popular perfect matching M ′, we have wtM ′(M ′) = 0 ≥ ∆(N ′,M ′) =
wtM ′(N ′) where N ′ is any perfect matching. Thus every popular perfect matching M ′ in a mar-
riage instance G0 = (A ∪ B,E0) is a max-weight perfect matching in G0 under the edge weight
function wtM ′ . The linear program LP1 is the max-weight perfect matching LP in G0 (under the
edge weight function wtM ′) and LP2 is the dual LP.

max
∑
e∈E0

wtM′(e) · xe (LP1)

s.t.
∑

e∈δ(v)

xe = 1 ∀ v ∈ A ∪B

xe ≥ 0 ∀ e ∈ E0.

min
∑

v∈A∪B

yv (LP2)

s.t. ya + yb ≥ wtM′(a, b) ∀ (a, b) ∈ E0.

For any v ∈ A∪B, note that δ(v) is the set of edges incident to v in the graph G0. The following
result (from [26]) shows that LP2 admits a special optimal solution. Here |A∪B| = n and |A| = n0.

Lemma 16 ([26]). Let M ′ be a perfect matching in G0 = (A ∪ B,E0). Then M ′ is a popular
perfect matching in G0 if and only if there exists α⃗ ∈ Rn that satisfies conditions (i)-(iii) given
below:

(i) αa ∈ {0,−2,−4, . . . ,−2(n0 − 1)} for all a ∈ A and αb ∈ {0, 2, 4, . . . , 2(n0 − 1)} for all b ∈ B.
(ii) αa + αb ≥ wtM ′(a, b) for all (a, b) ∈ E0.
(iii)

∑
v∈A∪B αv = 0.
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Definition 17. For any popular perfect matching M ′ in a marriage instance G0, a vector α⃗ ∈ Rn

that satisfies properties (i)-(iii) in Lemma 16 will be called a dual certificate for M ′.

A hospitals/residents instance G = (R∪H,E). Let M be a perfect matching in G. The proof
of Theorem 7 shows that M is a popular perfect matching in G if and only if there is a realization
M ′ of M such that M ′ satisfies property 1 (as given in Theorem 7) in the subgraph G′

M ′ . This is
because for any perfect matching N ′ in G′

M ′ , the symmetric difference M ′ ⊕ N ′ consists only of
alternating cycles as there are no unmatched vertices now. We state this characterization of popular
perfect matchings as Proposition 18.

Proposition 18. A perfect matching M is a popular perfect matching in the hospitals/residents
instance G = (R∪H,E) if and only if there is a realizationM ′ ofM such that there is no alternating
cycle C with respect to M ′ in G′

M ′ such that wtM ′(C) > 0.

It follows from [26, Theorem 2] that a perfect matching M ′ in a marriage instance G′
M ′ is a

popular perfect matching if and only if there is no alternating cycle C with respect to M ′ such that
wtM ′(C) > 0. Thus we have the following corollary.

Corollary 19. A perfect matching M in the hospitals/residents instance G = (R ∪ H,E) is a
popular perfect matching if and only if there exists a realization M ′ of M such that M ′ is a popular
perfect matching in the marriage instance G′

M ′ = (R ∪H ′, E′
M ′).

3.2 Constructing a helpful dual certificate

We know that for a perfect matching M to be a popular perfect matching in G, it is not necessary
that it has a realization M ′ that is a popular perfect matching in the marriage instance G′. It
suffices for the matching M ′ to be a popular perfect matching in the subgraph G′

M ′ of G′ (by
Corollary 19).

Remark 20. Observe that being a popular perfect matching in the subgraph G′
M ′ is a more re-

laxed condition than being a popular perfect matching in G′ since the edge covering constraints
in Lemma 16, i.e., the constraints in condition (ii), have to be satisfied only for the edges in G′

M ′

rather than all the edges in G′ (recall that E′ ⊇ E′
M ′).

