Quantum algorithms

Pranab Sen

and

Quantum information and error correction

Naresh Sharma

Joint lecture 1



Information storage

@ Classical: Bit

@ Quantum: Qubit



Bit
Physical device that can exist in exactly one of
two distinguishable states at any point of fime

Example: Transistor




Bit, probabilistically

In a classical algorithm, at any point of time,
the state of a bit is a probability distribution
over "0” and "1”.
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B9y~ I



Quantum bit

Physical device that, if measured, gives exactly one
of two distinguishable states at any point of ftime

Otherwise, it can be in an intermediate state, a
superposition of "0” and "1”.
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Amplitudes can be complex numbers!
Square of amplitude is probability of observing



Bit versus Qubit
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Electron spin: a qubit

@ measured spin in a vertical magnetic field: UP (parallel)
or DOWN (antiparallel), corr. to "0” and “1”
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Non-positive amplitudes
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Note the factor of two in the angle above

@ Complex amplitudes denote spin axis “coming
out” of the plane




Qubit nature of spin
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Cascaded Stern-Gerlach experiments:
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Photon polarisation

@ Horizontal: porgaris ( é )
@ Vertical: I iy ( (1) )
@ Right diagonal: ~ '0>\‘/L§|1>

o Left diagonal: ™\ 5

o Right circular: + ) 2R
@ Left circular: O iy




A quantum gate
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Extend H by linearity to all superpositions
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Applying Hadamard ftwice does nothing
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@ Constructive and destructive interference!
Quantum effect, no classical analogue
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Quantum interference
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Reality is in fact quantum

behaves as the Hadamard gate H
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on polarisation qubit




From one to two
One qubit
Measured states: [0) = ( (1) ) L ( (1) )

Two qubits
Measured states:
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From one to two (contd)

One qubit:

Oé()‘o> =5 041‘1>

ag, a1 € C, |Oé()|2 g ‘051‘2 vl
PI’[“O”] p loz0|2,Pr[“1”] o ‘041}2

Unmeasured states:

Two qubits:
Oé()()|00> b &10’10> a0 0401’01> 5 0411|11>

Unmeasured states: «gy. a0, g1, a1 € C
lago|? + |aaol? + |aoi|* + Joa1 ] =1
Pr[“00”] = |ago|?, Pr[“10”] = |avo?,
PI‘[“Ol”] — ’()401’2,PI‘[“11”] — ’0411‘2



n qubits

Measured states: |x) = |21) ® |22) ® -+ ® |z,)
re{0,1}"

Unmeasured states: Z Q| )
xe{0,1}n

a, € C, Z |ozx]2 = ¢ Prizj= \0433\2
xe{0,1}"

State vector of n qubits is a unit length vector in
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Computers, physically

@ Physics experiment turned on its head

@ Memory: physical system

@ Input: initial condition

@ Algorithm: dynamics

@ Output: final state

o classical physics experiment

o quantum physics experiment



Quantum algorithm

@ Input: Intialised to a bit string |z) ® |0),z € {0,1}"
@ Algorithm: Unitary transformation on input state

@ Output: Bit string obtained by measuring state of
computer at the end

@ Require: With high probability, output is the correct
answer



