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Blackbox Identity Testing of Arithmetic Circuits

s this zero?




Why do we care?

Part of many important results like IP = PSPACE, the PCP theorem, AKS
primality test etc.

Connections with lower bounds. [Kabanets-Impagliazzo03], [Agrawal05]:
“Efficient PIT algorithms imply lower bounds”



Why do we care?

Part of many important results like IP = PSPACE, the PCP theorem, AKS
primality test etc.

Connections with lower bounds. [Kabanets-Impagliazzo03], [Agrawal05]:
“Efficient PIT algorithms imply lower bounds”

“For the pessimist, this indicates that derandomizing identity testing is
a hopeless problem. For the optimist, this means on the contrary that
to obtain an arithmetic circuit lower bound, we simply” have to prove

a good upper bound on identity testing.”
- [Kayal-Saraf09]



Why do we care?

Part of many important results like IP = PSPACE, the PCP theorem, AKS
primality test etc.

Connections with lower bounds. [Kabanets-Impagliazzo03], [Agrawal05]:
“Efficient PIT algorithms imply lower bounds”

“For the pessimist, this indicates that derandomizing identity testing is
a hopeless problem. For the optimist, this means on the contrary that
to obtain an arithmetic circuit lower bound, we simply” have to prove

a good upper bound on identity testing.”
- [Kayal-Saraf09]

Of course, it is a natural problem!
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State of affairs: Depth 2

( Variables J

poly
f = Emonomiali
i=1

Depth 2 is easy (sparse polynomials)
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Depth 2, size s, degree d

( Variables )

o, : X?1---X tAmodr

O, (mp) =0;(mg) = TIB—-A

At most s%(nlog d) bad s overall.
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Depth 2, size s, degree d

( Variables )

Hitting set:

_ (d4+1) modr | (d+1)" modry . T € [(sznlogd)z]
H_{(t ot ) : te ndr+1]



State of affairs: Depth 3

( Linear functions of variables J

K
fzzﬂﬂ--'eid
i1

PIT for even depth 3 circuits is open.



State of affairs: Depth 3

bounded

( Linear functions of variables J

K
fzzeﬂ"‘eid
izl

[KayalSaxena07] : polynomial time algorithm when k is a constant
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State of affairs: Depth 3

Depth 3, fan-in k (constant), degree d

( Variables )

K
f=Z€i1"'€id
izl

[KayalSaraf08] : Blackbox algorithm over the field Q
[SaxenaSeshadri11]: Blackbox algorithm over any field

Main Ingredient: Rank bounds



State of affairs: Depth 4

( Sparse Polynomials J
poly
f=Zgn"'gid
i=1

[AgrawalVinay08] : Blackbox PIT for depth 4 implies n©1°g™ blackbox PIT for
any depth!

Depth 4 is (almost) as hard as the general case.
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The Schwartz-Zippel Lemma

Lemma

Letf(x1,- -+ ,xn) beanon-zero polynomial with total degree bounded by d.
Then, forany S C T,

Hitting set of size (d + 1)™.

Question: Can we get reduce the number of variables?
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The “rank” of a circuit is..
.. essentially the number of variables the circuit truly depends on.

@ For XTTX circuits:

K
C = Z"ﬂ“'&d

i=1
[DvirShpika0s]:  rank(C) = rank{{;}

.. thus C “essentially” computes a rank( C)-variate polynomial
@ For ZTIZTT circuits:

3
C = Zfﬂ"'fid
i1

[BeeckenMittmannSaxenal1]:  rank(C) = TrDeg{fy}



General Road map
Whitebox:

@ Compute the rank r of the circuit C.
@ (if the rank was small) Construct a map

O :Flxq,-- yxnl — Flyy, -, ys]

that preserves the rank. That is, rank(C) = rank(®(C)). And use
Schwartz-Zippel to get a O(d")-sized hitting set.

@ Forlargerank, ...



General Road map
Whitebox:

@ Compute the rank r of the circuit C.
@ (if the rank was small) Construct a map

O :Flxq,-- yxnl — Flyy, -, ys]

that preserves the rank. That is, rank(C) = rank(®(C)). And use
Schwartz-Zippel to get a O(d")-sized hitting set.

@ Forlarge rank, ... prove the following:

Meta-theorem for rank bounds

If the given circuit C has rank more than R, then C cannot be identically
zero*

* Conditions apply
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Meta-theorem for ZTTX circuits

Meta theorem for rank bounds

Any simple, minimal XTTZ(n, k, d) circuit that has rank more than
R(n, k, d) cannot be identically zero.

Ways to cheat:

X1 Xn—=X1+Xn + Y1 Yn— Y1 Yn

@ Circuit must be simple.

@ Circuit must be minimal.
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Rank bounds for LTTL circuits

Any simple and minimal £TTZ(n, k, d) circuit that has rank more than
R(mn, k, d) cannot be identically zero.

[DvirShpilka05]

[KayalSaxena07]
SaxenaSeshadri09]

[
[
[

KayalSaraf09]

SaxenaSeshadril

0]
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R(n, k, d) = 20(klogk) oyer the field R
R(n,k,d) = O(k?log d)

R(m, k, d) = O(k?) over the field R



Rank bounds for LTTL circuits

Theorem

Any simple and minimal £TTZ(n, k, d) circuit that has rank more than
R(mn, k, d) cannot be identically zero.