Our goal is to find a min-cost popular perfect matching in G. Though we know how to find
a min-cost popular perfect matching in a marriage instance, we do not know in which marriage
instance we should run this algorithm (since G′

M ′ depends on the matching M that we seek).
Let M be any popular perfect matching in G. Since there is a realization M ′ of M that is a

popular perfect matching in G′
M ′ = (R ∪H ′, E′

M ′), there is a vector γ⃗ ∈ Rn (see Lemma 16) that
satisfies the following conditions (i)-(iii) where |R ∪H ′| = n and |R| = n0.

(i) γr ∈ {0,−2,−4, . . . ,−2(n0 − 1)} for all r ∈ R and γhi
∈ {0, 2, 4, . . . , 2(n0 − 1)} for all hi ∈ H ′.

(ii) γr + γhi
≥ wtM ′(r, hi) for all (r, hi) ∈ E′

M ′ .
(iii)

∑
v∈R∪H′ γv = 0.

Let γ⃗ be a dual certificate for M ′ that minimizes the sum
∑

hi∈H′ γhi
. The following lemma will

be very useful to us.

Lemma 21. For any two clones hi and hj of the same hospital h, we have γhi
≤ γhj

+ 2.
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Proof. Observe that except for their partners in M ′, the neighborhoods in G′
M ′ of the two clones

hi and hj are identical. Consider any edge (r, hi) ∈ E′
M ′ such that (r, hi) /∈M ′. So (r, h′t) ∈M ′ for

some h′ ̸= h. We have:

wtM ′(r, hi) ≤ voter(hi,M
′(r)) + voteh(r,M

′(hi)) (4)

= voter(hj ,M
′(r)) + voteh(r,M

′(hi)) (5)

≤ voter(hj ,M
′(r)) + voteh(r,M

′(hj)) + 2 (6)

= wtM ′(r, hj) + 2 (7)

≤ γr + γhj
+ 2. (8)

In the third constraint, we have voteh(r,M
′(hi)) ≤ voteh(r,M

′(hj)) + 2 since voteh(r,M
′(hi)) ≤ 1

and voteh(r,M
′(hj)) ≥ −1.

Suppose γhi
> γhj

+ 2. Let (s, hi) ∈M ′. Since M ′ and γ⃗ are optimal solutions of LP1 and LP2
respectively, we have γs + γhi

= wtM ′(s, hi) = 0 by complementary slackness. Let us update γ⃗ to
γ⃗′ as follows:

– γ′hi
= γhj

+ 2 and γ′s = −γ′hi
.

– γ′v = γv for all other vertices v in R ∪H ′.

Observe that
∑

v∈R∪H′ γ′v = 0. Thus γ⃗′ satisfies condition (iii) given in Lemma 16.
Constraints (4)-(8) tell us that γ′r + γ′hi

= γr + γhj
+ 2 ≥ wtM ′(r, hi) for any r ̸= s. Since

γ′s + γ′hi
= 0 = wtM ′(s, hi), we have γ′r + γ′hi

≥ wtM ′(r, hi) for all r ∈ R. Thus all edges in E′
M ′ that

are incident to hi are covered by γ⃗′.
Since γ′hi

= γhj
+ 2 < γhi

, our update ensures that γ′s > γs. Because γ
′
v = γv for all vertices

v other than s and hi, we have γ′p + γ′qj ≥ wtM ′(p, qj) for every (p, qj) in E′
M ′ . Thus γ⃗′ satisfies

condition (ii) given in Lemma 16.
So conditions (i)-(iii) given in Lemma 16 are satisfied by γ⃗′. Thus γ⃗′ is a dual certificate for M ′

in G′
M ′ . Moreover,

∑
hi∈H′ γ′hi

<
∑

hi∈H′ γhi
, contradicting the choice of γ⃗ as a dual certificate for

M ′ that minimizes this sum. Hence it has to be the case that γhi
≤ γhj

+ 2. ⊓⊔

For any v ∈ R ∪H ′, if |γv| = 2ℓ then we say v is in level ℓ in γ⃗. By Lemma 21, for any h ∈ H,
all of h1, . . . , hcap(h) are either in the same level (say, ℓ) or in two successive levels (say, ℓ and ℓ+1)

in γ⃗. For any h ∈ H, let rh1 , . . . , r
h
cap(h) be the cap(h) partners of h where rh1 ≻h · · · ≻h r

h
cap(h). Let

M ′ = ∪h∈H{(rhi , hσh(i)) : 1 ≤ i ≤ cap(h)} for some permutation σh on {1, . . . , cap(h)}.

