
Homework 1
Out: August 27, 2007 In: September 10, 2007

1. (Simple quantum circuits.) In this exercise we warm up with some simple quantum
circuits.

(a) What do the following quantum circuits do?

H

H

H

H

(b) Let X,Y, Z be the single qubit Pauli matrices, H be the single qubit Hadamard matrix
and P be the single qubit phase gate. Observe that HZH = X and P †Y P = X
(these identities will be important for error correction later on). Using these identities,
implement controlled-Y and controlled-Z in terms of CNOT and single qubit gates.

2. (Exponential of a matrix.) Let A be an n × n complex matrix. Recall the definition of
eA := 11 + A

1! + A2

2! + · · · and the spectral norm ‖A‖ := maxv:‖v‖=1 ‖Av‖.

(a) Show that the Cauchy tail An

n! + · · · + Am

m! , m > n, m,n integers approaches the zero
matrix as n → ∞. One way to show this will be to first show that ‖B‖ → 0 implies
B → 0 in the Frobenius distance for a matrix B, then show that the spectral norm
of the Cauchy tail approaches zero. Use the fact that over complex numbers Cauchy
convergence implies convergence to conclude that the series for eA converges for any
matrix A.

(b) Prove the following third-order Trotter formula: If ‖A‖+ ‖B‖ ≤ δ ≤ 1, then

‖eA+B − eB/2eAeB/2‖ ≤ 3δ3.

You may use the inequalities ex − 1− x− x2

2 ≤
x3

3 , ex − 1− x ≤ x2 and ex − 1 ≤ 2x for
0 ≤ x ≤ 1 if you wish.

(c) If we use the third-order Trotter formula for the universality construction, what size of
a circuit will we get if we want to approximate a 2n × 2n unitary U to within a spectral
distance of ε?

3. (Schrödinger equation and unitary evolution.) Schrödinger equation describes the
dynamics of an isolated quantum system in terms of a time-evolving Hermitian matrix called
the Hamiltonian. For simplicity, assume that our quantum system has a finite dimensional
Hilbert space. If |ψ(t)〉, H(t) are the state vector and Hamiltonian of the system at time t,
then Schrödinger equation says that

d

dt
|ψ(t)〉 = −iH(t)|ψ(t)〉.



(a) Show that the time evolution is linear, that is, there is a time-evolving matrix M(t) such
that |ψ(t)〉 = M(t)|ψ(0)〉. You may want to use the existence and uniqueness theorem
for ordinary first order differential equations.

(b) A naive guess for M(t) would be M(t) = exp(−i
∫ t
0 H(x)dx). Argue that this is wrong

in general.

(c) Show that, nevertheless, M(t) is a unitary matrix. One way to show this is to prove
that for any two initial state vectors |ψ(0)〉, |φ(0)〉, 〈ψ(t)|φ(t)〉 = 〈ψ(0)|φ(0)〉 as can be
seen by differentiating the left hand side with respect to t.

(d) Show that if the time evolution operator M(t) of a quantum system is unitary, then its
state vector must satisfy the Schrödinger equation for some Hamiltonian H(t).

4. (Goldreich-Levin problem.) Let a ∈ {0, 1}n. Suppose we have a unitary oracle Oa on
n+ 1 qubits behaving as follows:

|x〉|b〉 7→ |x〉|b⊕ a · x〉,

where x ∈ {0, 1}n, b ∈ {0, 1}. Intuitively, only the oracle knows a and he reveals information
about a in the above fashion. Oracles like these are an important theoretical tool in cryptog-
raphy. The naive classical algorithm discovers a by querying Oa with the n standard basis
vectors |i〉, i = 1, . . . , n. It turns out that any classical algorithm requires Ω(n) queries to Oa

in order to learn a with high probability. Show that there is a quantum algorithm that learns
a exactly, making only one query to Oa.

5. (Universal classical reversible computation.) In this exercise, we shall see why single
and two bit classical reversible gates cannot implement all functions x 7→ f(x), even with
work bits and allowing garbage. We shall need the concept of an affine function on the vector
space Fn

2 , where F2 is the field of integers modulo 2. An affine function is a map from Fn
2 to

Fn
2 of the form y 7→ Ay + b, where A is an n × n matrix over F2 and b, y are n × 1 vectors

over F2.

(a) Show that one and two-bit classical reversible gates are invertible affine functions on F1

and F2 respectively.

(b) Show that a circuit on n bits built out of one and two-bit classical reversible gates
implements an invertible affine function on Fn

2 .

(c) Show that, in fact, all invertible affine functions on Fn
2 can be implemented by circuits

built out of NOT and CNOT gates.

(d) Show that the Toffoli gate cannot be realised by a circuit composed of one and two-bit
classical reversible gates, even with work bits and allowing garbage.


