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We will now look at another example of a randomised algorithm - for primality testing. Primality testing is
a fundamental problem and has applications in many fields like cryptography.

1 Problem Statement

We want an algorithm that carries out the following:

Input: An odd integer n ≥ 3.
Output: “prime” if n is prime, and “composite” otherwise.

Further, we want the algorithm to run in time O(poly(log n)). This is because the number n, when stored
in binary, takes log n bits, and hence the input size is log n.

The naive algorithm that checks if n is divisible by any number from 2 to n− 1 (or
√
n) does not run in this

time.

We also want the success probability of the algorithm to be at least 3
4 .

Remark. When we discuss success probability of an algorithm, it is over the locally random choices made
by the algorithm for a given input, not over the input distribution. In particular, for this problem, if our
algorithm returned “composite” on every input, we cannot say its error probability is bounded by the density
of primes (some O( 1

logn )).

2 First Attempt

Our first idea is to guess a possible divisor of n.

Algorithm 1 Tests if n is prime

procedure Is-Prime(n) . n is odd and n ≥ 3
Choose a uniformly at random from {1, 2, . . . , n− 1} . We can delete 1 since it always divides n, but

this does not affect the analysis much
if gcd(a, n) 6= 1 then return “composite”
end if

end procedure

If gcd(a, n) = 1, then a and n are coprime. It is too soon, of course, to conclude that n is prime just because
we chose a number coprime to it. Before doing further tests let us look at some relevant theorems.
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3 Some Theorems

Theorem 1 (Fermat’s Little Theorem). If n is prime, then for every a ∈ Zn \ {0},

an−1 ≡ 1 mod n

First, consider the set Z∗n = {a ∈ Zn | gcd(a, n) = 1}. This is nothing but the set of residues (remainders)
of numbers relatively prime to n.

Claim 2. (Z∗n, ∗n) forms a group where ∗n is multiplication modulo n.

Proof. We need to show that the operation is associative - this can be seen from the fact that ordinary
multiplication of integers is associative. We also need to show the existence of an identity and inverses for
each element. 1 is clearly the identity. To see that every element a has an inverse, note that the gcd algorithm
implies that there are integers α and β such that αa+ βn = 1 (ordinary integer addition). Looking at this
equality modulo n, α′a ≡ 1 where α′ is the residue of α modulo n.

The size of this group |Z∗n| is denoted φ(n).

Now, consider 〈a〉 = {a, a2, a3, . . . } for a ∈ Z∗n. This is a subgroup of Z∗n:

Claim 3. 〈a〉 contains 1.

Proof. Since Z∗n is finite, some element must eventually appear twice i.e. ai = aj for some i and j. Then
ai−j = 1.

Theorem 4 (Lagrange’s Theorem). Let G be any finite group and H a subgroup of G. Then |H| divides
|G|.

Proof. If H = G, we are done. Otherwise, there is some element a ∈ G \H. If H = {h1, h2, . . . , ht}, define
aH = {ah1, ah2, . . . aht}. H and aH must be disjoint since if they were not, hi = ahj =⇒ a = hih

−1
j ∈ H,

which is a contradiction. Further, |H| = |aH|, since ahi = ahj =⇒ hi = hj .

Now, if H and aH together cover G, we are done, and |G| = 2|H|. Otherwise, we have b ∈ G \ (H ∪ aH).
Repeat the process to get a set bH, and so on until there are no remaining elements of G.

Proof of Theorem 1. Suppose |〈a〉| = k. k must divide n−1; say n−1 = kl. Then, an−1 = (ak)l = 1l = 1.

This can be used to improve our first attempt.

