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Popular Branchings and Their Dual Certificates

Telikepalli Kavitha?, Tamás Király??, Jannik Matuschke? ? ?,

Ildikó Schlotter‡, and Ulrike Schmidt-Kraepelin§

Abstract

Let G be a digraph where every node has preferences over its incoming edges.
The preferences of a node extend naturally to preferences over branchings, i.e.,
directed forests; a branching B is popular if B does not lose a head-to-head elec-
tion (where nodes cast votes) against any branching. Such popular branchings
have a natural application in liquid democracy. The popular branching problem
is to decide if G admits a popular branching or not. We give a characterization
of popular branchings in terms of dual certificates and use this characteriza-
tion to design an efficient combinatorial algorithm for the popular branching
problem. When preferences are weak rankings, we use our characterization to
formulate the popular branching polytope in the original space and also show that
our algorithm can be modified to compute a branching with least unpopularity
margin. When preferences are strict rankings, we show that “approximately
popular” branchings always exist.

1 Introduction

Let G be a directed graph where every node has preferences (in partial order) over
its incoming edges. When G is simple, the preferences can equivalently be defined on
in-neighbors. We define a branching as a subgraph of G that is a directed forest where
any node has in-degree at most 1; a node with in-degree 0 is a root. The problem we
consider here is to find a branching that is popular.

Given any pair of branchings, we say a node u prefers the branching where it has a
more preferred incoming edge (being a root is u’s worst choice). If neither incoming
edge is preferred to the other, then u is indifferent between the two branchings. So
any pair of branchings, say B and B′, can be compared by asking for the majority
opinion, i.e., every node opts for the branching that it prefers, and it abstains if it is
indifferent between them. Let φ(B,B′) (resp., φ(B′, B)) be the number of nodes that
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Section 1. Introduction 2

prefer B (resp., B′) in the B-vs-B′ comparison. If φ(B′, B) > φ(B,B′), then we say
B′ is more popular than B.

Definition 1. A branching B is popular in G if there is no branching that is more
popular than B. That is, φ(B,B′) ≥ φ(B′, B) for all branchings B′ in G.

An application in computational social choice. We see the main application
of popular branchings within liquid democracy. Suppose there is an election where
a specific issue should be decided upon, and there are several proposed alternatives.
Every individual voter has an opinion on these alternatives, but might also consider
certain other voters as being better informed than her. Liquid democracy is a novel
voting scheme that provides a middle ground between the feasibility of representa-
tive democracy and the idealistic appeal of direct democracy [4]: Voters can choose
whether they delegate their vote to another, well-informed voter or cast their vote
themselves. As the name suggests, voting power flows through the underlying net-
work, or in other words, delegations are transitive. During the last decade, this idea
has been implemented within several online decision platforms such as Sovereign and
LiquidFeedback1 and was used for internal decision making at Google [22] and political
parties, such as the German Pirate Party or the Swedish party Demoex.

In order to circumvent delegation cycles, e.g., a situation in which voter x delegates
to voter y and vice versa, and to enhance the expressiveness of delegation preferences,
several authors proposed to let voters declare a set of acceptable representatives [20]
together with a preference relation among them [5, 22, 29]. Then, a mechanism
selects one of the approved representatives for each voter, avoiding delegation cycles.
Similarly as suggested in [6], we additionally assume that voters accept themselves as
their least preferred approved representative.

This reveals the connection to branchings in simple graphs (with loops), where
nodes correspond to voters and the edge (x, y) indicates that voter x is an approved
representative of voter y.2 Every root in the branching casts a weighted vote on behalf
of all her descendants. What is a good mechanism to select representatives for voters?
A crucial aspect in liquid democracy is the stability of the delegation process [3, 14].
For the model described above, we propose popular branchings as a new concept of
stability, i.e., the majority of the electorate will always weakly prefer to delegate votes
along the edges of a popular branching as opposed to delegating along the edges of
any other branching.

Not every directed graph admits a popular branching. Consider the following simple
graph on four nodes a, b, c, d where a, b (similarly, c, d) are each other’s top choices,
while a, c (similarly, b, d) are each other’s second choices. There is no edge between
a, d (similarly, b, c). Consider the branching B = {(a, b), (a, c), (c, d)}. A more popular
branching is B′ = {(d, c), (c, a), (a, b)}. Observe that a and c prefer B′ to B, while
d prefers B to B′ and b is indifferent between B and B′. We can similarly obtain a
branching B′′ = {(b, a), (b, d), (d, c)} that is more popular than B′. It is easy to check
that this instance has no popular branching.

1See www.democracy.earth and www.interaktive-demokratie.org, respectively.
2Typically, such a delegation is represented by an edge (y, x); for the sake of consistency with

downward edges in a branching, we use (x, y).
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1.1 Our Problem and Results

The popular branching problem is to decide if a given digraph G admits a popular
branching or not, and if so, to find one. We show that determining whether a given
branching B is popular is equivalent to solving a min-cost arborescence problem in an
extension of G with appropriately defined edge costs (these edge costs are a function
of the arborescence). The dual LP to this arborescence problem gives rise to a laminar
set system that serves as a certificate for the popularity of B if it is popular. This dual
certificate proves crucial in devising an algorithm for efficiently solving the popular
branching problem.

Theorem 2. Given a directed graph G where every node has preferences in arbitrary
partial order over its incoming edges, there is a polynomial-time algorithm to decide
if G admits a popular branching or not, and if so, to find one.

The proof of Theorem 2 is presented in Section 3; it is based on a characterization of
popular branchings that we develop in Section 2. In applications like liquid democracy,
it is natural to assume that the preference order of every node is a weak ranking, i.e., a
ranking of its incoming edges with possible ties. In this case, the proof of correctness
of our popular branching algorithm leads to a formulation of the popular branching
polytope BG, i.e., the convex hull of incidence vectors of popular branchings in G.

Theorem 3. Let G be a digraph on n nodes and m edges where every node has a
weak ranking over its incoming edges. The popular branching polytope of G admits a
formulation of size O(2n) in Rm. Moreover, this polytope has Ω(2n) facets.

We also show an extended formulation of BG in Rm+mn with O(mn) constraints.
When G has edge costs and node preferences are weak rankings, the min-cost popular
branching problem can be efficiently solved. So we can efficiently solve extensions of
the popular branching problem, such as finding one that minimizes the largest rank
used or one with given forced/forbidden edges.

Relaxing popularity. Since popular branchings need not always exist in G, this
motivates relaxing popularity to approximate popularity—do approximately popular
branchings always exist in any instance G? An approximately popular branching B
may lose an election against another branching, however the extent of this defeat will
be bounded. There are two measures of unpopularity: unpopularity factor u(·) and
unpopularity margin µ(·). These are defined as follows:

u(B) = max
φ(B′,B)>0

φ(B′, B)

φ(B,B′)
and µ(B) = max

B′
φ(B′, B)− φ(B,B′).

A branching B is popular if and only if u(B) ≤ 1 or µ(B) = 0. We show the
following results (Theorems marked by an asterisk (?) are proved in the Appendix).

Theorem 4 (?). A branching with minimum unpopularity margin in a digraph where
every node has a weak ranking over its incoming edges can be efficiently computed. In
contrast, when node preferences are in arbitrary partial order, the minimum unpopu-
larity margin problem is NP-hard.
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Theorem 5 (?). Let G be a digraph where every node has a strict ranking over its
incoming edges. Then there always exists a branching B in G with u(B) ≤ blog nc.
Moreover, for every n, we can show an instance Gn on n nodes with strict rankings
such that u(B) ≥ blog nc for every branching B in Gn.

Hardness results for restricted popular branching problems. A natural opti-
mization problem here is to compute a popular branching where no tree is large. In
liquid democracy, a large-sized tree shows a high concentration of power in the hands
of a single voter, and this is harmful for social welfare [20]. When there is a fixed
subset of root nodes in a directed graph, it was shown in [20] that it is NP-hard to
find a branching that minimizes the size of the largest tree. To translate this result
to popular branchings, we need to allow ties, whereas Theorem 6 below holds even
for strict rankings. Another natural restriction is to limit the out-degree of nodes;
Theorem 6 also shows that this variant is computationally hard.

Theorem 6 (?). Given a digraph G where each node has a strict ranking over its
incoming edges, it is NP-hard to decide if there exists

(a) a popular branching in G where each node has at most 9 descendants;

(b) a popular branching in G with maximum out-degree at most 2.

1.2 Background and Related Work

The notion of popularity was introduced by Gärdenfors [19] in 1975 in the domain
of bipartite matchings. Algorithmic questions in popular matchings have been well-
studied for the last 10-15 years [1, 2, 8, 9, 15, 16, 21, 23, 24, 25, 26, 27, 30].

Algorithms for popular matchings were first studied in the one-sided preferences
model where vertices on only one side of the bipartite graph have preferences over
their neighbors. Popular matchings need not always exist here and there is an effi-
cient algorithm to solve the popular matching problem [1]. The functions unpopularity
factor/margin were introduced in [30] to measure the unpopularity of a matching; it
was shown in [30] that it is NP-hard to compute a matching that minimizes either
of these quantities. In the domain of bipartite matchings with two-sided strict pref-
erences, popular matchings always exist since stable matchings always exist [18] and
every stable matching is popular [19].

The concept of popularity has previously been applied to (undirected) spanning
trees [10, 11, 12]. In contrast to our setting, voters have rankings over the entire edge
set. This allows for a number of different ways to derive preferences over trees, most
of which lead to hardness results.

Techniques. We characterize popular branchings in terms of dual certificates. This is
analogous to characterizing popular matchings in terms of witnesses (see [15, 24, 26]).
However, witnesses of popular matchings are in Rn and these are far simpler than
dual certificates. A dual certificate is an appropriate family of subsets of the node set
V . A certificate of size k implies that the unpopularity margin of the branching is
at most n − k. Our algorithm constructs a partition X ′ of V such that if G admits
popular branchings, then there has to be some popular branching in G with a dual
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certificate of size n supported by X ′. Moreover, when nodes have weak rankings, X ′
supports some dual certificate of size n to every popular branching in G: this leads
to the formulation of BG (see Section 4). Our positive results on low unpopularity
branchings are extensions of our algorithm.

Notation. The preferences of node v on its incoming edges are given by a strict
partial order ≺v, so e ≺v f means that v prefers edge f to edge e. We use e ∼v f
to denote that v is indifferent between e and f , that is, neither e ≺v f nor e �v f
holds. The relation ≺v is a weak ranking if ∼v is transitive. In this case, ∼v is an
equivalence relation and there is a strict order on the equivalence classes. When each
equivalence class has size 1, we call it a strict ranking.

