Quantum algorithms

Pranab Sen

and

Quantum information and error correction

Naresh Sharma

Joint lecture 2

Qubit

- lacktriangle Comes with its Hilbert space \mathbb{C}^2
- $oldsymbol{\circ}$ States are precisely the 1-D subspaces of \mathbb{C}^2 , loosely represented by unit length vectors in \mathbb{C}^2
- Physical setup defines a distinguished orthonormal
- measurement basis of \mathbb{C}^2 called computational basis, denoted by $|0\rangle:=\begin{pmatrix}1\\0\end{pmatrix}$ and $|1\rangle:=\begin{pmatrix}0\\1\end{pmatrix}$ Measuring state $\alpha_0|0\rangle+\alpha_1|1\rangle=\begin{pmatrix}\alpha_0\\\alpha_1\end{pmatrix}$ gives a classical bit with $\begin{pmatrix}|\alpha_0|^2\\|\alpha_1|^2\end{pmatrix}$ as its prob. vector

From one to two

One qubit

Measured states:
$$|0\rangle:=\left(\begin{array}{cc}1\\0\end{array}\right)$$
 $|1\rangle:=\left(\begin{array}{cc}0\\1\end{array}\right)$

Two qubits

Measured states:

$$|00\rangle := \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \qquad |01\rangle := \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

$$|10\rangle := \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \qquad |11\rangle := \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

$$|11\rangle := \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

$$|11\rangle := \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

$$|11\rangle := \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

$$|11\rangle := \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

$$|11\rangle := \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

$$|11\rangle := \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

From one to two (contd)

One qubit:

Unmeasured states:

$$\alpha_0|0\rangle + \alpha_1|1\rangle$$

$$\alpha_0, \alpha_1 \in \mathbb{C}, |\alpha_0|^2 + |\alpha_1|^2 = 1$$

$$\Pr["0"] = |\alpha_0|^2, \Pr["1"] = |\alpha_1|^2$$

Two qubits:

Unmeasured states:

$$\alpha_{00}|00\rangle + \alpha_{10}|10\rangle + \alpha_{01}|01\rangle + \alpha_{11}|11\rangle$$

$$\alpha_{00}, \alpha_{10}, \alpha_{01}, \alpha_{11} \in \mathbb{C}$$

$$|\alpha_{00}|^2 + |\alpha_{10}|^2 + |\alpha_{01}|^2 + |\alpha_{11}|^2 = 1$$

$$\Pr["00"] = |\alpha_{00}|^2, \Pr["10"] = |\alpha_{10}|^2,$$

$$\Pr["01"] = |\alpha_{01}|^2, \Pr["11"] = |\alpha_{11}|^2$$

Tensor product

- Hilbert spaces V, W of dimension m, n $\vdots \\ \text{Orthonormal bases } \{|i\rangle\}_{i=1}^m, \{|j\rangle\}_{j=1}^n \text{, note } |i\rangle := \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} \text{ ith } \\ \vdots \\ m \text{th}$

Define
$$|i\rangle\otimes|j\rangle:=egin{pmatrix}0\cdot|j\rangle & 1\mathrm{st} & 0 & 1\mathrm{st} \\ \vdots & \vdots & \vdots & \vdots \\ 1\cdot|j\rangle & i\mathrm{th} & = & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 0\cdot|j\rangle & m\mathrm{th} & 0 & (mn)\mathrm{th} \end{pmatrix}$$

- $oldsymbol{o}(\sum_{i=1}^m lpha_i|i
 angle)\otimes\left(\sum_{j=1}^n eta_j|j
 angle
 ight)$ is defined by distributivity
- $v \otimes W$ is defined as Hilbert space spanned by

$$|i\rangle \otimes |j\rangle, i=1,\ldots,m, j=1,\ldots,n$$

n qubits

Measured states:
$$|x\rangle = |x_1\rangle \otimes |x_2\rangle \otimes \cdots \otimes |x_n\rangle$$
 $x \in \{0,1\}^n$