Lemma 22. For any h ∈ H, if k′ clones of h are in level ℓ and k− k′ clones of h are in level ℓ+1
(where k = cap(h)) then the k′ clones of h in level ℓ have to be matched in M ′ to rh1 , . . . , r

h
k′. That

is, rh1 , . . . , r
h
k′ are in level ℓ and rhk′+1, . . . , r

h
k are in level ℓ+ 1 in γ⃗.

Proof. Suppose one or more of rh1 , . . . , r
h
k′ is not in level ℓ. Then rhi , for some i ≤ k′, is in level ℓ+1

and rhj , for some j > k′, is in level ℓ. So hi′ = M ′(rhi ) is in level ℓ + 1 while hj′ = M ′(rhj ) is in
level ℓ.

Let s be any neighbor of h in G such that s /∈M(h). Then we have wtM ′(s, hi′) ≤ wtM ′(s, hj′).
This is because votes(hi′ ,M

′(s)) = votes(hj′ ,M
′(s)) while voteh(s, r

h
i ) ≤ voteh(s, r

h
j ) because h

prefers rhi to rhj . Since γs+γhj′ ≥ wtM ′(s, hj′) ≥ wtM ′(s, hi′), let us update γ
′
hi′

= 2ℓ and γ′
rhi

= −2ℓ

(so γ′
rhi
> γrhi

). For any vertex v other than rhi and hi, let γ
′
v = γv.
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It is easy to see that γ⃗′ is a dual certificate for M ′ in G′
M ′ and

∑
hi∈H′ γ′hi

<
∑

hi∈H′ γhi
,

contradicting the choice of γ⃗ as a dual certificate for M ′ that minimizes this sum. Hence it has to
be the case that rh1 , . . . , r

h
k′ are in level ℓ and rhk′+1, . . . , r

h
k are in level ℓ+ 1. ⊓⊔

We are now ready to prove the main result in this section. For any h ∈ H, let rh1 , . . . , r
h
k be all

the partners of h in M (so k = cap(h)) and rh1 ≻h · · · ≻h r
h
k .

Theorem 23. Let M be any popular perfect matching in G. For each h ∈ H, there exists an
appropriate permutation πh on {1, . . . , k} (where k = cap(h)) such that M ′′ = ∪h∈H{(rhi , hπh(i)) :
1 ≤ i ≤ k} is a popular perfect matching in G′.

Proof. Let h ∈ H and let cap(h) = k. Consider the following two cases.

Case 1. All the clones of h are in the same level ℓ ∈ {0, 1, . . . , n0 − 1} in γ⃗.
This is the easy case—we will set πh : {1, . . . , k} → {1, . . . , k} to be the identity function. So

(rh1 , h1), . . . , (r
h
k , hk) are in M ′′. For all 1 ≤ i ≤ k: we have γrhi

= −2ℓ and γhi
= 2ℓ.

Case 2. All the clones of h are not in the same level.
So by Lemma 21, all the clones h1, . . . , hk are in two successive levels ℓ and ℓ+ 1 in γ⃗. Say, k′

clones of h are in level ℓ and k − k′ clones of h are in level ℓ + 1. The vertices rh1 , . . . , r
h
k will be

matched in M ′′ to h1, . . . , hk as follows:

– for i ∈ {1, . . . , k′}, the vertex rhi is matched to hk−k′+i;
– for i ∈ {k′ + 1, . . . , k}, the vertex rhi is matched to hi−k′ .