2 Dual Certificates

We add a dummy node r to G = (VG, EG) as the root and make (r, v) the least
preferred incoming edge of any node v in G. Let D = (V ∪ {r}, E) be the resulting
graph where V = VG and E = EG ∪ {(r, u) : u ∈ V }. An r-arborescence in D is
an out-tree with root r (throughout the paper, all arborescences are assumed to be
rooted at r and to span V , unless otherwise stated).

Note that there is a one-to-one correspondence between branchings in G and ar-
borescences in D (simply make r the parent of all roots of the branching). A branching
is popular in G if and only if the corresponding arborescence is popular among all
arborescences in D.3 We will therefore prove our results for arborescences in D.
The corresponding results for branchings in G follow immediately by projection, i.e.,
removing node r and its incident edges.

Let A be an arborescence in D. There is a simple way to check if A is popular in
D. Let A(v) be the incoming edge of v in A. For e = (u, v) in D, define:

cA(e) :=


0, if e �v A(v), i.e., v prefers e to A(v);

1, if e ∼v A(v), i.e., v is indifferent between e and A(v);

2, if e ≺v A(v), i.e., v prefers A(v) to e.

Observe that cA(A) = |V | = n since cA(e) = 1 for every e ∈ A. Let A′ be any
arborescence in D and let ∆(A,A′) = φ(A,A′) − φ(A′, A) be the difference in the
number of votes for A and the number of votes for A′ in the A-vs-A′ comparison.
Observe that cA(A′) = ∆(A,A′) + n. Thus, cA(A′) ≥ n = cA(A) if and only if
∆(A,A′) ≥ 0. So we can conclude the following.

Proposition 7. Let A′ be a min-cost arobrescence in D with respect to cA. Then
µ(A) = n − cA(A′). In particular, A is popular in D if and only if it is a min-cost
arborescence in D with edge costs given by cA.

Consider the following linear program LP1, which computes a min-cost arborescence
in D, and its dual LP2. For any non-empty X ⊆ V , let δ−(X) be the set of edges

3Note that, by the special structure of D, this is equivalent to A being a popular branching in D.
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entering the set X in the graph D.

minimize
∑
e∈E

cA(e) · xe (LP1)

subject to
∑

e∈δ−(X)

xe ≥ 1 ∀X ⊆ V, X 6= ∅

xe ≥ 0 ∀ e ∈ E.

maximize
∑

X⊆V,X 6=∅

yX (LP2)

subject to
∑

X: δ−(X)3e

yX ≤ cA(e) ∀ e ∈ E

yX ≥ 0 ∀X ⊆ V, X 6= ∅.

For any feasible solution y to LP2, let Fy := {X ⊆ V : yX > 0} be the support of
y. Inspired by Edmonds’ branching algorithm [13], Fulkerson [17] gave an algorithm
to find an optimal solution y to LP2 such that y is integral. From an alternative proof
in [28], we obtain the following useful lemma.

Lemma 8. There exists an optimal, integral solution y∗ to LP2 such that Fy∗ is
laminar.

Let y be an optimal, integral solution to LP2 such that Fy is laminar. Note that
for any nonempty X ⊆ V , there is an e ∈ A ∩ δ−(X) and thus yX ≤ cA(e) = 1. This
implies that yX ∈ {0, 1} for all X. We conclude that Fy is a dual certificate for A in
the sense of the following definition.

Definition 9. A dual certificate for A is a laminar family Y ⊆ 2V such that |{X ∈
Y : e ∈ δ−(X)}| ≤ cA(e) for all e ∈ E.

For the remainder of this section, let Y be a dual certificate maximizing |Y|.

Lemma 10. Arborescence A has unpopularity margin µ(A) = n− |Y|. Furthermore,
the following three statements are equivalent:

(1) A is popular.

(2) |Y| = n.

(3) |A ∩ δ−(X)| = 1 for all X ∈ Y and |{X ∈ Y : e ∈ δ−(X)}| = 1 for all e ∈ A.

Proof. Let x and y be the characteristic vectors of A and Y , respectively. By Propo-
sition 7, A is popular if and only if x is an optimal solution to LP1. This is equivalent
to (2) because cA(A) = n. Note also that (3) is equivalent to x and y fulfilling
complementary slackness, which is equivalent to x being optimal.

Lemma 10 establishes the following one-to-one correspondence between the nodes
in V and the sets of Y : For every set X ∈ Y , there is a unique edge (u, v) ∈ A that
enters X. We call v the entry-point for X. Conversely, we let Yv be the unique set in
Y for which v is the entry-point; thus Y = {Yv : v ∈ V }.
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Observation 11. For every v ∈ V we have |{X ∈ Y : v ∈ X}| ≤ 2.

Observation 11 is implied by the fact that e = (r, v) is an edge in D for every v ∈ V
and cA(e) ≤ 2. Laminarity of Y yields the following corollary:

Corollary 12. If |Y| = n, then w ∈ Yv \ {v} for some v ∈ V implies Yw = {w}.

The following definition of the set of safe edges S(X) with respect to a subset
X ⊆ V will be useful. S(X) is the set of edges (u, v) in E[X] := E ∩ (X ×X) such
that properties 1 and 2 hold:

1. (u, v) is undominated in E[X], i.e., (u, v) 6≺v (u′, v) ∀ (u′, v) ∈ E[X].

2. (u, v) dominates (w, v) ∀w /∈ X, i.e., (u, v) �v (w, v) ∀ (w, v) ∈ δ−(X).

The interpretation of S(X) is the following. Suppose that the dual certificate Y
proves the popularity of A. Let X ∈ Y with |X| > 1. By Corollary 12, for every node
v ∈ X other than the entry-point in X we have {v} = Yv ∈ Y . So edges in δ−(v)
within E[X] enter exactly one dual set, i.e., {v}, while any edge (w, v) where w /∈ X
enters two of the dual sets: X and {v}. This induces exactly the constraints (1) and
(2) given above on (u, v) ∈ A (see LP2), showing that the edge A(v) must be safe, as
stated in Observation 13.

Observation 13. If A is popular, then A ∩ E[X] ⊆ S(X) for all X ∈ Y.

3 Popular Branching Algorithm

We are now ready to present our algorithm for deciding if D admits a popular ar-
borescence or not. For each v ∈ V , step 1 builds the largest set Xv such that v can
reach all nodes in Xv using edges in S(Xv). The collection X = {Xv : v ∈ V } will be
laminar (see Lemma 14). To construct the sets Xv we make use of the monotonicity
of S: X ⊆ X ′ implies S(X) ⊆ S(X ′).

In steps 2-3, the algorithm contracts each maximal set in X into a single node and
builds a graph D′ on these nodes and r. For each set X here that has been contracted
into a node, edges incident to X in D′ are undominated edges from other nodes in D′

to the candidate entry-points of X, which are nodes v ∈ X such that X = Xv. Our
proof of correctness (see Theorems 15-16) shows that D admits a popular arborescence
if and only if D′ admits an arborescence.

Our algorithm for computing a popular arborescence in D is given below.

1. For each v ∈ V do:

• let X0
v = V and i = 0;

• while v does not reach all nodes in the graph Di
v = (X i

v, S(X i
v)) do:

X i+1
v = the set of nodes reachable from v in Di

v; let i = i+ 1.

• let Xv = X i
v.
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2. Let X = {Xv : v ∈ V }, X ′ = {Xv ∈ X : Xv is ⊆ -maximal in X}, E ′ = ∅.

3. For every edge e = (u, v) in D such that Xv ∈ X ′ and u /∈ Xv do:

• if e is undominated (i.e., e 6≺v e′) among all edges e′ ∈ δ−(Xv), then

f(e) =

{
(U,Xv) where u ∈ U and U ∈ X ′,
(r,Xv) if u = r;

• let E ′ := E ′ ∪ {f(e)}.

4. If D′ = (X ′ ∪ {r}, E ′) contains an arborescence Ã, then

• let A′ = {e : f(e) ∈ Ã};
• let R = {v ∈ V : |Xv| ≥ 2 and v has an incoming edge in A′};
• for each v ∈ R: let Av be an arborescence in (Xv, S(Xv));

• return A∗ = A′ ∪v∈R Av.

5. Else return “No popular arborescence in D”.

Correctness of the above algorithm. We will first show the easy direction, that
is, if the algorithm returns an edge set A∗, then A∗ is a popular arborescence in D.
The following lemma will be key to this. Note that the set Xu, for each u ∈ V , is
defined in step 1. Lemmas marked by (◦) are proved in the Appendix.

Lemma 14 (◦). X = {Xv : v ∈ V } is laminar. If u ∈ Xv, then Xu ⊆ Xv.

Theorem 15 (?). If the above algorithm returns an edge set A∗, then A∗ is a popular
arborescence in D.

Sketch of proof. It is straightforward to verify that A∗ is an arborescence in D. To
prove the popularity of A∗, we construct a dual certificate Y of size n for A∗, by
setting Y := {Xv : v ∈ R} ∪ {{v} : v ∈ V \R}.

Note that |Y| = |R| + |V \ R| = n. It remains to show that any edge (w, v) ∈ E
satisfies the constraints in LP2; let (u, v) be the incoming edge of v in A∗.

Suppose v ∈ R; then (u, v) ∈ A′ and u /∈ Xv. Consider any edge (w, v): this
enters one set of Y iff w 6∈ Xv and no set iff w ∈ Xv. Hence, it suffices to show that
cA∗((w, v)) ∈ {1, 2} for w /∈ Xv. By construction of E ′, (w, v) does not dominate
(u, v) and therefore cA∗((w, v)) ∈ {1, 2}.

Suppose v ∈ V \ R. Let s be v’s local root, i.e., the unique s ∈ R with v ∈ Xs.
Then (u, v) ∈ As ⊆ S(Xs) by construction of As. Any edge (w, v) ∈ δ−(v) enters at
most two sets of Y : {v} and possibly Xs. If, on the one hand, (w, v) ∈ δ−(Xs), then
(u, v) ∈ S(Xs) dominates (w, v) by property 2 of S(Xs), and hence cA∗((w, v)) = 2.
If, on the other hand, w ∈ Xs, then (u, v) ∈ S(Xs) is not dominated by (w, v)
by property 1 of S(Xs), and hence cA∗((w, v)) ≥ 1. Thus, any edge satisfies the
constraints in LP2, proving the theorem.
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Theorem 16. If D admits a popular arborescence, then our algorithm finds one.

Before we prove Theorem 16, we need Lemma 17 and Lemma 18.

Lemma 17 (◦). Let A be a popular arborescence and Y a dual certificate for A of
size n. Then Yv ⊆ Xv for any v ∈ V .

Lemma 18 (◦). Let A be a popular arborescence in D and let X ∈ X ′. Then A enters
X exactly once, and it enters X at some node v such that X = Xv.