Unmeasured states: $\sum_{x \in \{0,1\}^n} \alpha_x |x\rangle$

$$\alpha_x \in \mathbb{C}, \sum_{x \in \{0,1\}^n} |\alpha_x|^2 = 1, \Pr[x] = |\alpha_x|^2$$

State vector of n qubits is a unit length vector in

$$\mathbb{C}^{2^n} \cong \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2$$
n times

Quantum algorithm

- Input: Intialised to a bit string $|x⟩ ⊗ |0⟩, x ∈ {0,1}^n$
- Algorithm: Unitary transformation on input state
- Output: Bit string obtained by measuring state of computer at the end
- Require: With high probability, output is the correct answer

Tensor product again

- v_1, W_1, V_2, W_2 Hilbert spaces
- $T_1: V_1 \to W_1, T_2: V_2 \to W_2$ linear transformations
- σ $T_1\otimes T_2:V_1\otimes V_2 o W_1\otimes W_2$ linear transformation, defined as $T_1\otimes T_2(|i\rangle\otimes|j\rangle):=(T_1|i\rangle)\otimes (T_2|j\rangle),|i\rangle,|j\rangle$ bases of V_1,V_2 , extended by linearity to all of $V_1\otimes V_2$
- Matrix of $T_1 \otimes T_2$ given by

$$|i
angle\otimes|*
angle \ dots \ |k
angle\otimes|*
angle \ |t_1
angle_{ki}T_2 \ dots \ dots \ |t_1
angle \ |t_2
angle \ dots \ |t_1
angle \ |t_2
angle \ dots \ |t_2
angle \ dots \ |t_3
angle \ |t_3
angle$$

Single qubit gates

Unitary operators on \mathbb{C}^2

NOT:
$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

hase:
$$P=\left(egin{array}{cc} 1 & 0 \ 0 & i \end{array}
ight)$$

$$U_1$$

$$U_2$$

$$U_1\otimes U_2$$

NOT:
$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 Hadamard: $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

Phase:
$$P = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$$
 $\pi/8$ -gate: $\sqrt{P} = \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{i} \end{pmatrix}$

$$U_1$$

$$U_1\otimes 1$$

A two-qubit gate

Controlled-NOT:
$$\operatorname{CNOT} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
 CNOT: $|x\rangle \otimes |y\rangle \mapsto |x\rangle \otimes |x \oplus y\rangle$

- CNOT is not a tensor product of single qubit gates
- \odot CNOT, NOT, Hadamard, $\pi/8$ -gate form a universal fault tolerant family for quantum computation (Boykin, Mor, Pulver, Roychowdhury, Vatan 1999)

Collapse on measurement

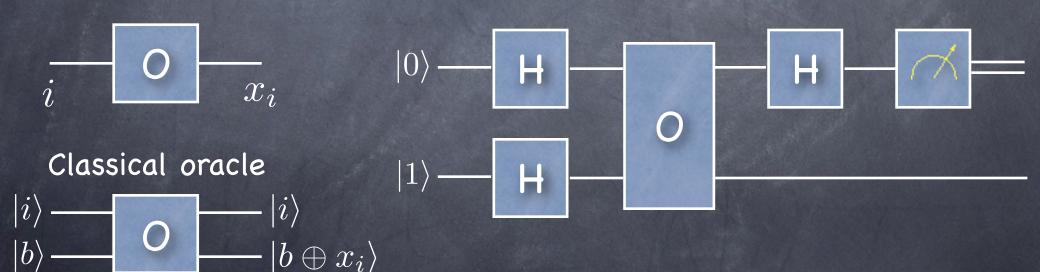
- Two qubit state: $\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle$
- Measuring both qubits: $\Pr[(i,j)] = |lpha_{ij}|^2$ State collapses to $|i
 angle\otimes|j
 angle$
- Measuring first qubit only: $\Pr[i] = |\alpha_{i0}|^2 + |\alpha_{i1}|^2$ State collapses to $|i\rangle \otimes \left(\frac{\alpha_{i0}|0\rangle + \alpha_{i1}|1\rangle}{\sqrt{\Pr[i]}}\right)$

Deutsch's algorithm

Problem: Compute parity of two bits x_0, x_1 given by an oracle

Classically: requires two queries to oracle

Quantumly: possible with one query only!