In more detail, we know from Lemma 22 that rh1 , . . . , r
h
k′ are in level ℓ and rhk′+1, . . . , r

h
k are in

level ℓ + 1. The residents rh1 , . . . , r
h
k′ are matched in M ′′ to hk−k′+1, . . . , hk, respectively and the

residents rhk′+1, . . . , r
h
k in level ℓ + 1 are matched in M ′′ to h1, . . . , hk−k′ , respectively. Thus the

matching M ′′ rearranges the clones of h so that the following holds:

– h1, . . . , hk−k′ are placed in level ℓ+ 1.
– hk−k′+1, . . . , hk are placed in level ℓ.

Observe that M ′′ = ∪h∈H{(ri, hπh(i)) : 1 ≤ i ≤ k} where in case 1 (i.e., all the clones of h are
in the same level), πh(i) = i for all i ∈ {1, . . . , k} and for case 2, πh is defined as follows:

πh(i) =

{
k − k′ + i if 1 ≤ i ≤ k′;

i− k′ if k′ + 1 ≤ i ≤ k.

The entire matching M ′′ is thus defined. We claim that M ′′ is the realization of M that we seek.

Lemma 24. M ′′ is a popular perfect matching in G′.

The proof of Lemma 24 is given below. This finishes the proof of Theorem 23. ⊓⊔

Proof of Lemma 24. We will prove M ′′ to be a popular perfect matching in G′ by defining a
dual certificate α⃗ for M ′′ in G′. Recall that γ⃗ is a dual certificate for the realization M ′ to be a
popular perfect matching in G′

M ′ .

1. For any r ∈ R: set αr = γr.
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2. For any h ∈ H and i ∈ {1, . . . , k}: set αhi
= 2t where t is hi’s level as defined in the proof of

Theorem 23.

So in case 1 of the proof of Theorem 23, when all the clones of h are in the same level ℓ, we
have αhi

= 2ℓ for every i ∈ {1, . . . , cap(h)}. In case 2 of the proof of Theorem 23, the vertices
h1, . . . , hk−k′ are in level ℓ+ 1 and the vertices hk−k′+1, . . . , hk are in level ℓ where k = cap(h); so
αhi

= 2(ℓ+ 1) for 1 ≤ i ≤ k − k′ and αhi
= 2ℓ for k − k′ + 1 ≤ i ≤ k.

Let h ∈ H. We know the edges (rh1 , hσh(1)), . . . , (r
h
k , hσh(k)) are in M ′. We will now show that

αrhi
+ αhj

= wtM ′′(rhi , hj) for all i, j ∈ {1, . . . , k}.
This is immediate to check for case 1 in the proof of Theorem 23 since αrhi

= −2ℓ and αhj
= 2ℓ

for all i, j ∈ {1, . . . , k}. Recall that rh1 ≻h · · · ≻h r
h
k and h1 ≻r · · · ≻r hk for all r adjacent to h

in G. So we have αrhi
+ αhj

= 0 = wtM ′′(rhi , hj) for all i, j ∈ {1, . . . , k}.
We will now check the equality αrhi

+αhj
= wtM ′′(rhi , hj) for case 2 in the proof of Theorem 23,

so h1, . . . , hk−k′ are in level ℓ+ 1 and hk−k′+1, . . . , hk are in level ℓ.

(1) For i ∈ {1, . . . , k′} and j ∈ {k − k′ + 1, . . . , k}, observe that wtM ′′(rhi , hj) = 0. Since αrhi
= −2ℓ

and αhj
= 2ℓ, we have αrhi

+ αhj
= 0 = wtM ′′(rhi , hj) for all these pairs (i, j).

(2) Similarly, for i ∈ {k′ + 1, . . . , k} and j ∈ {1, . . . , k − k′}, we have wtM ′′(rhi , hj) = 0. Since
αrhi

= −2(ℓ + 1) and αhj
= 2(ℓ + 1), we have αrhi

+ αhj
= 0 = wtM ′′(rhi , hj) for all these pairs

(i, j).