Proof of Theorem 16. Assume there exists a popular arborescence A in D; then
there exists a dual certificate Y of size n for A. We will show there exists an arbores-
cence in D′. By Lemma 18, for each X ∈ X ′ there exists exactly one edge eX = (u, v)
of A that enters X, and moreover, v is a candidate entry-point of X.

We claim that (u, v) is not dominated by any (u′, v) ∈ δ−(X). Recall that by
Lemma 17, we know Yv ⊆ Xv = X. If some (u′, v) ∈ δ−(X) dominates (u, v) ∈ A,
its cost must be cA((u′, v)) = 0. However, (u′, v) clearly enters Yv ⊆ X, and thus
violates LP2, contradicting our assumption that Y is a dual solution. Hence, eX is
undominated among the edges of δ−(X) ∩ δ−(v) and therefore our algorithm creates
an edge f(eX) in E ′ pointing to X. Using the fact that A is an arborescence in D, it
is straightforward to verify that the edges {f(eX) : X ∈ X ′} form an arborescence Ã
in D′. Thus our algorithm returns an edge set A∗, which by Theorem 15 must be a
popular arborescence in D.

It is easy to see that step 1 (the bottleneck step) takes O(mn) time per node. Hence
the running time of the algorithm is O(mn2); thus Theorem 2 follows.

3.1 A simple extension of our algorithm: Algorithm Min-

Margin

Our algorithm can be extended to compute an arborescence with minimum unpopular-
ity margin when nodes have weak rankings. When D′ does not admit an arborescence,
algorithm MinMargin below computes a max-size branching B̃ in D′ and adds edges
from the root r to all root nodes in B̃ so as to make an arborescence of this branching
in D′. This arborescence in D′ is then transformed into an arborescence in D exactly
as in our earlier algorithm.

1. Let D′ be the graph constructed in our algorithm for Theorem 2, and let B̃ be
a branching of maximum cardinality in D′.

2. Let B′ = {e | f(e) ∈ B̃}, R1 = {v ∈ V | δ−(v) ∩B′ 6= ∅}, R2 = ∅.
3. For each X ∈ X ′ which is a root in the branching B̃, select one arbitrary v ∈ V

such that Xv = X, add v to R2 and (r, v) to B′.

4. For each v ∈ R1 ∪R2: let Av be an arborescence in (Xv, S(Xv)).

5. Return A∗ := B′
⋃
v∈R1∪R2

Av.

Theorem 19 (?). When nodes have weak rankings, Algorithm MinMargin returns
an arborescence with minimum unpopularity margin in D = (V ∪ {r}, E).
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4 The Popular Arborescence Polytope of D

We now describe the popular arborescence polytope of D = (V ∪ {r}, E) in Rm.
Throughout this section we assume that every node has a weak ranking over its
incoming edges. The arborescence polytope A of D is described below [28].

∑
e∈E[X]

xe ≤ |X| − 1 ∀X ⊆ V, |X| ≥ 2. (1)

∑
e∈δ−(v)

xe = 1 ∀ v ∈ V and xe ≥ 0 ∀ e ∈ E. (2)

We will define a subgraph D∗ = (V ∪{r}, ED∗) of D: this is essentially the expanded
version of the graph D′ from our algorithm. The edge set of D∗ is:

ED∗ =
⋃
X∈X ′ S(X) ∪ {(u, v) ∈ E : Xv ∈ X ′, u /∈ Xv, and (u, v) is

undominated in δ−(Xv)}.
Thus each set X ∈ X ′, which is a node in D′, is replaced in D∗ by the nodes in X

and with edges in S(X) between nodes in X. We also replace edges in D′ between
sets in X ′ by the original edges in E.

Lemma 20. If every node has a weak ranking over its incoming edges, then every
popular arborescence in D is an arborescence in D∗ that includes exactly |X|−1 edges
from S(X) for each X ∈ X ′.

Proof. Let A be a popular arborescence in D and let X ∈ X ′. By Lemma 18 we know
|A ∩ δ−(X)| = 1; moreover, the proof of Theorem 16 tells us that the unique edge
in A ∩ δ−(X) is contained in D∗. So A contains |X| − 1 edges from E[X] for each
X ∈ X ′. It remains to show that these |X| − 1 edges are in S(X).

Let u ∈ X. Suppose A(u) ∈ E[X] \ S(X). This means that either (i) A(u) is
dominated by some edge in E[X] ∪ δ−(X) or (ii) u is indifferent between A(u) and
some edge in δ−(X). Let Y be a dual certificate of A. We know that Yu ⊆ Xu ⊆ X
(by Lemma 17). Since the entry point of A into X is not in Yu, there is an edge
e ∈ S(X) ∩ δ−(Yu).

Let e enter w ∈ Yu. Since e ∈ S(X), we have e �w A(w) or e ∼w A(w), hence
cA(e) ∈ {0, 1}. If w 6= u, then e enters two sets Yu and {w}—thus the constraint
in LP2 corresponding to edge e is violated. If w = u then e �u A(u) (since A(u) ∈
E[X] \ S(X), e ∈ S(X), and u has a weak ranking over its incoming edges): so
cA(e) = 0. Since e enters one set Yu, the constraint corresponding to e in LP2 is again
violated. So A(u) ∈ S(X), i.e., A ∩ E[X] ⊆ S(X).

Hence, every popular arborescence in D satisfies constraints (1)-(2) along with
constraints (3) given below, where ED∗ is the edge set of D∗.∑

e∈E[X]

xe = |X| − 1 ∀X ∈ X ′, |X| ≥ 2 and xe = 0 ∀ e ∈ E \ ED∗ (3)
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Note that constraints (3) define a face F of the arborescence polytope A of D. Thus
every popular arborescence in D belongs to face F .

Consider a vertex in face F : this is an arborescence A in D of the form A′∪X∈X ′AX
where (i) AX is an arborescence in (X,S(X)) whose root is an entry-point of X
and (ii) A′ = {eX : X ∈ X ′} where eX is an edge in D∗ entering the root of AX .
Theorem 15 proved that such an arborescence A is popular in D. Thus we can
conclude Theorem 21 which proves the upper bound in Theorem 3. The lower bound
in Theorem 3 is given in the Appendix.

Theorem 21. If every node has a weak ranking over its incoming edges, then face F
(defined by constraints (1)-(3)) is the popular arborescence polytope of D.

A compact extended formulation of this polytope and all missing proofs are in the
Appendix. We also discuss popular mixed branchings (probability distributions over
branchings) there.

Acknowledgments. Part of this work was done at the 9th Emléktábla workshop in
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Appendix

A Missing proofs from Sections 3 and 4

Lemma 14 (◦). X = {Xv : v ∈ V } is laminar. If u ∈ Xv, then Xu ⊆ Xv.

Proof. We first show that X i
u ⊆ X i

v for any i, where we set X i
v := Xv whenever X i

v is
not defined by the above algorithm. The claim clearly holds for i = 0. Let i be the
smallest index such that x ∈ X i

u \X i
v for some node x; we must have x ∈ X i−1

u ∩X i−1
v .

By the definition of X i
u, x is reachable from u in S(X i−1

u ). Note that X i−1
u ⊆ X i−1

v

implies S(X i−1
u ) ⊆ S(X i−1

v ), which yields that x is reachable from u in S(X i−1
v ) as

well. Moreover, u is reachable from v in S(X i−1
v ) ⊇ S(Xv) because u ∈ Xv and S(·) is

monotone. Hence it follows that x is reachable from v in S(X i−1
v ) via u, contradicting

the assumption that x /∈ X i
v. This proves the second statement of the lemma.

Now we will show the laminarity of X . For contradiction, assume there exist s, t ∈ V
such that Xs and Xt cross, i.e., their intersection is non-empty, and neither contains
the other. Then, by the second statement of the lemma, neither s ∈ Xt nor t ∈ Xs

can hold. So we have that s /∈ Xt and t /∈ Xs.
Let (x, y) be an edge in S(Xt) such that y ∈ Xs ∩Xt but x ∈ Xt \Xs; since each

node in Xt is reachable from t in S(Xt), such an edge exists. Since y ∈ Xs \ {s},
there also exists an edge (u, y) in S(Xs). As x /∈ Xs but (u, y) ∈ S(Xs), we know that
(u, y) �y (x, y) which contradicts (x, y) ∈ S(Xt).

Theorem 15 (?). If the above algorithm returns an edge set A∗, then A∗ is a popular
arborescence in D.

Proof. We start by showing that A∗ is an arborescence in D. Then, we construct a
dual certificate of value n for A∗. This will prove the popularity of A∗.

The laminarity of X implies that sets in X ′ are pairwise disjoint. Moreover, by
construction, each node in V is included in at least one set in X , namely v ∈ Xv for
each v ∈ V . Hence, X ′ forms a partition of V . By construction of A∗, each node
v ∈ V can be reached in A∗ from the local root s ∈ R for which v ∈ Xs. It remains
to show that the root r reaches all local roots s ∈ R in A∗. This can be shown by
induction over the distance of s from the root r within the arborescence A′. It remains
to show that |A∗| = n. Let k := |X ′|. Since X ′ is a partition of V , we get that

|A∗| = |A′|+
∑

v∈R |Av| = k +
∑

v∈R(|Xv| − 1) = k + n− k = n.

We turn to the second part of the proof and show a dual certificate of size n for A∗.
We claim that Y := {Xv : v ∈ R} ∪ {{v} : v ∈ V \ R} is such a dual solution. Note
that |Y| = |R| + |V \ R| = n. We now show that for all v ∈ V , the incoming edges
satisfy the constraints in LP2.

Suppose v ∈ R. An edge (w, v) ∈ E enters one set of Y iff w 6∈ Xv and no set iff
w ∈ Xv. Hence, it suffices to show that cA∗((w, v)) ∈ {1, 2} for w /∈ Xv. Let (u, v)
be the incoming edge of v in arborescence A∗; note that (u, v) ∈ A′ and u /∈ Xv. By
construction of E ′, (w, v) does not dominate (u, v) and therefore cA∗((w, v)) ∈ {1, 2}.
The same argument works for v ∈ V \R and {v} ∈ X ′.
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Suppose v ∈ V \ R. Let s be v’s local root, i.e., the unique s ∈ R with v ∈ Xs.
Then (u, v) ∈ As ⊆ S(Xs) by construction of As. Any edge (w, v) ∈ δ−(v) enters at
most two sets of Y : {v} and possibly Xs. If, on the one hand, (w, v) ∈ δ−(Xs), then
(u, v) ∈ S(Xs) dominates (w, v) by property 2 of S(Xs), and hence cA∗((w, v)) = 2.
If, on the other hand, w ∈ Xs, then (u, v) ∈ S(Xs) is not dominated by (w, v) by
property 1 of S(Xs), and hence cA∗((w, v)) ≥ 1. This completes the proof that Y is a
dual certificate of size n for A∗, thus A∗ is popular.

