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Qubit

@ Comes with its Hilbert space C*

@ States are precisely the 1-D subspaces of C?% loosely
represented by unit length vectors in C?

@ Physical setup defines a distinguished orthonormal
measurement basis of C? called computational basis,

denoted by |0) .= ( (1) ) and |1) .= ( (1) )

@ Measuring state agl0) + aq|1) = g?

bit wi’rh( oo | ) as its prob. vector

g |2

) gives a classical



From one to two

One qubit
Measured states: [0) = ( (1) ) L ( (1) )
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From one to two (contd)

One qubit:

Oé()‘o> =5 041‘1>

ag, a1 € C, |Oé()|2 g ‘051‘2 vl
PI’[“O”] p loz0|2,Pr[“1”] o ‘041}2

Unmeasured states:

Two qubits:
Oé()()|00> b &10’10> a0 0401’01> 5 0411|11>

Unmeasured states: «gy. a0, g1, a1 € C
lago|? + |aaol? + |aoi|* + Joa1 ] =1
Pr[“00”] = |ago|?, Pr[“10”] = |avo?,
PI‘[“Ol”] — ’()401’2,PI‘[“11”] — ’0411‘2



Tensor product

@ Hilbert spaces V, W of dimension m, n ( 9 \ 1§t
@ Orthonormal bases {|7)}i%1,1l7)};=1, note |i) := 1 zth
@ Define ol s (0 o N mih
D) =] 1 ~:\j> ith = 1 (n(i — 1:) +j)th
0- 1) o 4R O

o (S0, cili)) @ (X572, B14) ) is defined by distributivity

@ V®W is defined as Hilbert space spanned by
|3 - &g}, 2= HETRE i RS R



n qubits

Measured states: |x) = |21) ® |22) ® -+ ® |z,)
re{0,1}"

Unmeasured states: Z Q| )
xe{0,1}n

a, € C, Z |ozx]2 = ¢ Prizj= \0433\2
xe{0,1}"

State vector of n qubits is a unit length vector in

CeC im0

-~

n times



Quantum algorithm

@ Input: Intialised to a bit string |z) ® |0),z € {0,1}"
@ Algorithm: Unitary transformation on input state

@ Output: Bit string obtained by measuring state of
computer at the end

@ Require: With high probability, output is the correct
answer



Tensor product again
o V1,W1, Vs, Wy Hilbert spaces

@ T :V, - W, Ty: Vo — Wslinear transformations

11 RT5: Vi ®Vy — W, ® Wy linear transformation,
defined as T1 ® T>(|¢) ® |j)) := (T1]2)) ® (T2]7)), [2), |7)
bases of Vi,V2, extended by linearity to all of Vi ® V5

@ Matrix of T1 ® T5 given by
/ i) @ |*) \

oW | ()l




Single qubit gates
Unitary operators on C?

1) =
L )

g2 ]

e

PhdSéiP:((l) S) 7 /8-gate: VP = <(1) \O/>
-~

4}

Ui ® Usg U ®1

NOT: X = ( ) Hadamard: H = 7 (

)




A two-qubit gate

@ Controlled-NOT: CNOT =

S T
& O =D
s S
o = O O

@ CNOT: |7) ® |y) = |z) ® [z D y)
@ CNOT is not a tensor product of single qubit gates

@ CNOT, NOT, Hadamard, 7/8-gate form a universal
fault tolerant family for quantum computation (Boykin,
Mor, Pulver, Roychowdhury, Vatan 1999)



Collapse on measurement

S 0400’00> e 0401|01> + (10 10> 5 0411|11>

o Pr((¢,5)] = |a;?
State collapses to |i) ® |j)

@ Measuring first qubit only: Pr[i] = |aiol® + |1 |?

State collapses to |i) ® <O‘i0|0>;§;’]1|1>>



Deutsch's algorithm

Compute parity of two bits o,z given
by an oracle
requires two queries to oracle

possible with one query only!