(3) Let us now consider a pair (rhi , hj) where i ∈ {1, . . . , k′} and j ∈ {1, . . . , k − k′}. We have
wtM ′′(rhi , hj) = 2 for such an (i, j). Since αrhi

= −2ℓ and αhj
= 2(ℓ + 1), we have αrhi

+ αhj
=

2 = wtM ′′(rhi , hj) for all these pairs (i, j).

(4) Finally, let us consider a pair (ri, hj) where i ∈ {k′ + 1, . . . , k} and j ∈ {k − k′ + 1, . . . , k}.
We have wtM ′′(rhi , hj) = −2 for such an (i, j). Since αrhi

= −2(ℓ + 1) and αhj
= 2ℓ, we have

αrhi
+ αhj

= −2 = wtM ′′(rhi , hj) for all these pairs (i, j).

Recall that the difference between the graphs G′ and G′
M ′ is that for every h ∈ H where

(rhi , h) ∈ M , the edges (rhi , hj) for hj ̸= M ′(rhi ) are missing in G′
M ′ . We just have checked all the

edges (rhi , hj) for all i, j ∈ {1, . . . , cap(h)} are covered by α⃗.

– We will now show that all the non-matching edges are covered by α⃗ as well. That is, for any
(r′, h) ∈ E \M , we need to show that αr′ + αhj

≥ wtM ′′(r′, hj) for all i ∈ {1, . . . , k}.

For any h ∈ H and i ∈ {1, . . . , cap(h)}, let σh(i) = j and πh(i) = j′. Observe that wtM ′(r′, hj) =
wtM ′′(r′, hj′). This is because M

′(hj) = rhi =M ′′(hj′) and voter′(M
′′, hj) = voter′(M

′, hj′) since r
′

is matched in both M ′ and M ′′ to clones of the same hospital h′.

∗ Since (rhi , hj) ∈M ′ and (rhi , hj′) ∈M ′′, we have αhj′ = −αrhi
= −γrhi = γhj

. Because γr′ +γhj
≥

wtM ′(r′, hj), we get αr′ + αhj′ = γr′ + γhj
≥ wtM ′(r′, hj) = wtM ′′(r′, hj′). Thus every non-

matching edge (r′, hj′) is also covered by α⃗.

∗ Since αrhi
+αhj′ = 0 for any edge (rhi , hj′) ∈M ′′, we have

∑
v∈R∪H′ αv = 0. Hence conditions (i)-

(iii) for dual certificates are satisfied by α⃗; thus α⃗ is a dual certificate for M ′′ in G′. In other
words, M ′′ is a popular perfect matching in G′ (by Lemma 16).
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This finishes the proof of the lemma. ⊓⊔
This completes the proof of Theorem 5 stated in Section 1. It is now straightforward to show

a polynomial-time algorithm to find a min-cost popular perfect matching in a hospitals/residents
instance G = (R ∪H,E).

1. Compute the corresponding marriage instance G′ = (R ∪H ′, E′).
2. Find a min-cost popular perfect matching N ′ in G′ using the algorithm in [26] for marriage

instances.
3. Return the corresponding matching N in G by identifying all clones of the same hospital.

For any popular perfect matching M in G, we know there is some realization M ′′ such that
M ′′ is a popular perfect matching in G′ (by Theorem 5). Conversely, for any popular perfect
matching M ′ in G′, since M ′’s dual certificate obeys conditions (i)-(iii) in G′, it also obeys these
constraints in the subgraph G′

M ′ . Hence the corresponding matching M = p(M ′) is a popular
perfect matching in G (by Corollary 19). Thus solving the min-cost popular perfect matching
problem in the marriage instance G′ solves the min-cost popular perfect matching problem in the
hospitals/residents instance G. So the matching M returned by the above algorithm is a min-cost
popular perfect matching in G and we can conclude Theorem 6 stated in Section 1.

Completing the proof of Theorem 3. Recall that Section 2 has the algorithm for the min-
cost popular matching problem in a hospitals/residents instance G = (R ∪ H,E) when |R| ≠∑

h∈H cap(h). In a hospitals/residents instance G = (R ∪ H,E) with |R| =
∑

h∈H cap(h) and
complete preferences, a matchingM is popular if and only ifM is a popular perfect matching. Thus
our algorithm for min-cost popular perfect matching completes our polynomial-time algorithm for
the min-cost popular matching problem in a hospitals/residents instance with complete preferences.