Lemma 17 (◦). Let A be a popular arborescence and Y a dual certificate for A of
size n. Then Yv ⊆ Xv for any v ∈ V .

Proof. If Yv = {v}, then Yv ⊆ Xv is trivial, so suppose that Yv is not a singleton. We
know from Corollary 12 that Yw is a singleton set for each w ∈ Yv \ {v}. Moreover,
for every (u,w) ∈ A with w ∈ Yv \ {v} it holds that u ∈ Yv since this edge would
otherwise enter two sets; however, cA((u,w)) = 1 as (u,w) ∈ A.

Assume for contradiction that Yv \Xv 6= ∅. Let i be the last iteration when Yv ⊆
X i
v. Then there exists a subset of Yv which is not reachable by edges in S(X i

v), i.e.,
δ−(Yv \X i+1

v )∩S(X i
v) = ∅. On the other hand, we know that the arborescence A can

only enter nodes in Yv \ {v} by edges from E[Yv], and therefore, it needs to contain at

least one edge from δ−(Yv \X i+1
v ) ∩ δ+(X

(i+1)
v ). Let (u,w) be this edge (see Fig. 1).

By construction of X i
v and X i+1

v , we know that one of the following cases has to be
true.

X i
v

X i+1
v

Yv

v
u

w

Figure 1: Illustration of the situation in the proof of Lemma 17.

Case 1. There exists an edge (x,w) ∈ E[X i
v] which dominates (u,w). Note that

we do not know if (x,w) ∈ E[Yv] or not. However, cA((x,w)) = 0 in either case, but
by Corollary 12, (x,w) enters at least one set in Y , namely {w}. This is a violation
of LP2 and it contradicts Y being a dual certificate for A.

Case 2. There exists an edge (x,w) ∈ δ−(X i
v) which is not dominated by (u,w).

Note that cA((x,w)) ∈ {0, 1}, but (x,w) ∈ δ−(Yv) and so the edge (x,w) enters two
dual sets: Yv and {w}. This contradicts Y being a dual solution.

Lemma 18 (◦). Let A be a popular arborescence in D and let X ∈ X ′. Then A enters
X exactly once, and it enters X at some node v such that X = Xv.

Proof. Let X ∈ X ′ and let A be a popular arborescence which enters X at some node
v ∈ V through an edge (u, v) ∈ A ∩ δ−(X). Moreover, let Y be a dual certificate for
A, and let Yv be the set whose entry-point is v.
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Let entry(X) := {w ∈ V : Xw = X}. We first show that entry(X) ⊆ Yv. Assume
for contradiction that there exists w ∈ entry(X) such that w /∈ Yv. Since Xw = X
we know that there exists a w-v path P in (X,S(X)). Hence, there exists an edge
e ∈ P which enters Yv. If the head of e is v, we know that e dominates (u, v) ∈ δ−(X)
and hence cA(e) = 0, a contradiction to the feasibility of Y . If v is not the head
of e, then e not only enters Yv, but also the singleton set corresponding to its head.
However, cA(e) ≤ 1 since e is an undominated edge by e ∈ S(X), a contradiction to
the feasibility of Y .

To prove that v ∈ entry(X), let us choose some s ∈ entry(X). By the previous
paragraph and Lemma 17, we get s ∈ Yv ⊆ Xv, from which Lemma 14 implies
Xs ⊆ Xv. Because s ∈ entry(X), we have X = Xs ⊆ Xv. Because X ∈ X ′ is
inclusionwise maximal in X , we get X = Xv, proving v ∈ entry(X).

It remains to prove that A enters X only once. Suppose for contradiction that
there exist two nodes v, v′ ∈ entry(X) such that (u, v), (u′, v′) ∈ A ∩ δ−(X). By
∅ 6= entry(X) ⊆ Yv ∩ Yv′ and the laminarity of Y , we can assume w.l.o.g. that
Yv ⊆ Yv′ . Moreover, since Yv′ ⊆ X, the arborescence edge (u, v) enters both Yv and
Yv′ , a contradiction to the feasibility of the dual solution Y .

Lower bound for the popular arborescence polytope of D. Let D = (V ∪
{r}, E) be the complete graph where every node v ∈ V regards all other nodes u ∈ V
as top-choice in-neighbors and r as its second-choice in-neighbor. Here X ′ = {V } and
D∗ is the complete bidirected graph on V along with edges (r, v) for all v ∈ V . We
claim that in any minimal system contained in (1)-(3), the constraint

∑
e∈E[X] xe ≤

|X| − 1 for every X ⊂ V with |X| ≥ 2 has to be present. This is because a cycle
on the nodes in X along with any rooted arborescence A on V \X plus (r, v), where
v is the root of A, satisfies all the remaining constraints. Thus any minimal system
of inequalities from (1)-(3) has to contain 2n − n − 2 inequalities from (1): one for
every X ⊂ V with |X| ≥ 2. Since inequalities in a minimal system are in one-to-one
correspondence with the facets of the polyhedron they describe [7, Theorem 3.30], the
lower bound given in Theorem 3 follows.

A compact extended formulation. We now describe a compact extended for-
mulation of the popular arborescence polytope of D when node preferences are weak
rankings. We know from Lemma 20 that every popular arborescence in D is an ar-
borescence in D∗ that includes exactly |X| − 1 edges from S(X) for each X ∈ X ′.
Conversely, any such arborescence in D∗ is a popular arborescence in D (by Theo-
rem 15).

Thus the popular arborescence polytope of D is the face of the arborescence poly-
tope of D∗ that corresponds to the constraints

∑
e∈ED∗ [X] xe = |X|− 1 for all X ∈ X ′.

Let AD∗ be the arborescence polytope of D∗ = (V ∪ {r}, ED∗). We will now use a
compact extended formulation of AD∗ .

Recall that |V | = n. Let PD∗ be the polytope defined by constraints (4)-(7) on
variables xe, f

v
e for e ∈ ED∗ and v ∈ V . It is known [7] that PD∗ is a compact extended

formulation of the arborescence polytope AD∗ . Note that AD∗ is the projection of PD∗
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on to x-space.

xe ≥ f ve ≥ 0 ∀v ∈ V and e ∈ ED∗ (4)∑
e∈δ+(r)

f ve = 1 ∀v ∈ V (5)

∑
e∈δ+(u)

f ve −
∑

e∈δ−(u)

f ve = 0 ∀u, v ∈ V, u 6= v (6)

∑
e∈ED∗

xe = n. (7)

For any X ⊆ V with |X| ≥ 2, the constraint
∑

e∈ED∗ [X] xe ≤ |X| − 1 is a valid
inequality for AD∗ and also for PD∗ . Thus the intersection of AD∗ along with the
tight constraints

∑
e∈ED∗ [X] xe = |X| − 1 for all X ∈ X ′ is a face of AD∗ . Call this

face FD∗—this is the popular arborescence polytope of D.

Consider the face of PD∗ that is its intersection with
∑

e∈ED∗ [X] xe = |X| − 1 for all
X ∈ X ′. This face of PD∗ is an extension FD∗ . The total number of constraints used
to describe this face of PD∗ is O(mn).

B Branchings with minimum unpopularity margin

In this section we prove Theorem 4. Recall the definition of the unpopularity margin
for branchings from Section 1. Again, instead of studying minimum unpopularity
margin branchings within the digraph G, we look at r-arborescences of minimum
unpopularity margin within the digraph D. It is easy to see that the unpopularity
margin of a branching in G is the same as the unpopularity margin of the corre-
sponding arborescence in D.4 Thus we are looking for an arborescence of minimum
unpopularity margin in D.

Furthermore, recall that by Proposition 7 and Lemma 10 in Section 2, the unpop-
ularity margin µ(A) of an arborescence A fulfills

µ(A) = n− cA(A′) = n− |Y|,

where A′ is a min-cost arborescence in D with respect to cA and Y is a dual certificate
of maximum cardinality for A.

Theorem 19 (?). When nodes have weak rankings, Algorithm MinMargin returns
an arborescence with minimum unpopularity margin in D = (V ∪ {r}, E).

Algorithm MinMargin is described in Section 3.1. To prove Theorem 19, we first
show in Lemma 22 that the size of the maximum cardinality branching B̃ bounds
the unpopularity margin of the arborescence A∗ returned by Algorithm MinMargin.
Then we provide Lemma 23 and Observation 24 that will be helpful in showing the
optimality of Algorithm MinMargin.

4Note that, due to the special structure of D, there always exists an arborescence A′ such that
A′ ∈ arg maxB∈B(D) φ(B,A)− φ(A,B), where B(D) is the set of branchings in D.

EGRES Technical Report No. 2019-15



Section B. Branchings with minimum unpopularity margin 18

Lemma 22. If the number of roots in the branching B̃ is `, then aborescence A∗

returned by Algorithm MinMargin has unpopularity margin at most `− 1.

Proof. We show that A∗ has unpopularity margin at most ` − 1 by constructing a
dual certificate of size n − ` + 1; by Lemma 10 this is sufficient. Define Y := {Xv |
v ∈ R1} ∪ {{v} | v ∈ V \ {R1 ∪R2}}. It is easy to see that Y contains n− (|R2| − 1)
= n− `+ 1 sets (r ∈ R2 but r /∈ V ). It remains to show that any edge (w, v) satisfies
the constraints in LP2; the argumentation is analogous to the one in the proof for
Theorem 15.

First, if v ∈ R2, then v is not contained in any set of Y , so no constraints are
violated by (w, v). Otherwise, let (u, v) be an incoming edge of v in A∗.

Suppose v ∈ R1; then (u, v) ∈ B′ and u /∈ Xv. Edge (w, v) enters one set of Y iff
w 6∈ Xv and no set iff w ∈ Xv. Hence, it suffices to show that cA∗((w, v)) ∈ {1, 2} for
w /∈ Xv. By construction of E ′ (recall that E ′ is the edge set of D′), (w, v) does not
dominate (u, v) and therefore cA∗((w, v)) ∈ {1, 2}.

Suppose now v ∈ V \(R1∪R2). Let s be v’s local root, i.e., s ∈ R1∪R2, v ∈ Xs; then
(u, v) ∈ As. Edge (w, v) enters two sets of Y iff w 6∈ Xs and one set iff w ∈ Xs. If, on
the one hand, w /∈ Xs, then by construction of As and property 2 of S(Xs), it holds
that (w, v) is dominated by (u, v), and hence cA∗((w, v)) = 2. If, on the other hand,
w ∈ Xs, then by construction of As and property 1 of S(Xs), (w, v) does not dominate
(u, v), and hence cA∗((w, v)) ∈ {1, 2}. Thus, any edge satisfies the constraints in LP2
and Y is a dual certificate for A∗.