Measurement outcome = 0 iff parity = 0

Quantum oracle

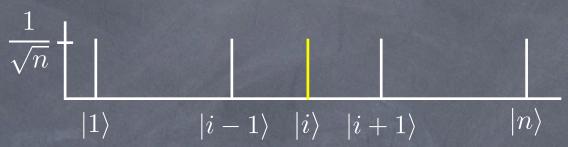
Database searching

- Problem: Searching an unordered database with n items
- © Classically: Requires time of order of n
- Quantumly: Can be done in time order of \sqrt{n} Grover (1996)

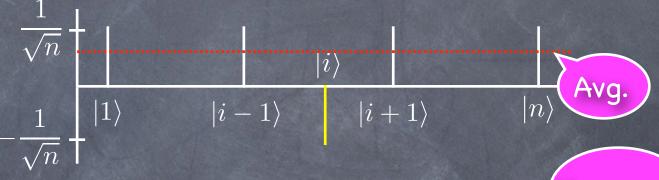
Speeds up many searching problems non-trivially

Grover's algorithm

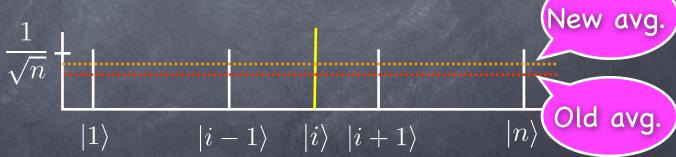
Initialisation:(Easy to do)



Inv. marked item: (Done by oracle)



Inv. abt. average: $\frac{1}{\sqrt{n}}$ [Easy to do)



Amplitude of marked item increases by around $\frac{2}{\sqrt{n}}$ in each iteration Repeat around $\frac{\sqrt{n}}{2}$ times to get good prob. of detecting marked item

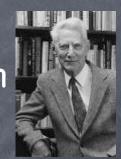
What more in algorithms?

- Faster algorithms for some other search problems by on quantum walks on Markov chains (later on)
- © Efficient algorithm to factor integers: Peter Shor (1994), believed hard classically, at the heart of the popular RSA cryptosystem (later on)

- Efficient algorithms for several other number and group theoretic problems, believed hard classically (maybe later on)
- Efficient algorithms for some knot theoretic problems, believed hard classically (later on)

Information theory

- Mathematical theory of ``information transfer" or communication
- Entropy as a measure of uncertainty or lack of information in classical random variable (Shannon 1948)



- Coding theorems for noiseless and noisy channels
- Quantum analogues of above in terms of von Neumann entropy (later on)

General notion of quantum operation and quantum noise (later on)

2 to 1 coding

Aim: Encode 2 bits into one qubit so that any single bit can be extracted with probability > 1/2

Classically: Impossible

Quantumly: Possible (Ambainis, Nayak, Ta-Shma, Vazirani '99)

2 to 1 coding

Aim: Encode 2 bits into one qubit so that any single bit can be extracted with probability > 1/2