4 Conclusions and open problems

For any many-to-one instance G = (R∪H,E) where each vertex has a strict and complete preference
order over vertices on the other side, we gave a polynomial-time algorithm to solve the min-cost
popular matching problem in G when there is a function cost : E → R. Our algorithm includes
a subroutine for computing a min-cost popular perfect matching in a many-to-one instance with
incomplete preferences. It is known that it is NP-hard to find a min-cost popular matching in a
marriage (one-to-one) instance with incomplete preferences.

Our method of reducing the min-cost popular perfect matching problem in a many-to-one
instance G to the min-cost popular perfect matching problem in the corresponding one-to-one
instance G′ does not work for the min-cost popular maximum matching problem. Section 1.1 de-
scribes a many-to-one instance G whose set of popular maximum matchings is a strict superset of
the set of popular maximum matchings in the corresponding one-to-one instance G′. Settling the
computational complexity of the min-cost popular maximum matching problem in a many-to-one
instance with strict and incomplete preferences is an interesting open problem.

Another interesting open problem is to extend our results to the many-to-many setting. As
remarked by a reviewer at MATCH-UP 2024, it is known that for stable matchings, the many-to-
many setting cannot be reduced to the marriage case via cloning [18, Footnote 6]. Thus generalizing
our results to the many-to-many setting is a challenging open problem.

Acknowledgements. Thanks to the reviewers of our paper at MATCH-UP 2024 for their very
helpful comments and suggestions.
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Missing proofs

Proof of Lemma 9. Let N be a maximum matching in G such that |N(h)| < |M(h)| for some
hospital h. We know from Theorem 7 that there is a realization M ′ of M such that properties 1
and 2 hold in G′

M ′ . Recall the realization N ′ of N in G′
M ′ from the proof of Theorem 7. Since there

is a hospital h such that |N(h)| < |M(h)|, the symmetric difference M ′ ⊕ N ′ cannot consist only
of alternating cycles; thus there is an even length alternating path ρh in M ′ ⊕N ′ with a clone of h
as an endpoint. The following equality follows from the construction of N ′ in G′

M where the first
summation is over alternating cycles in M ′ ⊕ N ′ and the second summation is over even length
alternating paths in M ′ ⊕N ′.

∆(M,N) =
∑

v∈R∪H
votev(M,N) = −

∑
C

wtM ′(C)−
∑
ρ

(wtM ′(ρ)− 1).

Since M is a popular matching, Theorem 7 tells us that wtM ′(C) ≤ 0 for all alternating cycles C
in M ′ ⊕ N ′ and wtM ′(ρ) ≤ 0 for all even length alternating paths ρ in M ′ ⊕ N ′ (recall that the
endpoints of ρ cannot be clones of the same hospital—see Footnote 6). Furthermore, we know there
is at least one alternating path ρh in M ′ ⊕N ′. Thus ∆(M,N) ≥ 1.

Observe that ∆(M,N) + ∆(N,M) ≤ 0. This is because ∆(M,N) compares M and N in the
most adversarial way for M (equivalently, most favorably for N) while ∆(N,M) compares them in
the most adversarial way for N . Thus ∆(M,N) ≥ 1 implies that ∆(N,M) ≤ −1. In other words,
N is not a popular matching in G. ⊓⊔

Proof of Lemma 10. Suppose M is a popular matching where neither h′ nor h′′ is fully matched
for hospitals h′, h′′ where h′ ̸= h′′. If M is not stable then there is a resident-hospital pair (r, h)
that blocks M . So r prefers h to its partner ĥ in M and either h is not fully matched or it prefers
r to its least preferred partner r′ in M . Let M ′ be a realization of M such that properties 1 and 2
hold in G′

M ′ (see Theorem 7).
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Let (r, ĥi) ∈M ′. If h is not fully matched inM , then some clone of h (say, ht) is left unmatched
in M ′. As seen in the proof of Lemma 8, there is a length 2 alternating path ρ = ht − r ∼ ĥi
with respect to M ′ in G′

M ′ such that wtM ′(ρ) = 2. This contradicts the assumption that M ′ obeys
property 2 in G′

M ′ . So assume h is fully matched in M and let (r′, ht) ∈ M ′ where r′ is the least
preferred partner of h in M .