Let S ⊆ V , s ∈ S and A ⊆ E be an arborescence rooted at s and spanning exactly
the nodes in S. We say that A is locally popular with respect to S, if the set family
Y := {{v} | v ∈ S \ {s}} ∪ {S} fulfills the constraints of the dual LP induced by cA,
where we set cA(e) := 1 for each edge e ∈ δ−(s) and cA(e) := 0 for every e ∈ δ−(v)
with v ∈ V \ S (see LP2).

Lemma 23. Let S ⊆ V such that there exists an arborescence A ⊆ E which is rooted
at v ∈ S and locally popular with respect to S. Then, S ⊆ Xv.

Proof. The proof of this lemma is a direct analog of the proof of Lemma 17: substi-
tuting S for Yv and using the definition of local popularity instead of popularity, one
can use the same arguments to obtain the statement of this lemma.

Observation 24. Let B̃ be a branching of maximum cardinality in D′ and T ⊆ B̃ be
a maximal subarborescence of B̃ not containing r. Then, there exists S ⊆ V (T ) such
that δ−D′(S) = ∅.

Proof. Assume for contradiction that δ−D′(S) 6= ∅ for all S ⊆ V (T ). Hence, every
X ∈ V (T ) is reachable from {r} ∪ X \ V (T ) in D′. Consequently, we can modify
B̃ by attaching each X ∈ V (T ) to some node in {r} ∪ X ′ \ V (T ), one by one. This
contradicts the maximality of B̃.

Let A be any arborescence, and Y a dual certificate for A. Since cA(e) = 1 for
every e ∈ A, we know that each edge in A enters at most one set in Y . If an edge
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(u, v) ∈ A enters a set of Y , we refer to this set as Yv, and we say that Yv belongs
to v in Y . In contrast to the case of popular arborescences, it can be the case that
the same set belongs to two edges in Y , i.e., Yv = Yv′ but v 6= v′. We say that Y is
complete on S ⊆ V , if |{Yv | v ∈ S}| = |S|; this concept will be crucial in the proof of
Theorem 19. By a simple counting argument we obtain that if Y is complete on S,
then v, v′ ∈ S, v 6= v′ implies Yv 6= Yv′ .

Proof of Theorem 19. By Lemma 22, the algorithm returns an arborescence with un-
popularity margin at most ` − 1, where ` is the number of maximal subtrees in B̃.
Let A be an arborescence with minimum unpopularity margin and Y a corresponding
dual certificate.

Take any maximal subtree T of B̃ not containing r. By Observation 24, there
exists some S ⊆ V (T ) with δ−D′(S) = ∅. Below we prove that Y is not complete on
S∗ :=

⋃
X∈S X. As there are `− 1 maximal subtrees of B̃ not containing r, and each

contains a set of nodes on which Y is not complete, we get |Y| ≤ n − (` − 1). This
implies µ(A) ≥ `− 1 by Lemma 10, proving the theorem.

It remains to show that Y is not complete on S∗. Assume for contradiction that Y
contains a set Yx belonging to each x ∈ S∗. Recall that D∗ is the expanded version of
D′. Note that, by the construction of X in the algorithm, a most preferred edge (u, v)
can enter a set X ∈ X only at a candidate entry node. Thus, δ−D∗(S

∗) = ∅ means that
S∗ is not entered by any most preferred edge.

Since A enters S∗ but δ−D∗(S
∗) = ∅, there exists (u, v) ∈ A ∩ δ−D(S∗) which is not

included in D∗.

Claim. Yv ∩ S∗ 6⊆ Xv

Proof. Let X ∈ S be the contracted node entered by (u, v).

Case 1: v /∈ entry(X). Let s ∈ entry(X). Then there exists an s-v-path P in
(X,S(X)); recall that every edge on P is most preferred and dominates all edges
entering X. If s /∈ Yv, then there is an edge (u′, v′) ∈ P entering Yv. If v′ 6= v,
then the most-preferred edge (u′, v′) crosses two sets of Y , a contradiction. If v′ = v,
then (u′, v′) dominates (u, v) but crosses Yv, again a contradiction. We conclude that
s ∈ Yv. However, as v is not in entry(X), by Lemma 14 we know that s /∈ Xv. We
obtain Yv ∩ S∗ 6⊆ Xv.

Case 2: v ∈ entry(X), i.e., X = Xv. Since (u, v) /∈ D∗, there exists an edge
(u′, v) ∈ D∗ which dominates (u, v) and u′ ∈ V \X. Hence, (u′, v) must not enter any
set in Y and we obtain u′ ∈ Yv. Clearly, we get that Yv ∩ S∗ 6⊆ Xv.

Now, we are going to show that A induces a locally popular arborescence on Yv∩S∗,
rooted at v. By the above claim, this contradicts Lemma 23.

Consider a node x ∈ Yv ∩ S∗ \ {v}. If f = (w, x) is a most-preferred edge in x,
then w ∈ Yv ∩ S∗: indeed, f cannot enter S∗ because δ−D∗(S

∗) = ∅, and moreover, f
cannot enter Yv because cA(f) ≤ 1 and thus cannot enter both Yv and Yx (recall that
Y is complete on S∗ which contains x, so Y contains a set Yx corresponding to x). If
x prefers f to A(x), then cA(f) = 0 and thus f cannot enter Yx, implying w ∈ Yx.
However, this contradicts the fact that Y is two-layered: since w ∈ S∗, there exists
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a set Yw ∈ Y corresponding to w, and so w is contained in three sets of Y , Yw, Yx
and Yv. Hence, we obtain that A(x) must be a most-preferred edge for x. Since this
holds for each x ∈ Yv ∩ S∗ \ {v}, A′ := A∩E[Yv ∩ S∗] is an arborescence rooted at v,
containing only most-preferred edges.

It remains to show that Y ′ := {Yv ∩ S∗} ∪ {{u} | u ∈ (Yv ∩ S∗) \ {v}} fulfills all
constraints in LP2 w.r.t. A′ (with cA′(e) = 1 for each e ∈ δ−(v)). Observe that we
need to verify this only for edges that point from Yv \S∗ to Yv ∩S∗, as all other edges
enter the same number of sets in Y ′ as in Y . So let f = (w, x) be such an edge. If
x = v, then f enters only Yv ∩ S∗ from Y ′; by cA′(f) = 1 this satisfies LP2. If x 6= v,
then f enters two sets Yv ∩S∗ and {x} from Y ′. Since δ−D∗(S

∗) = ∅, we know that f is
not a most-preferred edge, so x prefers A′(x) to f , yielding cA′(f) = 2; note that here
we need that �x is a weak ordering. This proves that all edges satisfy the constraints
in LP2, so we can conclude that A′ is indeed locally popular and spans Yv ∩ S∗.

The following theorem shows that Algorithm MinMargin cannot be extended for
the case where each node v has a partial order over δ−(v).

Theorem 25. Given a directed graph where each node has a partial preference order
over its incoming edges and an integer k ≤ n, it is NP-hard to decide if there exists a
branching with unpopularity margin at most k.

Proof. We reduce from 3D-Matching where we are given disjoint sets X, Y, Z of
equal cardinality and T ⊆ X × Y × Z, and we ask whether there exists M ⊆ T with
|M | = |X| such that for distinct (x, y, z), (x′, y′, z′) ∈ M it holds that x 6= x′, y 6= y′

and z 6= z′; such an M is called a 3D-matching. W.l.o.g. we assume that |X| > 3 and
every x ∈ X ∪ Y ∪ Z is in some t ∈ T .

We construct a digraph D = (V ∪{r}, E) together with a partial order �v over the
incoming edges of v for each v ∈ V as follows. For every x ∈ X ∪ Y ∪Z we introduce
a node gadget consisting of a lower node xl and an upper node xu. There exist two
parallel edges, d

(1)
x and d

(2)
x , from xu to xl, and there exist two parallel edges, r

(1)
x and

r
(2)
x , from r to xl. Moreover, the upper node xu has an incoming edge from the upper

node of every other node gagdet, i.e., (x′u, xu) ∈ E for all x′ ∈ X∪Y ∪Z \{x}. Lastly,

there exists an incoming edge from r to the upper node which we call r
(3)
x .

For each t ∈ T we introduce a hyperedge gadget consisting of six edges in D. More
precisely, for each x ∈ t we introduce two parallel edges from xl to xu which we call
t
(1)
x and t

(2)
x . This finishes the definition of D.

Let us now define the preferences {�v| v ∈ V }. A lower node xl has the following
preferences over its incoming edges:

d(1)x � r(1)x , d(2)x � r(2)x ,

and all other pairs are not comparable. Let t = (x, y, z) ∈ T and t̄ := {x, y, z}. The
preferences of an upper node xu are as follows:

(x′u, xu) � r
(3)
x for each x′ ∈ X ∪ Y ∪ Z \ {x},

t
(1)
x � (x′u, xu) for each x′ ∈ X ∪ Y ∪ Z \ t̄,
t
(2)
x � (x′u, xu) for each x′ ∈ t̄ \ {x},
t
(1)
x � r

(3)
x , t

(2)
x � r

(3)
x ,
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and all other pairs are not comparable. See Figure 2 for an illustration.

r

xu

xl

yu

yl

zu

zl

r
(1)
x r

(2)
x

d
(1)
x

d
(2)
x

t
(1)
x

t
(2)
x

Figure 2: Construction within the reduction for Theorem 25. A solid edge of a certain
color dominates the dashed edge(s) of the same color; the figure assumes (x, y, z) ∈ T .

Note that the digraph D has the special property that every node v ∈ V has at
least one incomming edge from r. As a consequence of this structure, any branching
B in D minimizing µ(B) must in fact be an arborescence rooted at r. Moreover, we
can apply Lemma 10 to any given arborescence A in D as usual. In the following
we show that there exists a 3D-matching M ⊆ T with |M | = |X| iff there exists an
r-arborescence in D with unpopularity margin at most 2|X|.

First, let M ⊆ T be a 3D-matching with |M | = |X|. We construct an arborescence
A together with a feasible dual certificate Y with |Y| = 4|X|. By Lemma 10, this
suffices to show that A has unpopularity margin at most 6|X| − 4|X| = 2|X|. We
define

A := {r(1)x | for all x ∈ X ∪ Y ∪ Z} ∪ {t(1)w | for all t ∈M and for all w ∈ t}

and

Y := {{xu} | for all x ∈ X ∪ Y ∪ Z} ∪ {{xu, yu, zu, xl, yl, zl} | for all (x, y, z) ∈M}.