4 Improved First Attempt

Remark. an−1 can be computed in time O(poly(log n)) by repeatedly squaring a.
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Algorithm 2 Tests if n is prime

procedure Is-Prime(n) . n is odd and n ≥ 3
Choose a uniformly at random from {1, 2, . . . , n− 1}
if gcd(a, n) 6= 1 then return “composite”
else if an−1 6= 1 mod n then return “composite”
end if

return “prime”
end procedure

Note that no prime number is mistakenly labelled as composite by this algorithm, however a composite
number might “slip through the cracks” and be labelled as prime. In other words, if a number n is said to
be composite by the algorithm, then it is definitely composite; however if the algorithm says n is prime, then
n may be prime or composite.

5 Carmichael Numbers

Suppose the converse of Fermat’s Little Theorem held (i.e. if n is composite, then there is some a ∈ Z∗n such
that an−1 6= 1 mod n). Then we can bound the error probability of the above algorithm.

Claim 5. If the converse of Fermat’s Little Theorem is true, then at least half the elements a ∈ Z∗n have
an−1 6= 1 mod n.

Proof. Consider the set of elements that do not satisfy this, i.e {a ∈ Z∗n | an−1 = 1 mod n}. We claim that
these form a subgroup. Then, by Lagrange’s theorem, the size of this set must divide |Z∗n|. Since this set is
not the whole group (by the assumption), the size of the set must be at most half of |Z∗n|.

To show this is a subgroup, we need to show closure, identity and inverses. To see closure, observe that
if a and b are elements, (ab)n−1 = an−1bn−1 = 1. Clearly 1n−1 = 1, and if an−1 = 1, (a−1)n−1 = 1 by
multiplying both sides by an−1.

Unfortunately, the converse of Fermat’s Little Theorem is not true! The counterexamples are known as
Carmichael numbers: composite numbers n such that an−1 = 1 for every a ∈ Z∗n. There are infinitely many
Carmichael numbers and the smallest is 561.

Notice that at this point, an−1 = 1 and n− 1 is even. We claim that if a
n−1
2 /∈ {±1}, then a is composite.

Claim 6. If there is a nontrivial square root of 1 in Z∗n, then n is composite.

Proof. Suppose x2 − 1 = 0 mod n and x is not 1 or −1. Then (x+ 1)(x− 1) = 0 mod n. Then n divides
either x+ 1 or x− 1, which are not both zero since we assumed x /∈ {±1}.

Now, since n− 1 is even, we can write n− 1 = 2kt, for some odd number t. Then, the idea of the following

algorithm is: compute at, a2t, a4t, . . . , a2
kt. Look at the number just before the first occurrence of 1, and if

it is not 1 or −1, return “composite”. 1 must surely occur in the sequence since an−1 = 1.
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6 Second Attempt - Miller-Rabin Algorithm

The following algorithm is due to Miller and Rabin.

Algorithm 3 Tests if n is prime

procedure Is-Prime(n) . n is odd and n ≥ 3

if n = ab for some integers a, b ≥ 2 then return “composite” . This is so we can apply the Chinese
remainder theorem

end if
Choose a uniformly at random from {1, 2, . . . , n− 1}
if gcd(a, n) 6= 1 then return “composite”
else if an−1 6= 1 mod n then return “composite”
else

Write n = 2kt, t odd
Compute at, a2t, . . . until a 1 is seen
if the previous number is not 1 or −1 mod n then return “composite”
end if

end if
return “prime”
end procedure

Remark. When checking if n = ab, b can be at most log n. For a fixed b, a can be found using binary search,
hence the whole step takes time O(poly(log n)).

Remark. As it stands, the success probability is at least 1
2 , but this can be amplified to 3

4 by repeating the
experiment.

Again, no prime number is mistakenly labelled as composite. If n is not Carmichael, as earlier, the success
probability is at least 1

2 . We formalise these claims.

Claim 7. If n is prime, then the algorithm always returns “prime”.

Claim 8. If n is composite and not Carmichael, then the algorithm returns “composite” with probability at
least 1

2 .

Now, we only need to consider the case when n is Carmichael.