Recall that there are two different hospitals h′ and h′′ that are not fully matched inM . If ĥ = h′

then let h∗ = h′′; else let h∗ = h′. Consider the length 4 alternating path h∗t − r′ ∼ ht − r ∼ ĥi
with respect to M ′ in G′

M ′ where h∗t is left unmatched in M ′. As seen in the proof of Theorem 7,
wtM ′(ρ′) ≥ 2. It follows from the definition of h∗ that the endpoints of ρ′ are not clones of each
other. This again contradicts the fact that M ′ obeys property 2 in G′

M ′ . Hence M cannot admit a
blocking edge, in other words, M is stable in G. ⊓⊔

Proof of Lemma 12. Consider any edge e = (r, hi) ∈ R+ ×H ′
−. Let e

′ = (r, h′j) and e
′′ = (s, hi)

be in M ′. Since r ∈ R+ and hi ∈ H ′
−, it follows that e′+ and e′′− are in M̃ . Because M̃ is a stable

matching in G̃, neither e+ nor e− blocks M̃ .

– Recall that hi prefers any color + edge to any color − edge, so hi prefers e+ to e′′−. However e+

does not block M̃ . Thus it has to be the case that r prefers e′+ to e+, in other words, r prefers
its partner h′j in M ′ to hi.

– Recall that any resident prefers any color − edge to any color + edge, so r prefers e− to e′+.

Since e− does not block M̃ , it has to be the case that hi prefers e
′′
− to e−; in other words, hi

prefers its partner s in M ′ to r.

Thus both r and hi prefer their respective partners in M ′ to each other. Hence wtM ′(e) = −2.
We will now show that for any e ∈ R+ × H ′

+, we have wtM ′(e) ≤ 0. If e = (r, h′i) ∈ M ′ then

wtM ′(e) = 0. Hence suppose e /∈M ′. Then (i) e′+ ∈ M̃ where e′ = (r, h′′j ) for some hospital h′′j ∈ H ′

and (ii) either e′′+ ∈ M̃ where e′′ = (s, h′i) for some resident s or the vertex h′i is unmatched in

M̃ .8 Since e+ does not block M̃ in G̃, it has to be the case that (i) r prefers e′+ to e+ or (ii) h′i is
matched along e′′+ which it prefers to e+. So it is the case that (i) r prefers its partner in M ′ to h′i
or (ii) h′ prefers its partner in M ′ to r. Hence wtM ′(e) ≤ 0. An analogous argument shows that for
any e ∈ R− ×H ′

−, we have wtM ′(e) ≤ 0. This finishes the proof of this lemma. ⊓⊔

Proof of Lemma 13. Suppose wtM ′(r′, hi) ≥ 0 for some edge (r′, hi) in G′
M ′ where r′ ̸= r. Let

(r, h′j) be a blocking edge to M ′ in G′
M ′ and let M ′(h′j) = s. If s = r′ then we have the length-4

alternating cycle C = s ∼ h′j − r ∼ hi − s such that wtM ′(C) ≥ 0 + 2 + 0 + 0 = 2. Thus the cycle
C violates property 1 given in Theorem 7, a contradiction. Hence s ̸= r′.