Clearly, A is indeed a r-arborescence. It remains to show that Y is a feasible dual
solution. First consider a node xl for x ∈ X ∪ Y ∪ Z which has four incoming edges.
The edges d

(1)
x and d

(2)
x do not enter any set in Y and hence do not violate any

constraint in the dual LP. Moreover, since node xl is indifferent between r
(1)
x and r

(2)
x ,

we obtain cA(r
(1)
x ) = cA(r

(2)
x ) = 1 and hence, none of the corresponding constraints is

violated.
Now, consider xu for x ∈ X ∪Y ∪Z. Let (x, y, z) be the hyperedge in M containing

x. We obtain that cA((yu, xu)) = cA((zu, xu)) = cA(t
(2)
x ) = 1 while for any other

incoming edge e of xu we get cA(e) = 2. By construction of Y , none of the constraints
is violated. This suffices to show the first direction of the equivalence.

Now, let A be an r-arborescence of unpopularity margin at most 2|X|. Let Y be a
corresponding laminar certificate of size |Y| = 4|X|.
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Our first observation is that xl for any x ∈ X ∪Y ∪Z is included in at most one set
in Y . This can be seen by a simple case distinction over the incoming edge of xl in
A. No matter which of the four incoming edges to xl is selected in A, it always holds
that cA(r

(1)
x ) = 1 or cA(r

(2)
x ) = 1, while both of them enter two sets of Y .

The first observation directly implies that a node gadget can intersect with at
most two sets from Y . Since the number of sets is greater than the number of node
gadgets, there exist node gadgets which intersect with more than one set from Y . Let
x ∈ X ∪Y ∪Z be a node such that the corresponding node gadget intersects with two
sets from Y . In the following we argue about the relation of these sets. Let Y1 and
Y2 be the corresponding sets from Y . We will show that w.l.o.g. Y2 ⊆ Y1, {xu, xl} ⊆
Y1, xu ∈ Y2, xl /∈ Y2.

First, assume for contradiction that Y1 ∩ Y2 = ∅. Then, {r(1)x , r
(2)
x } ∩ A = ∅ since

otherwise cA(d
(1)
x ) = 0 or cA(d

(2)
x ) = 0, however, both of them enter a set from Y .

This implies that {t(1)x , t
(2)
x } ∩ A = ∅ for all t ∈ T such that x ∈ t since otherwise A

would contain a cycle. However, no matter which incoming edge of xu is included,
there exists one edge e pointing from xl to xu such that cA(e) = 0 but e enters one
set from Y , a contradiction. We conclude that Y1 and Y2 need to intersect and since
Y is laminar we can assume w.l.o.g. that Y2 ⊆ Y1. Second, assume for contradiction
that xl /∈ Y1. By the previous argumentation we know that xu can only be entered by
edges pointing from xl to xu, however, these enter two sets from Y , a contradiction.
We conclude that Y2 ⊆ Y1, {xu, xl} ⊆ Y1, xu ∈ Y2, xl /∈ Y2.

We define S := {Y ∈ Y | Y is ⊆-maximal and there exists Y ′ ∈ Y , Y ′ ⊆ Y }.
Elements in S are non-overlapping and by the above observations we know that |S| ≥
|X|. For every Y1 ∈ S we select one representative x(Y1) ∈ X ∪ Y ∪ Z such that
the node gadget of x intersects with Y1 and one other set from Y . Considering the
node gadget of x := x(Y1), we observe that xu can only be entered by edges pointing

from xl to xu. We argue that in particular, xu needs to be entered by t
(1)
x for some

t ∈ T . Assume for contradiction that xu is entered by t
(2)
x for some t ∈ T . Then, there

exist 3|X|−3 edges which are uncomparable with t
(2)
x and hence their tails need to be

included in Y1. Hence, S contains at most 3 sets, a contradiction to the assumption
that |X| > 3. Therefore, xu is entered by t

(1)
x for some t = (x, y, z) ∈ T . Then, we

know that {xu, yu, zu} ⊆ Y1 since cA((yu, xu)) = cA((zu, xu)) = 1. We conclude that

neither y nor z are included in any other set of S. Hence, M := {t ∈ T | t(1)x(Y1) ∈
A, Y1 ∈ S} is a 3D-matching of size |X|.

C Branchings with low unpopularity factor

Recall the definition of unpopularity factor from Section 1. As done in the previous sec-
tion, instead of studying branchings within the digraph G, we look at r-arborescences
within the digraph D. The unpopularity factor of any branching in G is the same as
the unpopularity factor of the corresponding arborescence in D. Given any arbores-
cence A and value t, there is a simple method to verify if u(A) ≤ t or not. This is
totally analogous to our method from Section 2 to verify popularity and it involves
computing a min-cost arborescence in D with the following edge costs. For e = (u, v)
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in D, define:

cA(e) :=


0 if e �v A(v)

1 if e ∼v A(v)

t+ 1 if e ≺v A(v)

Lemma 26. Arborescence A satisfies u(A) ≤ t if and only if A is a min-cost arbores-
cence in D with edge costs given by cA defined above.

Proof. For any arborescence A′, we now have cA(A′) = t ·φ(A,A′)−φ(A′, A) +n. We
also have cA(A) = n. Suppose A is a min-cost arborescence in D. Then cA(A′) ≥ n;
so for any arborescence A′ such that φ(A′, A) > 0, we have:

t · φ(A,A′)− φ(A′, A) ≥ 0, so
φ(A′, A)

φ(A,A′)
≤ t, i.e., u(A) ≤ t.

Conversely, if u(A) ≤ t, then t · φ(A,A′) ≥ φ(A′, A) for all arborescences A′. Thus
cA(A′) = t ·φ(A,A′)−φ(A′, A)+n ≥ n. Since cA(A) = n, A is a min-cost arborescence
in D.

Lemma 27 follows from Lemma 26 and LP-duality.

Lemma 27. Arborescence A satisfies u(A) ≤ t if and only if there exists a dual
feasible solution y (see LP2 where cA(e) is as defined above) with

∑
X yX = n.

As before, yX ∈ {0, 1} for every non-empty X ⊆ V—thus we can identify y with
the corresponding set family Fy = {X ⊆ V : yX > 0}. Moreover, the family Fy has
at most t+ 1 levels now, i.e., if X1 ⊂ · · · ⊂ Xk is a chain of sets in Fy, then k ≤ t+ 1.

Proof of Theorem 5. We now assume node preferences are strict (thus we may
assume the graph to be simple, and nodes have preferences over their in-neighbors)
and modify our algorithm from Section 3 so that the new algorithm always computes
an arborescence A in D = (V ∪ {r}, E) such that u(A) ≤ blog nc.

1. Initially all nodes in V are active. Set X0
v = {v} for all v ∈ V .

2. Initialize the current edge set E ′ = ∅; let i = 1.

3. Let E ′ = E ′ ∪ {(u, v) : v ∈ V is active and u is v’s most preferred in-neighbor
such that u /∈ X i−1

v }.
4. For every active node v do:

• let X i
v = set of nodes reachable from v using edges in E ′.

5. Let X = {X i
v is ⊆ -maximal in X i} where X i = {X i

v : v is active}.
{note that X i is a laminar family}

6. For each X ∈ X do:

• select any active node v such that X i
v = X;
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• deactivate all u ∈ X \ {v}. {now v is the only active node in X}
• if v is reachable from r using edges in E ′, then deactivate v.

{this means all nodes in X are reachable from r}

7. If there exists any active node, then set i = i+ 1 and go to step 3 above.

8. Compute an arborescence A in (V ∪ {r}, E ′) and return A.

We reach step 8 only when there is no active node. This means when we reach
step 8, every node is reachable from r using the edges in E ′. Thus there exists an
arborescence A in (V ∪ {r}, E ′). Our task now is to bound its unpopularity factor.

Lemma 28. The while-loop runs for at most blog nc+ 1 iterations.

Proof. Every node v that is active at the start of some iteration either becomes reach-
able from r in this iteration or it forms a weakly connected component that contains
two or more active nodes. At the end of each iteration, there is at most one active
node in each weakly connected component.

So if k is the number of active nodes at the start of some iteration then the number
of active nodes at the end of that iteration is at most k/2. Thus the number of active
nodes at the end of the i-th iteration of the while-loop is at most n/2i. Hence the
while-loop can run for at most blog nc+ 1 iterations.

Lemma 29. If the while-loop runs for t+ 1 iterations then u(A) ≤ t.

Proof. Let Y = {X i−1
v : v ∈ V and v got deactivated in the i-th iteration}. That is,

yX = 1 if X ∈ Y and yX = 0 otherwise. For each node v, there is a corresponding set
X i−1
v in Y—note that v is the entry-point for this set. We have

∑
X⊆V yX = n.

Since our algorithm runs for t+1 iterations, Y has at most t+1 levels. For any node
v, our algorithm ensures that the edge (u∗, v) ∈ A is the most preferred edge entering
v with its tail outside X i−1

v . So every other edge e = (u, v) with u /∈ X i−1
v is ranked

worse than (u∗, v) ∈ A, thus cA(e) = t+ 1. Hence we have
∑

X:δ−(X)3e yX ≤ cA(e) for

every edge e. This proves that y is a feasible dual solution for A, so u(A) ≤ t.

Combining Lemmas 28 and 29, the first part of Theorem 5 follows.

A tight example. We now describe an instance G = (V,E) on n nodes with
strict preferences where every branching has unpopularity factor at least blog nc. For
convenience, let n = 2k for some integer k. Let V = {v0, . . . , vn−1}. Every node will
have in-degree k = log n. This instance is a generalization of the instance on 4 vertices
a, b, c, d given in Section 1.

• For 0 ≤ i ≤ n/2− 1, the nodes v2i and v2i+1 are each other’s top in-neighbors.
Thus v0, v1 are each other’s top choice in-neighbors, v2, v3 are each other’s top
choice in-neighbors, and so on.

• The nodes v0, v2 are each other’s second choice in-neighbors, similarly, v1, v3 are
each other’s second choice in-neighbors, and so on. More generally, for any i,
if i ∈ {4j, . . . , 4j + 3}, then the node v`, where ` = 4j + (i + 2 mod 4), is vi’s
second choice in-neighbor.
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• For any i and any t ∈ {1, . . . , k}, if i ∈ {j2t, . . . , (j+ 1)2t− 1} then the node v`,
where ` = j2t + (i+ 2t−1 mod 2t), is vi’s t-th choice in-neighbor.

For example, v0’s preference order is: v1 � v2 � v4 � v8 � · · · � vn/2. The
other preference orders are analogous. As a concrete example, let n = 8. So V =
{v0, v1, . . . , v7}. The preference orders of all the nodes over their in-neighbors are
given below.

v0 : v1 � v2 � v4 v1 : v0 � v3 � v5

v2 : v3 � v0 � v6 v3 : v2 � v1 � v7

v4 : v5 � v6 � v0 v5 : v4 � v7 � v1

v6 : v7 � v4 � v2 v7 : v6 � v5 � v3.

For any branching in the above instance (let us call it Gk) on 2k nodes, we claim its
unpopularity factor is at least k. We will prove this claim by induction on k. The
base case, i.e., k = 1, is trivial. So let us assume that we have u(B̃) ≥ i for any
branching B̃ in Gi.

