Homework 2
Out: September 10, 2007 In: October 1, 2007

1. (A non-abelian hidden subgroup problem) Some hidden subgroup problems (HSPs) in
non-abelian groups G can be efficiently reduced to HSPs in abelian groups, giving efficient
quantum algorithms for HSP in G. In this exercise, we shall see one such example. For r > 2,
consider the non-abelian group G with two generators x, y defined as follows:

T r—1
G:=(z,y:2¥ =y’ =1lyr =22 Tly).

Assume that the elements of G are encoded by tuples (i,7), 0 <1i < 2", 7 =0, 1, where (4, 7)
denotes the group element z’y’. In the jargon of group theory, G is a particular kind of a
semidirect product Zor X Zy. Define Gy := (x). Suppose f : G — S is a function hiding a
subgroup H < G. Define Hy := H N Gy. We shall now see how one can find H efficiently by
a quantum algorithm.

(a) Show that Hp can be found efficiently by a quantum algorithm.
(b) Prove that Hj is a normal subgroup of G and H/Hj is either trivial or has order two.

(¢) Suppose Hy = (z2") for some 0 < k < r. Show that G/Hy is an abelian group isomorphic
to Zgr X Zy. Hence, show that H can be found efficiently by a quantum algorithm using
the HSP in Z,: X Zs as a subroutine.

(d) Show that the Hy = {1} = (2?") case can be taken care of separately.

2. (Finding the structure of a finite abelian group) In this exercise, we shall see that
we can find a decomposition of a finite abelian group into a direct product of cyclic groups
efficiently by using a quantum algorithm. A (not necessarily abelian) group G is given via
a black box, that is, the elements of G are represented by elements of {0,1}" for some n;
thus, |C¥ | < 2" There may be bit strings that do not correspond to any group element.
We assume that elements of G are uniquely encoded by bit strings and the identity element
of G is represented by the all zeroes string. We are given a black box or oracle M for
multiplying two group elements: M : |x)|y)|s)|b1)|b2) — |2)|y)|s ® (z - y))|b1 © c)|b2 @ ¢y),
where z,y,s € {0,1}", b1,by € {0,1}, - y is the bit string representing the product of =
and y if both are valid group elements and the all zeroes string otherwise, and c,, ¢, are bits
which are one iff z, y are invalid group elements.

(a) Show that there is a quantum algorithm with running time poly(n) to find the inverse
of a group element x, that is, we can implement the following unitary operator cleanly:

T : |z)|s)[b) = |a)]s @ 27 )b @ co).

You may want to use ideas from solving HSP in Z that we saw in class, as well as clean
reversible classical computation.

(b) Now suppose we are given valid group elements z1,...,z; from G such that G :=
(x1,..., k) is abelian (observe that this is easy to check). Consider the surjective group
homomorphism & : Z*¥ — G defined by h(z1,...,2;) = ]! ---a*. Show how to find
the kernel K of h, that is, Z € Z* such that h(Z) = 1¢ in time poly(n, k) by a quantum
algorithm. You may want to use ideas about HSP in Z and in finite abelian groups for
this part. Thus, G = ZF /K.



(c) Show that every m x k integer matrix can be put into a diagonal form (called Smith
normal form) by elementary row and column operations involving only integers. This
can be done by a Gaussian elimination style algorithm together with Euclid’s GCD
algorithm. Argue that this (classical deterministic) procedure takes poly(n,m, k) time,
where n is an upper bound on the bit sizes of the integer entries of the matrix.

(d) Consider the m x k integer matrix K whose rows are the generators of K obtained above
(there are m = poly(n, k) of them). Argue that elementary row operations on K continue
to give generating sets for K, and elementary column operations change bases for Z*
give g g y g
(initially, we start off with the standard Dirac point mass basis for ZF).

(e) Explain how a cyclic decomposition of G' can be obtained in deterministic poly(n,m, k)
time from a Smith normal form of K.