Consider a table with rows indexed by the elements of Z∗n and columns indexed by t, 2t, 4t, . . . , 2kt = n− 1.
Each entry is the row index raised to the power of the column index modulo n, that is, row ai has entries
ati, a

2t
i , . . . , a

n−1
i .

t 2t · · · 2ht 2h+1t · · · n− 1

a1 1 1 1 1 1
a2 ∗ ∗ ∗ 1 1
...

aφ(n) −1 1 −1 1 1

Since n is Carmichael, the last column consists of all 1’s. Now, the first column is not all 1’s, since t is odd
and (−1)t must be −1.
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This implies that there is some column 2ht which is not all 1′s, followed by a column 2h+1t which is all 1’s.
We will later show that at least half the entries in column 2ht are neither 1 nor −1.

Theorem 9 (Chinese Remainder Theorem). Let n be a composite number that is not a prime power. That
is, n can be written as n = rs where gcd(r, s) = 1. Then, there is a bijection (in fact, an isomorphism)
f : Zn → Zr × Zs where f(a) = (a mod r, a mod s).

Proof. The two sets Zn and Zr × Zs have the same size, hence it is enough to prove that the function is
surjective. Let (r′, s′) be in the codomain, we need to show it has a pre-image. Since r and s are relatively
prime, there are integers x and y such that xr + ys = 1.

Then,
xr = 1 mod s

ys = 1 mod r

s′xr = s′ mod s

r′ys = r′ mod r

(s′xr + r′ys) = s′ mod s

(s′xr + r′ys) = r′ mod r

Then (s′xr + r′ys) is the required pre-image.

Now consider the map when restricted to Z∗n. We claim that f : Z∗n → Z∗r ×Z∗s is also a bijection and in fact
an isomorphism.

The reason it is well-defined and a bijection is that if a is relatively prime to n, a mod r is relatively prime
to r and similarly for s.

To show it is an isomorphism, we need to show f(ab) = f(a)f(b) where on the right side, multiplication is
coordinate-wise. Suppose

a = kr + α, b = k′r + β

Then f(ab) = ab mod r = (kr + α)(k′r + β) mod r = αβ, and similarly for s.

Example. For n = 15, 15 = 3× 5. Then 1 7→ (1, 1), 2 7→ (2, 2), 4 7→ (1,−1) and so on.

Note that the trivial square roots of 1 are 1 and 14, and they map to (1, 1) and (−1,−1) respectively. The
nontrivial square roots, 4 and 7, map to (1,−1) and (−1, 1).

We are now ready to prove the claim indicated earlier.

Claim 10. If the column indexed by 2ht has at least one entry that is neither 1 nor −1, then at least half
the entries are neither 1 nor −1.

Proof. Let H = {a ∈ Z∗n | a2
ht = ±1 mod n}. H is a subgroup, the proof is very similar to the one done

earlier. By the assumption, H is not the entire set, hence it must have size at most half the size of the whole
set.
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Claim 11. At least one entry is neither 1 nor −1.

Proof. We prove this by contradiction. Suppose all the entries were either 1 or −1. We use this to construct
an entry that is neither 1 nor −1.

By choice of h, the column has at least one −1, say b2
ht = −1. Also, there is some a (for example, 1) such

that a2
ht = 1. We will show that c2

ht /∈ {±1} for some c.

Recall that n is a Carmichael number and not a prime power. Then we can write n as r × s and apply the
Chinese Remainder Theorem. Then,

f(b2
ht) = f(−1) = (−1,−1)

But since f is an isomorphism,

(−1,−1) = f(b2
ht) = [f(b)]2

ht

Say f(b) = (b1, b2). Then (b2
ht

1 , b2
ht

2 ) = (−1,−1).

Now consider the pre-image of (b1, 1) (which exists, by the theorem) and call it c. Then, f(c2
ht) = (b2

ht
1 , 1) =

(−1, 1).

This is the image of neither 1 nor −1, hence c2
ht /∈ {±1}.