Consider Gi+1. Note that v2j and v2j+1 are each other’s top choice in-neighbors
for 0 ≤ j ≤ 2i − 1. Let B be any branching in Gi+1. Suppose it is the case that in
B, for some j: neither v2j is v2j+1’s in-neighbor nor v2j+1 is v2j’s in-neighbor. Then
u(B) = ∞, because by making v2j the in-neighbor of v2j+1, no node is worse-off and
v2j is better-off. We assume u(B) < ∞. So it is enough to restrict our attention to
the case where for each j we have in B:

(∗) either v2j is v2j+1’s in-neighbor or v2j+1 is v2j’s in-neighbor.

For each j ∈ {0, . . . , 2i − 1}, contract the set {v2j, v2j+1} into a single node in the
graph Gi+1. The new graph (call it G′i) is on 2i nodes and it is exactly the same as
Gi except that there are 2 parallel edges between every adjacent pair of nodes now –
both these edges have the same rank.

Perform the same contraction step on the branching B as well. By (∗), it follows
that the contracted B (call it B′) is a branching such that B′ uses at most 1 edge
in any pair of parallel edges in G′i. Thus B′ is a branching in Gi and we can use
induction hypothesis to conclude that u(B′) ≥ i.

Claim. There is a branching A′ in G′i such that φ(A′, B′) ≥ i and φ(B′, A′) = 1.
Moreover, the lone vertex that prefers B′ to A′ is a root in A′.

We will first assume the above claim and finish our proof on u(B). Then we will
prove this claim. Opening up the size-2 supernodes in B′ will create B: let us run the
same “opening up” step on A′ to create a branching A in Gi+1. So φ(A,B) ≥ i and
φ(B,A) = 1. We will now modify A to A∗ so that φ(A∗, B) ≥ i+ 1 and φ(B,A∗) = 1.

Let v2j be the lone vertex that prefers B to A. By the “opening up” step in B,
v2j+1 has v2j as its in-neighbor. The branching A∗ will affect only the 2 nodes v2j and
v2j+1 in A. Every other node will have the same in-neighbor in A∗ as in A. The above
claim tells us that v2j is a root in A. Make v2j+1 a root in A∗ and v2j’s in-neighbor
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will be v2j+1. The node v2j was the only node that preferred B to A and now v2j
prefers A∗ to B. However there is one node that prefers B to A∗: this is v2j+1. Recall
that v2j+1’s in-neighbor in B, just as in A, is its top-choice neighbor v2j while v2j+1

is a root in A∗. Thus φ(A∗, B) ≥ i+ 1 and φ(B,A∗) = 1.

Proof of Claim. Let Ã be a branching that maximizes φ(Ã, B′)/φ(B′, Ã). Let
{u1, . . . , uj} be the nodes that prefer B′ to Ã. There is no loss in assuming that
u1, . . . , uj are root nodes in Ã. For each i, let ni be the number of nodes in the
arborescence rooted at ui in Ã that have different in-neighbors in Ã and B′ – note
that each of these nodes prefers Ã to B′ (since the ones who prefer B′ to Ã are root
nodes in Ã).

Let nt = max{ni : 1 ≤ i ≤ j}. Let Ãt be the maximal sub-arborescence of Ã rooted
at ut, and let X be those nt nodes in Ãt that prefer Ã to B′. We construct a branching
A′. Let us define an arborescence A′t rooted at ut by modifying Ãt as follows: for each
w /∈ Ãt that is the descendant of some v ∈ Ãt in B′, we add B′(w). We define A′ as
the branching that contains A′t and for which A′(v) = B′(v) for each v /∈ A′t. So each
node in Ãt has the same in-neighbor in A′ as in B′, except for the nodes in X ∪ {ut}.

The nt nodes in X prefer A′ to B′, and ut prefers B′ to A′, so we have φ(A′,B′)
φ(B′,A′)

= nt.

Moreover, by u(B) <∞ we also have u(B′) <∞, which implies that every node that
prefers Ã to B′ is contained in a sub-arborescence of Ã rooted at one of the nodes
u1, . . . , uj. Therefore we have φ(Ã, B′) =

∑j
i=1 ni, which yields

φ(A′, B′)

φ(B′, A′)
= nt ≥

1

j

j∑
i=1

ni =
φ(Ã, B′)

φ(B′, Ã)
.

Thus the claim follows.

D Hardness Results: Proof of Theorem 6

Theorem 6 (?). Given a digraph G where each node has a strict ranking over its
incoming edges, it is NP-hard to decide if there exists

(a) a popular branching in G where each node has at most 9 descendants;

(b) a popular branching in G with maximum out-degree at most 2.

In fact, we will show that Theorem 6 holds for simple graphs, therefore in this section
we will assume that nodes have preferences over their in-neighbors. Nevertheless, we
will say that an edge (u, v) is a top-choice edge, if u is the best choice for v. The
following lemma will be useful to prove Theorem 6.

Lemma 30. Let D be a digraph where each node has a strict ranking over its in-
neighbors, and let A be a popular arborescence in D with dual certificate Y. If C is a
directed cycle consisting of only top-choice edges, then A enters C exactly once. Let a
be the unique edge in A ∩ δ−(C) (guaranteed by Lemma 10), and let Ya be the unique
set in Y entered by a. Then C ⊆ Ya.
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Proof. Observe that cA(e) ≤ 1 for any edge e in C, as e is a top-choice edge. Let
c1, . . . , ck be the nodes of C in this order, with a pointing to ck. Since ck prefers ck−1
in C to the tail of a, we get cA((ck−1, ck)) = 0 and thus ck−1 ∈ Ya by the constraints
of LP2. Supposing ck−2 /∈ Ya we get that (ck−2, ck−1) /∈ A because exactly one edge of
A enters Ya, by Lemma 10. Using that ck−1 has strict linear preferences and prefers
ck−2 most, we obtain cA((ck−2, ck−1)) = 0, but this contradicts the constraints of LP2.
Hence we get ck−2 ∈ Ya as well. Repeatedly applying this argument, we get that
C ⊆ Ya.

Proof of Theorem 6, part (a). The reduction is from the NP-hard problem 3-sat
where we are given a 3-CNF formula ϕ =

∧m
j=1 cj over variables x1, . . . , xn with each

clause cj containing at most 3 literals; the task is to decide whether ϕ can be satisfied.
It is well known that the special case where each variable occurs at most 3 times is
NP-hard as well, so we assume this holds for ϕ.

We define a digraph Dϕ as follows. For each variable xi we define a variable-gadget
consisting of a directed 9-cycle Ai on nodes a1i , . . . , a

9
i , together with nodes ti and fi,

both having in-degree 0 in Dϕ. The top choice for any node aki on Ai is its in-neighbor
ak−1i on Ai, its second choice is ti if k = 1 and fi otherwise.5 Next, for each clause
cj we define a clause-gadget as a directed cycle Cj on nodes c1j , . . . , c

h
j where h is the

number of literals in cj; we may assume h ∈ {2, 3}. The top choice for any node ckj
on Cj is its in-neighbor on Cj. The second choice of ckj depends on the k-th literal `kj
in cj: it is ti if `kj = xi, and it is fi if `kj = xi. We claim that the digraph Dϕ defined
this way admits a popular branching where every node has at most 9 descendants if
and only if ϕ is satisfiable.

First let us suppose that we have a satisfying truth assignment for ϕ; we create a
branching B. If variable xi is true, then we add to B the edge (fi, a

2
i ) and all edges

of Ai except for (a1i , a
2
i ); if xi is false we add to B the edge (ti, a

1
i ) and all edges of Ai

except for (a9i , a
1
i ). For each j ∈ [m] let us choose a literal `kj in clause cj that is true

according to our truth assignment. If `kj = xi, then we let B contain the edge (ti, c
k
j );

if `kj = xi, then we let B contain the edge (fi, c
k
j ). In either case, we also add to B all

edges of Cj but the one going into ckj ; this finishes the definition of B. Observe that if
xi is true, then the descendants of fi in B are the nodes of Ai, and the descendants of
ti are among the nodes of those cycles Cj where xi is a literal of Cj; the case when xi
is false is analogous. Hence, each node in B has at most 9 descendants as promised.

Let us prove that B is popular. To this end, we define the graph D′ϕ by adding
a new dummy root r0 to Dϕ and making it the worst choice for every node in Dϕ;
moreover, we define an arborescence A in D′ϕ by adding an edge from r0 to each root
of B. Then B is a popular branching in Dϕ if and only if A is a popular arborescence
in D′ϕ. To show the latter, we define a dual certificate Y that contains the set V (Ai)
for each i ∈ [n], the set V (Cj) for each j ∈ [m], and a singleton for each node except
for those at which an edge of B enters some cycle Ai or Cj. It is straightforward
to check that Y is indeed a dual solution proving the popularity of A in D′ϕ, and
therefore of B in Dϕ.

5Throughout the rest of the proof, we treat superscripts in a circular way, that is, modulo length
of the cycle in question.
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Let us now suppose that we have a popular branching B with each node having at
most 9 descendants; we are going to define a satisfying truth assignment for ϕ. Note
that the only possible roots in B are the nodes in R =

⋃
i∈[n]{ti, fi}, since any other

node v has an in-neighbor in R (assuming v to be a root in B, adding an edge from R
to v results in a branching more popular than B). Let A be the popular arborescence
corresponding to B, and let Y be a dual certificate proving the popularity of A.

Let ei be the edge entering Ai in B, and let Yei be the unique set in Y entered by
ei. Similarly, let e′j be the edge entering Cj in B, and let Ye′j be the unique set in Y
entered by e′j. By Lemma 30, we know that Ai ⊆ Yei and Cj ⊆ Ye′j .

Let us define a truth assignment by setting xi true if and only if the head of ei is fi.
Note that all 9 nodes of Ai are descendants of the head of ei. Hence, the head of an
edge e′j can only be fi if xi is false, and similarly, it can only be ti if xi is true. Thus,
any cycle Cj must be the descendant of a node representing a true literal (where ti
and fi represent xi and xi, respectively). By the construction of Dϕ, we have that
any clause contains a literal set to true by the truth assignment, so ϕ is satisfiable,
proving the theorem.

Proof of Theorem 6, part (b). We give a reduction from the variant of the
Directed Hamiltonian Path problem where the input digraph has a root r with
in-degree 0 that is the parent of all other nodes; it is easy to see that this version is
also NP-hard. Let G = (V ∪ {r}, E) be our given input. For each node we fix an
arbitrary ordering on its in-neighbors, and we denote by n(v, i) the i-th in-neighbor
of a node v ∈ V .