0)
Classical oracle 1)
) S
Measurement outcome = O iff parity = 0

i) i)
— Bl o

Quantum oracle




Database searching

@ Problem: Searching an unordered database
with n items

@ Classically: Requires time of order of n

@ Quantumly: Can be done in time order of V7
Grover (1996)

Speeds up many searching
problems non-trivially



Grovers algorithm

1
@ Initialisation: \/ET ‘ ‘ ‘ ‘
(Easy to do) 1) [§— 1) [ e n)
1
el |
o Inv. favked igl 10 | ST |®
(Done by oracle) 1) i — 1) 7+ 1) n) J

ks
@ Inv. abt. average: — , i .w

(Easy to do) \/ET | i

1) 1y n>@

2
Amplitude of marked item increases by around 7 In each iteration

Repeat around g times to get good prob. of detecting marked item



What more in algorithms?

@ Faster algorithms for some other search problems
by on quantum walks on Markov chains (later on)

@ Efficient algorithm to factor integers: Peter Shor %w '
(1994), believed hard classically, at the heart of @(ﬁm
the popular RSA cryptosystem (later on)

@ Efficient algorithms for several other number and
group theoretic problems, believed hard classically
(maybe later on)

@ Efficient algorithms for some knot theoretic
problems, believed hard classically (later on)



Information theory

@ Mathematical theory of “tinformation transfer” or
communication

@ Entropy as a measure of uncertainty or lack of "“H ‘”
information in classical random variable (Shannon' < »Q
1948) i

@ Coding theorems for noiseless and noisy channels

@ Quantum analogues of above in terms of von $%M;
Neumann entropy (later on) ‘1‘51
‘R

@ General notion of quantum operation and quantum
noise (later on)



2 to 1 coding

Encode 2 bits into one qubit so that any single
bit can be extracted with probability > 1/2

Impossible .@‘ L‘ .‘ ’1 @

Possible (Ambainis, Nayak, Ta-Shma, Vazirani '99)



2 to 1 coding

Encode 2 bits into one qubit so that any single
bit can be extracted with probability > 1/2

Impossible ,@‘ L‘ g ’1 @

Possible (Ambainis, Nayak, Ta-Shma, Vazirani '99)
we

e — |0y 01 10)+]1)

V2
00 — |0)

Encoding



2 to 1 coding

Encode 2 bifs intfo one qubit so that any single
bit can be extracted with probability > 1/2

Impossible ngj L‘ '@1 @

Possible (Ambainis, Nayak, Ta-Shma, Vazirani '99)

11 1
10—l 2ol gy LI e Tl 101

00 — |0)
\ 00 \J

00
Encoding Extracting 1st bit Extracting 2nd bit

Success prob. — cos? /8 Rotate by —m/8 Rotate by /8
~ 0.85 Measure Measure




Teleportation

Einstein-Podolsky-Rosen (EPR) pair: '00>j§'“>

Unknown single qubit state: [¢)
Alice |1))

)
¢/

Alice

=
3
EPR>{

Bob

\V




Error correction

@ Classical error correcting codes required to
protect classical information against errors

@ Quantum error correcting codes required to
protect quantum information against quantum ., -

errors; stabiliser codes of Gottesman (later on) ;’\;\3

@ Fault tolerant quantum computation and fault
tolerance threshold of Aharonov-Ben Or (maybe

later on) '5 n
S




Quantum cryptography

@ Quantum computation breaks RSA, Diffie-Hellman
etc. cryptosystems because of Shor's algorithms for
factoring and discrete logarithm

@ Quantum communication can be used to distribute a
private key (Bennett-Brassard '84) without prior
shared resources; impossible classmally (maybe later
on)

@ Eavesdroppers actions amount to measuring
transmitted qubits, which disturbs their state, leading
to detection



Experiments

@ Quantum key distribution close to practical reality

@ Quantum computation immensely challenging
experimentally

@ Nuclear magnetic resonance (NMR), ion traps,
superconducting junctions, quantum dots, ... proposed

@ Every proposal has major implementation and/or
scalability issues

@ Current experimental implementations have error
rates way above fault tolerance threshold



