
Homework 2
Out: September 10, 2007 In: October 1, 2007

1. (A non-abelian hidden subgroup problem) Some hidden subgroup problems (HSPs) in
non-abelian groups G can be efficiently reduced to HSPs in abelian groups, giving efficient
quantum algorithms for HSP in G. In this exercise, we shall see one such example. For r ≥ 2,
consider the non-abelian group G with two generators x, y defined as follows:

G := 〈x, y : x2r
= y2 = 1, yx = x2r−1+1y〉.

Assume that the elements of G are encoded by tuples (i, j), 0 ≤ i < 2r, j = 0, 1, where (i, j)
denotes the group element xiyj . In the jargon of group theory, G is a particular kind of a
semidirect product Z2r o Z2. Define G0 := 〈x〉. Suppose f : G → S is a function hiding a
subgroup H ≤ G. Define H0 := H ∩G0. We shall now see how one can find H efficiently by
a quantum algorithm.

(a) Show that H0 can be found efficiently by a quantum algorithm.
(b) Prove that H0 is a normal subgroup of G and H/H0 is either trivial or has order two.

(c) Suppose H0 = 〈x2k〉 for some 0 ≤ k < r. Show that G/H0 is an abelian group isomorphic
to Z2k ×Z2. Hence, show that H can be found efficiently by a quantum algorithm using
the HSP in Z2k × Z2 as a subroutine.

(d) Show that the H0 = {1} = 〈x2r〉 case can be taken care of separately.

2. (Finding the structure of a finite abelian group) In this exercise, we shall see that
we can find a decomposition of a finite abelian group into a direct product of cyclic groups
efficiently by using a quantum algorithm. A (not necessarily abelian) group Ĝ is given via
a black box, that is, the elements of Ĝ are represented by elements of {0, 1}n for some n;
thus, |Ĝ| ≤ 2n. There may be bit strings that do not correspond to any group element.
We assume that elements of Ĝ are uniquely encoded by bit strings and the identity element
of Ĝ is represented by the all zeroes string. We are given a black box or oracle M for
multiplying two group elements: M : |x〉|y〉|s〉|b1〉|b2〉 7→ |x〉|y〉|s ⊕ (x · y)〉|b1 ⊕ cx〉|b2 ⊕ cy〉,
where x, y, s ∈ {0, 1}n, b1, b2 ∈ {0, 1}, x · y is the bit string representing the product of x
and y if both are valid group elements and the all zeroes string otherwise, and cx, cy are bits
which are one iff x, y are invalid group elements.

(a) Show that there is a quantum algorithm with running time poly(n) to find the inverse
of a group element x, that is, we can implement the following unitary operator cleanly:

I : |x〉|s〉|b〉 7→ |x〉|s⊕ x−1〉|b⊕ cx〉.

You may want to use ideas from solving HSP in Z that we saw in class, as well as clean
reversible classical computation.

(b) Now suppose we are given valid group elements x1, . . . , xk from Ĝ such that G :=
〈x1, . . . , xk〉 is abelian (observe that this is easy to check). Consider the surjective group
homomorphism h : Zk → G defined by h(z1, . . . , zk) := xz1

1 · · ·x
zk
k . Show how to find

the kernel K of h, that is, ~z ∈ Zk such that h(~z) = 1G in time poly(n, k) by a quantum
algorithm. You may want to use ideas about HSP in Z and in finite abelian groups for
this part. Thus, G ∼= Zk/K.



(c) Show that every m × k integer matrix can be put into a diagonal form (called Smith
normal form) by elementary row and column operations involving only integers. This
can be done by a Gaussian elimination style algorithm together with Euclid’s GCD
algorithm. Argue that this (classical deterministic) procedure takes poly(n,m, k) time,
where n is an upper bound on the bit sizes of the integer entries of the matrix.

(d) Consider the m×k integer matrix K whose rows are the generators of K obtained above
(there are m = poly(n, k) of them). Argue that elementary row operations on K continue
to give generating sets for K, and elementary column operations change bases for Zk

(initially, we start off with the standard Dirac point mass basis for Zk).

(e) Explain how a cyclic decomposition of G can be obtained in deterministic poly(n,m, k)
time from a Smith normal form of K.