We are going to construct a digraph D that consists of a node gadget Gv for each
v ∈ V , together with extra nodes r (having in-degree 0) and r′. The gadget Gv consists
of a core cycle Cv together with pendant cycles Pv,1, . . . , Pv,dv , each of length dv, where
dv denotes the in-degree of v in G. The nodes in the core cycle are c1v, . . . , c

dv
v , those in

the i-th pendant cycle Pv,i are p1v,i, . . . , p
dv
v,i; we treat superscripts modulo dv. The top

choice for any node on these cycles is its in-neighbor within the cycle. The preferences
are as follows, where for simplicity we define c1r := r.

cjv : cj−1v � c1n(v,j) � c1n(v,j+1) � · · · � c1n(v,dv) � c1n(v,1) � · · · � c1n(v,j−1);

pjv,i : pv,i−1 � cjv;

r′ : r.

This finishes the definition of D.
We claim that G has a Hamiltonian path if and only if D has a popular branching

with out-degree at most 2.
For the first direction, suppose that D has such a branching B. Clearly, r is a root

of B, since it has in-degree 0. We claim that B is an arborescence with root r. First
observe that any pendant cycle must be entered by A once, as otherwise there exists
a root of B in the cycle, and adding the second-choice edge of this root node to B
(coming form a core cycle unreachable from the pendant cycle) we obtain a branching
B′ that is more popular than B. Since (r, v) ∈ E for each v ∈ V , each node cjv in a
core cycle has an incoming edge from r, so such a node cannot be a root in B either,
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proving that B is indeed an arborescence. In particular, δ−(Cv) ∩ B 6= ∅ for each
v ∈ V .

By Lemma 30 we know that B enters any core cycle Cv exactly once, and therefore
|B ∩ Cv| = dv − 1. In addition, there are exactly dv edges of B pointing from Cv to
the pendant cycles Pv,j, j ∈ [dv], because B is an arborescence. This implies that
there can be at most 1 edge of B leaving Cv and pointing to another core cycle Cu,
as otherwise the dv nodes in Cv would together have more than 2dv outgoing edges in
B, yielding that at least one of them would have out-degree 3 in B, a contradiction.

Let us now define a set H of edges in G as follows: for each u, v ∈ V , we add (u, v)
to H if and only if there is an edge from Cu to Cv in B. Furthermore, we add the
edge (r, v) to H if and only if there is an edge from r to Cv in B; note that there
can be at most one such edge, because (r, r′) ∈ B and B has out-degree at most 2.
Observe that by the construction of D, we have H ⊆ E. Recall that by the previous
paragraph, |δ+(v) ∩H| ≤ 1 for each v ∈ V ∪ {r}, and that |δ−(v) ∩H| ≥ 1 for each
v ∈ V . Moreover, H is acyclic, since any cycle in H would imply the existence of a
cycle in B as well. Therefore, H must be a Hamiltonian path.

For the other direction, let H be a Hamiltonian path in G, starting from r. We
define a popular branching B that happens to be an arborescence. First, for each
(u, v) ∈ H we add (c1u, c

j
v) to B where u is the j-th in-neighbor of v, and we also add

all edges of Cv to B except for the one pointing to cjv; note that here we cover the
case where u = r as well. Notice that for each v ∈ V there are at most dv edges of B
whose tail is in Cv. Hence, there exist dv edges in δ+(Cv) whose addition to B does
not violate our bound on the out-degree and such that each of these edges points to
a distinct pendant cycle Pv,j (note that any pendant cycle can be connected to any
node on Cv). Let us add these edges to B as well, together with all edges in Pv,j
except for the one whose head already has an incoming edge in B, for each j ∈ [dv].
Finally, we add the edge (r, r′) to B. It is easy to verify that the edge set B obtained
this way is indeed an arborescence with root r, and has out-degree at most 2.

It remains to show that B is popular. To this end, we define the graph D′ by
adding a new dummy root r0 to D and making it the worst choice for every node in
D; moreover, we define an arborescence A in D′ by adding the edge (r0, r) to B. Then
B is a popular branching in D if and only if A is a popular arborescence in D′. To
prove the latter, we provide a dual certificate Y as follows. For each core or pendant
cycle C, we put the set V (C) into Y , together with a singleton {v} for each v ∈ V (C)
except for the node at which B enters C. We also add singletons {r′} and {r}. The
set system Y so obtained contains exactly |V (D)| sets, so it remains to show that it
fulfills the conditions of LP2. First note that any edge may enter at most two sets
from Y . Note also that if v is a node such that B enters a core or pendant cycle C
at v, then δ−(v) ∩ B is the second choice for v (and its best choice is within C, the
set of Y corresponding to v); otherwise δ−(v)∩B is the best choice for v. From these
facts it is straightforward to verify the constraints of LP2, so the popularity of B and
hence the theorem follows.

EGRES Technical Report No. 2019-15



Section E. Popular mixed branchings 30

E Popular mixed branchings

A mixed branching P is a probability distribution (or lottery) over branchings in
G, i.e., P = {(B1, p1) . . . , (Bk, pk)}, where Bi is a branching in G for each i and∑k

i=1 pi = 1, pi ≥ 0 for all i. Popular mixed matchings were studied in [27] where it
was shown that popular mixed matchings always exist and can be efficiently computed.
Using the proof and method in [27], we now show that popular mixed branchings also
always exist and such a mixed branching can be computed in polynomial time.

The function φ(B,B′) that allowed us to compare two branchings B,B′ generalizes
to mixed branchings in a natural way. For mixed branchings P = {(B1, p1) . . . , (Bk, pk)}
and Q = {(B′1, q1) . . . , (B′`, q`)}, the function φ(P,Q) is the expected number of nodes
that prefer B to B′ where B and B′ are drawn from the probability distributions P
and Q respectively; in other words,

φ(P,Q) =
k∑
i=1

l∑
j=1

pi qj φ(Bi, B
′
j).

Definition 31. A mixed branching P is popular if φ(P,Q) ≥ φ(Q,P ) for all mixed
branchings Q.

Consider the instance on 4 nodes a, b, c, d described in Section 1 that did not admit
any popular branching. Let B1 = {(a, b), (b, d), (d, c)}, B2 = {(b, a), (a, c), (c, d)},
B3 = {(c, d), (d, b), (b, a)}, and B4 = {(d, c), (c, a), (a, b)}. It can be verified that the
mixed matching P = {(B1, 1/4), (B2, 1/4), (B3, 1/4), (B4, 1/4)} is popular.

Proposition 32. Every instance G admits a popular mixed branching.

The proof of the above proposition is the same as the one given in [27] for popular
mixed matchings. Consider a two-player zero-sum game where the rows and columns
of the payoff matrix M are indexed by all branchings B1, . . . , BN in G. The (i, j)-th
entry of the matrix M is ∆(Bi, Bj) = φ(Bi, Bj)− φ(Bj, Bi). A mixed strategy of the
row player is a probability distribution 〈p1, . . . , pN〉 over the rows of M ; similarly, a
mixed strategy of the column player is a probability distribution 〈q1, . . . , qN〉 over the
columns of M .

The row player seeks to find a mixed branching P that maximizes minQ ∆(P,Q).
The column player seeks to find a mixed branching Q that minimizes maxP ∆(P,Q).
We have:

0 ≤ min
Q

max
P

∆(P,Q) = max
P

min
Q

∆(P,Q) ≤ 0,

where the first inequality follows by taking P = Q, the last inequality follows by
taking Q = P , and the (middle) equality follows from Von Neumann’s minimax
theorem. Thus maxP minQ ∆(P,Q) = 0, i.e., there exists a probability distribution P
over branchings such that ∆(P,Q) ≥ 0 for all mixed branchings Q. In other words,
P is a popular mixed branching.
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Computing a popular mixed branching. Since branchings in G and r-arbor-
escences in D = (V ∪ {r}, E) are equivalent with respect to popularity, we will work
in the graph D now. Analogous to [27], instead of mixed arborescences, it will be
more convenient to deal with fractional arborescences.

A fractional arborescence x is a point in the arborescence polytope A of D, i.e., x is
a point that satisfies constraints (1)-(2). So x is a convex combination of arborescences
in D, i.e., it is a mixed arborescence {(A1, α1) . . . , (Ak, αk)} where x =

∑
j αjIAj

(note
that there may be multiple ways of expressing x as a mixed arborescence).

Conversely, every mixed arborescence P = {(A′1, p1) . . . , (A′t, pt)} maps to a frac-
tional arborescence

∑
k pkIA′k , where IA′k is the incidence vector of arborescence A′k.

Thus there is a many-to-one mapping between mixed arborescences and fractional
arborescences. Given a fractional arborescence x, we can efficiently find an equivalent
mixed arborescence whose support is at most m using Carathéodory’s theorem.

For any two fractional arborescences x, y, define ∆(x, y) as follows:

∆(x, y) =
∑
u∈V

∑
e∈δ−(u)
e′∈δ−(u)

xe ye′ voteu(e, e
′),

where voteu(e, e
′) is 1, 0, -1 corresponding to e �u e′, e ∼u e′, and e ≺u e′, respectively.

Let P,Q be two mixed arborescences and let x, y be their corresponding fractional
arborescences. It is easy to show that ∆(P,Q) = ∆(x, y).

A popular fractional arborescence x is popular if ∆(x, y) ≥ 0 for all fractional
arborescences y. It follows from Proposition 32 that popular fractional arborescences
always exist inD. The following linear program finds a popular fractional arborescence
x.

minimize 0 (LP3)

subject to ∆(x,A) ≥ 0 ∀ arborescences A in D

x ∈ A

The feasible region of LP3 is the set of fractional arborescences that do not lose to
any integral arborescence. This immediately implies that such a fractional arbores-
cence is a popular fractional arborescence.

There are 2 sets of exponentially many constraints in LP3. Both sets of constraints
admit efficient separation oracles: to decide if x ∈ A or not, a min r-cut needs to be
computed in D with edge capacities given by x. If this cut (S ∪ {r}, V \ S) has value
less than 1, then the set V \ S forms a violating constraint w.r.t. (1); else x ∈ A.

To decide if ∆(x,A) ≥ 0 for all arborescences A, we compute a min-cost arbores-
cence in D with the following edge costs:

cx(e) =
∑
e′�ue

xe′ −
∑
e′≺ue

xe′ ∀e ∈ E.

It is simple to check that for any arborescence A, we have cx(A) = ∆(x,A). Thus x
is unpopular if and only if there is an arborescence A with cx(A) < 0.
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Since a min-cost arborescence can be computed in polynomial time [13, 28], we
can efficiently find a violating constraint ∆(x,A) < 0 if x is unpopular. Thus we can
compute a popular mixed arborescence in polynomial time using the ellipsoid method.
Hence we have shown the following theorem.

Theorem 33. A popular mixed branching in a digraph G where every node has prefer-
ences in arbitrary partial order over its incoming edges can be computed in polynomial
time.
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