Consider the length 6 alternating path ρ = ht − s ∼ h′j − r ∼ hi − r′ ∼ M ′(r′) where ht is a
clone of h left unmatched in M ′. Observe that wtM ′(ρ′) ≥ 0 + 0 + 2 + 0 + 0 + 0 = 2. If M ′(r′) is a
clone of h then the edge (r′, hi) would not be present in G′

M ′ , hence M ′(r′) cannot be a clone of h.
Thus the path ρ violates property 2 given in Theorem 7, a contradiction. ⊓⊔

Proof of Lemma 14. It is residents r1, . . . , rℓ and hospitals hk−ℓ+1, . . . , hk that are matched along
color − edges in M̃ . Define R− = {r1, . . . , rℓ} and H ′

− = {hk−ℓ+1, . . . , hk}; let R+ = R \ R− and

H ′
+ = H \H ′

− (see Fig. 1). The stability of M̃ in G̃ will be proved via the following three claims.

8 For h′
i to be unmatched in M̃ , it has to be the case that h′ = h and i ∈ {k + 1, . . . , cap(h)}.
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Claim 1. There is no blocking edge incident to any vertex in R−. It is easy to show there is
no blocking edge incident to any of r1, . . . , rℓ. Recall that each resident prefers any color −
edge to any color + edge. Thus there is no edge (ri, h

′
j)+ that can block M̃ for any h′ ∈ H ′

and i ∈ {1, . . . , ℓ}. The only color − edges in G̃ are incident to h1, . . . , hk. Since hospitals
h1, . . . , hk−ℓ are matched along color + edges which they prefer to any color − edge, there is
no edge (ri, hj)− that blocks M̃ , where j ∈ {1, . . . , k − ℓ}. Furthermore, for k − ℓ+ 1 ≤ j ≤ k,

the j-th best clone of h gets the j-th best partner in {r1, . . . , rℓ} in M̃ . Thus there is no edge

(ri, hj)− that blocks M̃ , where j ∈ {k − ℓ+ 1, . . . , k}.

Claim 2. There is no blocking edge incident to any vertex in H ′
−. For any r

′ ∈ R+, Lemma 13
tells us that wtM ′(r′,M ′(rℓ)) = −2. This implies that M ′(rℓ) (and thus any clone of h) prefers

rℓ to any resident that is outside {r1, . . . , rℓ}. Thus each hj ∈ H ′
− prefers its partner in M̃ to

any resident in R+ (note that R+ includes rℓ+1, . . . , rk which are h’s worst k−ℓ partners inM).

Similarly, we claim that each resident r′ ∈ R+ prefers its partner in M̃ to any hospital in H−. If
r′ /∈M(h) then this claim follows from Lemma 13. Else r′ ∈M(h)∩R+, i.e., r

′ ∈ {rℓ+1, . . . , rk},
and each of these residents prefers its partner in M̃ (this is one of h1, . . . , hk−ℓ) to any of

hk−ℓ+1, · · · , hk. Hence neither e+ nor e− blocks M̃ where e ∈ R+ ×H ′
−. Recall that we already

showed there is no blocking edge to M̃ in R− ×H ′
−.

Claim 3. There is no blocking edge incident to any vertex in R+ ∪ H ′
+. It follows from the

definition of the resident rℓ that all blocking edges to M ′ in G′
M ′ are incident to residents in

{r1, . . . , rℓ}, i.e., to residents in R−. So no edge in R+ ×H ′
+ that is present in G′

M ′ blocks M ′.

Thus e+ (where e ∈ R+×H ′
+) does not block the matching M̃ restricted to color + edges. The

edges present in G̃ and missing in G′
M ′ are between a resident r and clones of its partner in M ′.

In the matching M̃ , the hospital h′i where h
′ ̸= h and 1 ≤ i ≤ cap(h′) gets the i-th best partner

of h′ in M . Thus there is no blocking edge in G̃ between h′i and any resident in R+. Similarly,

hi ∈ {h1, . . . , hk−ℓ} is matched in M̃ to the i-th best partner of h in {rℓ+1, . . . , rk}. Thus there
is no blocking edge (ri, hj)+ to M̃ where ℓ+ 1 ≤ i ≤ k and 1 ≤ j ≤ k − ℓ.

Hence there is no edge in G̃ that blocks M̃ . So M̃ is a stable matching in G̃. ⊓⊔
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