3. (Finding non-strict periods in finite abelian groups) In this exercise, we shall see that
the standard quantum algorithm to find a strict period, that is, a hidden subgroup, in a
finite abelian group also works in time polylog|G| if the period is only ‘approximately strict’.
In other words, the standard Fourier sampling based algorithm has a ‘robustness property’
about strict period finding. Fix § > 0. Suppose f : G — S is a function with period subgroup
F < @ such that any function h : G — S that has a period group H > F differs from f in at
least §|G| elements of G. The intuition behind this definition is that if F' were a strict period
for f, one would have to corrupt f in at least half the elements of G in order to increase
its period group; hence viewed this way, our condition on f is an approximation of strict
periodicity. Also, it is a necessary condition because if f is e-close in Hamming distance to
an H-periodic function h, then the oracle for f is close to the oracle for A in spectral distance
and hence every quantum procedure making a small number of queries to the function oracle
will be unable to distinguish between period group F' versus H.

We shall see that under our condition on f, O(log|G|/d) iterations of Fourier sampling allow
us to find F' with high probability. But first, we will need a few definitions. By a probabilistic
function u : G — S, we shall mean a map x — pu, from elements x of G to probability
distributions i, on S. For every x € G, define the unit £;-norm vector |pz) 1= 3 c g ta(5)|s).
Then, the uniform superposition over u is defined as |u) = |G|~/? Y e |T)|pe). For a
(deterministic) function f : G — S, the uniform superposition over f boils down to |f) =
|G|~1/2 Y zec )| f(x)). Note that |p) has unit fy-norm if p is a deterministic function,
otherwise its fo-norm is smaller. For a (deterministic) function f : G — S and a subgroup
H < G, define a H-periodic probabilistic function pf by

[/~ (s) N (x + H)|
|H| ’

it (s) =

that is, ,uf;’H(s) is the proportion of elements in the coset x + H where f takes the value s.

When f is H-periodic, [u/') = |f). For any F' < G, define F* := {y € G : Vz € F, x,(v) =
1}. For x € G and F < G, define

FL(z)) = :Z: Y ).

yeF+



Now suppose f : G — S is a (deterministic) function. The standard procedure for Fourier
sampling f is given below. Recall that the quantum Fourier transform QFT over G is the
unitary transformation |z) — |G|~'/2 > yea Xa(Y)|y)-

Start off with the state |0)¢|0)s.
Apply QFT to the first register.
Query the oracle for f.

Apply QFT to the first register.

Measure the first register and output the result.

QF T
[ —

For x € G and H < G, prove that |z + H) |HL(x)).

Fix a subgroup H < (. Show that the probability that Fourier sampling f outputs a
y & H is
2

z))

1
—=>_ {0} (@) f(x)) - |H
% i 2"

From the above two results, conclude that the probability that Fourier sampling f out-
puts a y & H* is equal to [[|f) — "),

For H < G and a function f : G — S, define a H-periodic function f# : G — S by
7 (x) := Maj,cp f(z + h), where Maj is the majority function which returns the most
frequent value taken by its input, ties being broken arbitrarily. One can view f¥ as the
‘correction’ of f with respect to H-periodicity. Show that

F) = < 1Y = D).

Fix a subgroup H < GG. Now suppose f is at least d-far in Hamming distance from any
H-periodic function. Show that the probability that Fourier sampling outputs a y ¢ H=*
is at least 0/2.

Suppose f is F-periodic for some subgroup F' < G. Show that Fourier sampling f will
only output y € Ft.

Suppose f is F-periodic for some subgroup F < G. Also suppose f is at least o-far
in Hamming distance from any H-periodic function for any subgroup F < H < G.
Suupose we do k := O(log|G|/d) iterations of Fourier sampling f obtaining output
Y1, -, Yg. Show that with probability at least 3/4, F* = (y1,...,y).