3. (Finding non-strict periods in finite abelian groups) In this exercise, we shall see that
the standard quantum algorithm to find a strict period, that is, a hidden subgroup, in a
finite abelian group also works in time polylog|G| if the period is only ‘approximately strict’.
In other words, the standard Fourier sampling based algorithm has a ‘robustness property’
about strict period finding. Fix δ > 0. Suppose f : G→ S is a function with period subgroup
F ≤ G such that any function h : G→ S that has a period group H ≥ F differs from f in at
least δ|G| elements of G. The intuition behind this definition is that if F were a strict period
for f , one would have to corrupt f in at least half the elements of G in order to increase
its period group; hence viewed this way, our condition on f is an approximation of strict
periodicity. Also, it is a necessary condition because if f is ε-close in Hamming distance to
an H-periodic function h, then the oracle for f is close to the oracle for h in spectral distance
and hence every quantum procedure making a small number of queries to the function oracle
will be unable to distinguish between period group F versus H.

We shall see that under our condition on f , O(log |G|/δ) iterations of Fourier sampling allow
us to find F with high probability. But first, we will need a few definitions. By a probabilistic
function µ : G → S, we shall mean a map x 7→ µx from elements x of G to probability
distributions µx on S. For every x ∈ G, define the unit `1-norm vector |µx〉 :=

∑
s∈S µx(s)|s〉.

Then, the uniform superposition over µ is defined as |µ〉 := |G|−1/2
∑

x∈G |x〉|µx〉. For a
(deterministic) function f : G → S, the uniform superposition over f boils down to |f〉 =
|G|−1/2

∑
x∈G |x〉|f(x)〉. Note that |µ〉 has unit `2-norm if µ is a deterministic function,

otherwise its `2-norm is smaller. For a (deterministic) function f : G → S and a subgroup
H ≤ G, define a H-periodic probabilistic function µf,H by

µf,H
x (s) :=

|f−1(s) ∩ (x+H)|
|H|

,

that is, µf,H
x (s) is the proportion of elements in the coset x + H where f takes the value s.

When f is H-periodic, |µf,H〉 = |f〉. For any F ≤ G, define F⊥ := {y ∈ G : ∀x ∈ F, χy(x) =
1}. For x ∈ G and F ≤ G, define

|F⊥(x)〉 :=

√
|F |
|G|

∑
y∈F⊥

χx(y)|y〉.



Now suppose f : G → S is a (deterministic) function. The standard procedure for Fourier
sampling f is given below. Recall that the quantum Fourier transform QFTG over G is the
unitary transformation |x〉 → |G|−1/2

∑
y∈G χx(y)|y〉.

• Start off with the state |0〉G|0〉S .

• Apply QFTG to the first register.

• Query the oracle for f .

• Apply QFTG to the first register.

• Measure the first register and output the result.

(a) For x ∈ G and H ≤ G, prove that |x+H〉 QFTG7−→ |H⊥(x)〉.
(b) Fix a subgroup H ≤ G. Show that the probability that Fourier sampling f outputs a

y 6∈ H⊥ is ∥∥∥∥∥ 1√
|G|

∑
x∈G

|{0}⊥(x)〉|f(x)〉 − 1√
|G||H|

∑
x∈G

|H⊥(x)〉|f(x)〉

∥∥∥∥∥
2

.

(c) From the above two results, conclude that the probability that Fourier sampling f out-
puts a y 6∈ H⊥ is equal to ‖|f〉 − |µf,H〉‖2.

(d) For H ≤ G and a function f : G → S, define a H-periodic function fH : G → S by
fH(x) := Majh∈Hf(x + h), where Maj is the majority function which returns the most
frequent value taken by its input, ties being broken arbitrarily. One can view fH as the
‘correction’ of f with respect to H-periodicity. Show that

‖|fH〉 − |µf,H〉‖ ≤ ‖|f〉 − |µf,H〉‖.

(e) Fix a subgroup H ≤ G. Now suppose f is at least δ-far in Hamming distance from any
H-periodic function. Show that the probability that Fourier sampling outputs a y 6∈ H⊥
is at least δ/2.

(f) Suppose f is F -periodic for some subgroup F ≤ G. Show that Fourier sampling f will
only output y ∈ F⊥.

(g) Suppose f is F -periodic for some subgroup F ≤ G. Also suppose f is at least δ-far
in Hamming distance from any H-periodic function for any subgroup F ≤ H ≤ G.
Suupose we do k := O(log |G|/δ) iterations of Fourier sampling f obtaining output
y1, . . . , yk. Show that with probability at least 3/4, F⊥ = 〈y1, . . . , yk〉.


