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Qubit
Comes with its Hilbert space

States are precisely the 1-D subspaces of   , loosely 
represented by unit length vectors in 

Physical setup defines a distinguished orthonormal 
measurement basis of    called computational basis, 
denoted by             and

Measuring state                         gives a classical 
bit with           as its prob. vector  

C2

C2

|0〉 :=
(

1
0

)

C2

|1〉 :=
(

0
1

)

α0|0〉 + α1|1〉 =
(

α0

α1

)

C2

(
|α0|2
|α1|2

)



From one to two

Measured states: 

Measured states: 

|0〉 :=
(

1
0

)
|1〉 :=

(
0
1

)

|00〉 :=
(

1
0

)
⊗

(
1
0

)
=





1
0
0
0





One qubit

Two qubits

|01〉 :=
(

1
0

)
⊗

(
0
1

)
=





0
1
0
0





|10〉 :=
(

0
1

)
⊗

(
1
0

)
=





0
0
1
0



 |11〉 :=
(

0
1

)
⊗

(
0
1

)
=





0
0
0
1





UP DOWN

UP, UP UP, DOWN

DOWN, UP DOWN, DOWN



From one to two (contd)

Unmeasured states: α0|0〉 + α1|1〉
α0, α1 ∈ C, |α0|2 + |α1|2 = 1

α00, α10, α01, α11 ∈ C
|α00|2 + |α10|2 + |α01|2 + |α11|2 = 1

α00|00〉 + α10|10〉 + α01|01〉 + α11|11〉

One qubit:

Two qubits:
Unmeasured states:

Pr[“0”] = |α0|2, Pr[“1”] = |α1|2

Pr[“00”] = |α00|2, Pr[“10”] = |α10|2,
Pr[“01”] = |α01|2, Pr[“11”] = |α11|2



Tensor product
Hilbert spaces V, W of dimension m, n

Orthonormal bases                  , note

Define

                             is defined by distributivity

        is defined as Hilbert space spanned by

{|i〉}m
i=1, {|j〉}n

j=1 |i〉 :=





0
...
1
...
0





1st
...

ith
...

mth

|i〉 ⊗ |j〉 :=





0 · |j〉
...

1 · |j〉
...

0 · |j〉





1st
...

ith
...

mth

=





0
...
1
...
0





1st
...

(n(i− 1) + j)th
...

(mn)th

(
∑m

i=1 αi|i〉)⊗
(∑n

j=1 βj |j〉
)

V ⊗W

|i〉 ⊗ |j〉, i = 1, . . . ,m, j = 1, . . . , n



n qubits
Measured states: 

Unmeasured states:

|x〉 = |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xn〉
x ∈ {0, 1}n

∑

x∈{0,1}n

αx|x〉

αx ∈ C,
∑

x∈{0,1}n

|αx|2 = 1, Pr[x] = |αx|2

State vector of n qubits is a unit length vector in 
C2n ∼= C2 ⊗ C2 ⊗ · · ·⊗ C2

︸ ︷︷ ︸
n times



Quantum algorithm

Input: Intialised to a bit string 

Algorithm: Unitary transformation on input state

Output: Bit string obtained by measuring state of 
computer at the end

Require: With high probability, output is the correct 
answer

|x〉 ⊗ |0̄〉, x ∈ {0, 1}n



Tensor product again
                Hilbert spaces

                             linear transformations

                                 linear transformation, 
defined as                                                 
bases of       , extended by linearity to all of

Matrix of          given by

V1, W1, V2, W2

T1 : V1 →W1, T2 : V2 →W2

T1 ⊗ T2 : V1 ⊗ V2 →W1 ⊗W2

T1 ⊗ T2

V1, V2 V1 ⊗ V2

T1 ⊗ T2(|i〉 ⊗ |j〉) := (T1|i〉)⊗ (T2|j〉), |i〉, |j〉

· · · |i〉 ⊗ |∗〉 · · ·
...

|k〉 ⊗ |∗〉
...





...
(t1)kiT2

...







Single qubit gates
Unitary operators on C2

Hadamard: H = 1√
2

(
1 1
1 −1

)
NOT:

P =
(

1 0
0 i

)
X =

(
0 1
1 0

)

Phase:
√

P =
(

1 0
0
√

i

)
π/8-gate:

U1

U2

U1 ⊗ U2

U1

U1 ⊗ 11



A two-qubit gate

Controlled-NOT:

CNOT: 

CNOT is not a tensor product of single qubit gates

CNOT, NOT, Hadamard,      -gate form a universal 
fault tolerant family for quantum computation (Boykin, 
Mor, Pulver, Roychowdhury, Vatan 1999)

CNOT =





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0





|x〉 ⊗ |y〉 #→ |x〉 ⊗ |x⊕ y〉

π/8



Collapse on measurement

Two qubit state:

Measuring both qubits: 

Measuring first qubit only:

α00|00〉 + α01|01〉 + α10|10〉 + α11|11〉

Pr[(i, j)] = |αij |2

|i〉 ⊗ |j〉

Pr[i] = |αi0|2 + |αi1|2

|i〉 ⊗
(

αi0|0〉+αi1|1〉√
Pr[i]

)

State collapses to 

State collapses to 



Deutsch’s algorithm
Problem: Compute parity of two bits       given 

by an oracle
Classically: requires two queries to oracle
Quantumly: possible with one query only!

x0, x1

i

Classical oracle

xi
O

Quantum oracle

|i〉
|b〉

|i〉
|b⊕ xi〉O

H

H

H|0〉

|1〉
O

Measurement outcome = 0 iff parity = 0



Database searching
Problem: Searching an unordered database 
with n items

Classically: Requires time of order of n

Quantumly: Can be done in time order of
√

n

Grover (1996)

Speeds up many searching 
problems non-trivially



Grover’s algorithm
Initialisation:

Inv. marked item:

Inv. abt. average:

|1〉 |i− 1〉 |i〉 |i + 1〉 |n〉

1√
n

|1〉 |i− 1〉 |i〉 |i + 1〉 |n〉

1√
n

|1〉 |i− 1〉

|i〉

|i + 1〉 |n〉

1√
n

Old avg.

Avg.

New avg.

− 1√
n

(Easy to do)

(Easy to do)

(Done by oracle)

Amplitude of marked item increases by around 
Repeat around times to get good prob. of detecting marked item

2√
n√

n

2

in each iteration



What more in algorithms?
Faster algorithms for some other search problems 
by on quantum walks on Markov chains (later on)

Efficient algorithm to factor integers: Peter Shor 
(1994), believed hard classically, at the heart of 
the popular RSA cryptosystem (later on)

Efficient algorithms for several other number and 
group theoretic problems, believed hard classically 
(maybe later on)

Efficient algorithms for some knot theoretic 
problems, believed hard classically (later on)



Information theory
Mathematical theory of ``information transfer’’ or 
communication

Entropy as a measure of uncertainty or lack of 
information in classical random variable (Shannon 
1948)

Coding theorems for noiseless and noisy channels

Quantum analogues of above in terms of von 
Neumann entropy (later on)

General notion of quantum operation and quantum 
noise (later on)



2 to 1 coding
Aim: Encode 2 bits into one qubit so that any single 

bit can be extracted with probability > 1/2
Classically: Impossible

Quantumly: Possible (Ambainis, Nayak, Ta-Shma, Vazirani ‘99)



2 to 1 coding
Aim: Encode 2 bits into one qubit so that any single 

bit can be extracted with probability > 1/2
Classically: Impossible

Quantumly: Possible (Ambainis, Nayak, Ta-Shma, Vazirani ‘99)

00 !→ |0〉

01 !→ |0〉+|1〉√
2

Encoding

11 !→ |1〉
10 !→ −|0〉+|1〉√

2



2 to 1 coding
Aim: Encode 2 bits into one qubit so that any single 

bit can be extracted with probability > 1/2
Classically: Impossible

Quantumly: Possible (Ambainis, Nayak, Ta-Shma, Vazirani ‘99)

00 !→ |0〉

01 !→ |0〉+|1〉√
2

Encoding

11 !→ |1〉
10 !→ −|0〉+|1〉√

2

Extracting 2nd bit
Rotate by

Measure

10

00

π/8

00
0111

Extracting 1st bit
Rotate by −π/8

Measure

00

01

1110

Success prob. = cos2 π/8
≈ 0.85



Teleportation
Einstein-Podolsky-Rosen (EPR) pair: |00〉+|11〉√

2

Unknown single qubit state: |ψ〉

H
Alice

Alice

m1

m2

Xm2 Zm1

{|EPR〉

Bob

|ψ〉

|ψ〉

Z := P 2



Error correction
Classical error correcting codes required to 
protect classical information against errors

Quantum error correcting codes required to 
protect quantum information against quantum 
errors; stabiliser codes of Gottesman (later on)

Fault tolerant quantum computation and fault 
tolerance threshold of Aharonov-Ben Or (maybe 
later on)



Quantum cryptography
Quantum computation breaks RSA, Diffie-Hellman 
etc. cryptosystems because of Shor’s algorithms for 
factoring and discrete logarithm

Quantum communication can be used to distribute a 
private key (Bennett-Brassard ‘84) without prior 
shared resources; impossible classically (maybe later 
on)

Eavesdropper’s actions amount to measuring 
transmitted qubits, which disturbs their state, leading 
to detection



Experiments
Quantum key distribution close to practical reality

Quantum computation immensely challenging 
experimentally

Nuclear magnetic resonance (NMR), ion traps, 
superconducting junctions, quantum dots, ... proposed

Every proposal has major implementation and/or 
scalability issues

Current experimental implementations have error 
rates way above fault tolerance threshold