Classically: Impossible

Quantumly: Possible (Ambainis, Nayak, Ta-Shma, Vazirani '99)

$$10 \mapsto \frac{-|0\rangle + |1\rangle}{\sqrt{2}}$$

$$01 \mapsto \frac{|0\rangle + |1\rangle}{\sqrt{2}}$$

$$00 \mapsto |0\rangle$$

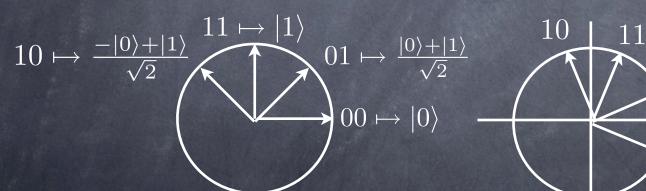
Encoding

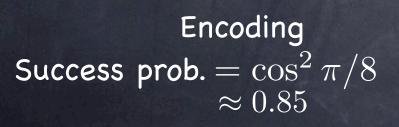
2 to 1 coding

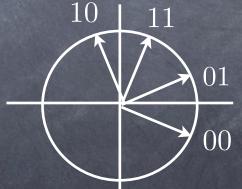
Aim: Encode 2 bits into one qubit so that any single bit can be extracted with probability > 1/2

Classically: Impossible

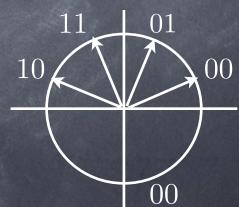
Quantumly: Possible (Ambainis, Nayak, Ta-Shma, Vazirani '99)







Extracting 1st bit Rotate by $-\pi/8$ Measure

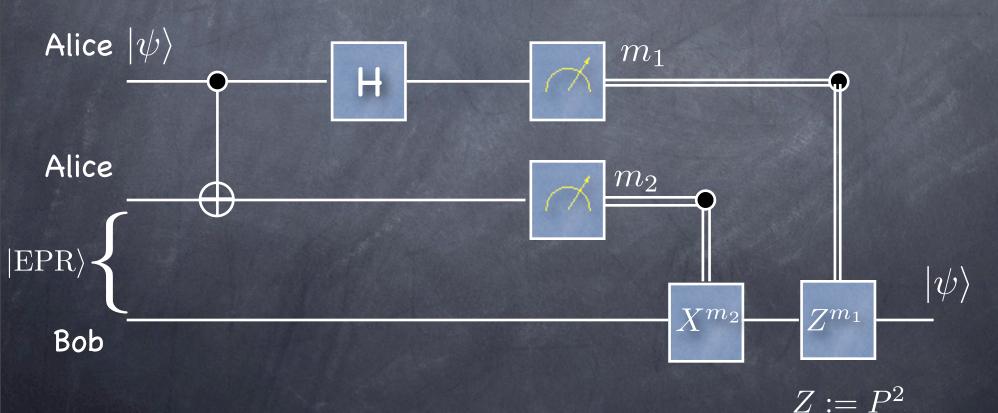


Extracting 2nd bit Rotate by $\pi/8$ Measure

Teleportation

Einstein-Podolsky-Rosen (EPR) pair: $\frac{|00\rangle+|11\rangle}{\sqrt{2}}$

Unknown single qubit state: $|\psi\rangle$



Error correction

- Classical error correcting codes required to protect classical information against errors
- Quantum error correcting codes required to protect quantum information against quantum errors; stabiliser codes of Gottesman (later on)

Fault tolerant quantum computation and fault tolerance threshold of Aharonov-Ben Or (maybe later on)

Quantum cryptography

- Quantum computation breaks RSA, Diffie-Hellman etc. cryptosystems because of Shor's algorithms for factoring and discrete logarithm
- Quantum communication can be used to distribute a private key (Bennett-Brassard '84) without prior shared resources; impossible classically (maybe later on)
- Eavesdropper's actions amount to measuring transmitted qubits, which disturbs their state, leading to detection

Experiments

- Quantum key distribution close to practical reality
- Quantum computation immensely challenging experimentally
- Nuclear magnetic resonance (NMR), ion traps, superconducting junctions, quantum dots, ... proposed
- Every proposal has major implementation and/or scalability issues
- © Current experimental implementations have error rates way above fault tolerance threshold