[DvirShpilka05] R(n, k, d) = 290 (log d)*2
[KayalSaxena07] R(n, k,d) = Q(klogd) over finite fields
[SaxenaSeshadri09]  R(m,k, d) = O(klog d)
[KayalSaraf09] R(n, k, d) = 20(klogk) oyer the field R
[SaxenaSeshadri10]  R(m,k,d) = O(k*logd)

R(m, k, d) = O(k?) over the field R

Translates to a poly(dR(™%d) n) whitebox PIT.



Rank bounds for LTTL circuits

Theorem

Any simple and minimal ZTTZ(n, k, d) circuit that has rank more than
R(mn, k, d) cannot be identically zero.

[DvirShpilka05] R(n, k, d) = 290 (log d)*2
[KayalSaxena07] R(n, k, d) = Q(klogd) over finite fields
[SaxenaSeshadri09]  R(m,k, d) = O(klog d)
[KayalSaraf09] R(n, k, d) = 20(klogk) oyer the field R
[SaxenaSeshadri10]  R(m,k,d) = O(k*logd)

R(m, k, d) = O(k?) over the field R

Translates to a poly(dR(™%d) n) whitebox PIT.



Rank bounds for LTTL circuits

Theorem

Any simple and minimal £TTZ(n, k, d) circuit that has rank more than
R(mn, k, d) cannot be identically zero.

[DvirShpilka05] R(n, k, d) = 290 (log d)*2
[KayalSaxena07] R(n, k,d) = Q(klogd) over finite fields
[SaxenaSeshadri09]  R(m,k, d) = O(klog d)
[KayalSaraf09] R(n, k, d) = 20(klogk) oyer the field R
[SaxenaSeshadri10]  R(m,k,d) = O(k*logd)

R(m, k, d) = O(k?) over the field R

Translates to a poly(dR(™%d) n) whitebox PIT.

What about blackbox?
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Rank bounds to blackbox algorithms

Theorem (KarninShpilka08)

IfR is an upper bound on the rank of a simple minimal £T1Z(n, k, d) identity,
then there is a blackbox polynomial identity test running in time poly(dR, n.).

General Idea:
@ Findalinearmap @ : Flx1,- -+ ,xn] — Flyy,- - ,yre1] that
preserves a subspace of dimension R 4 1 (if it exists).
@ Apply Schwartz-Zippel on this (R 4 1)-variate circuit.

@ rank(®(C)) = min(rank(C), R + 1). Can also preserve simplicity and
minimality.

@ Large rank circuits stay non-identities
Smaller rank circuits are transformed “isomorphically”
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Rank preserving maps

Lemma (GabizonRaz05)

Givenn, k, s, there is a set of snk? + 1 of linear transformations

{D}: F™ — F*such that for any s subspaces Vy, - - - , Vs C F™of
dimension k each, there is at least one @+ that is an isomorphism between V;
andF¥ foreach1 < i <s.

Proof.
t 2 ... o ] ] ] fi(t) - fil(t)
2 ¢ .. fi(t?) - fi(t)
P ) T 1 J‘ f1(t%) - (19
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Main issue with rank bound approaches

@ [KayalSaxena07]: R(n, k, d) = Q(klog d) over finite fields.
@ Best case: poly(n, d<logd)

@ @ converts C to an “isomorphic circuit”

@ [SaxenaSeshadri11]: @ only needs to preserve non-zeroness. Find a
certificate for non-zeroness and preserve that instead.

% SPOILER ***
Certificate is an ideal of small rank
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Reviewing the Kayal-Saxena test

C = T+ +T
where T

iy -+ big

@ Canassume LM(Ty) = LM(C).

@ Checkif C =0 mod Tj.
o Use Chinese Remaindering, over local rings: (For e.q. %)
o Recursively check C = 0 mod €] forall j.

@ Then C = oTy. Checkif o« = 0.
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= (x+y+2z)(2y+ 3u+z)2(3x+2y +2z)(3x + 6u + 2z)
T

L(T) ={x+y+2z2y+3u+z3x+2y + 2z,3x + 6u + 2z}
radSpan(I) = span(x,x + y).
G =18 if £ —cly €radSpan(I) forsome c € F*,

(x+y+2z)(3x+ 2y + 2z), }

nodes(T) = { (2y 4 3u+2)?(3x + 6u+ 2z2)
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Cancellation Lemma

Lemma

Let I be an ideal generated by multiplication terms, and let £ & radSpan(1).
Then for any polynomial g,

{gel ifandonlyif gel

Proof.
WLOG, £ = x7 and radSpan (1) is xq-free.

Z gixt € I ifandonlyif g; € Iforeachi [
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Theorem
Let I be an ideal generated by multiplication terms. Let f and g be two
multiplication terms such that
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Let I be an ideal generated by multiplication terms. Let f and g be two
multiplication terms such that

L(f) NradSpan(1) = 0
L(g) NradSpan(1,f) = 0

Then, (1, f) N (I, g) = (I, fg).

Proof.
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Theorem ([KayalSaxena07] rephrased)

Forany non-zero LTTX(n, k, d) circuit C, then there is a path certificate
p = (vi,--- , Vi) and a T such that

C=«alimodp (forx e F*)
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[SaxenaSeshadri11]: The same [GabizonRaz05] map preserves low rank
ideals!
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Vandermonde works

Lemma

Letfo, f1,- -+, fm bemultiplication terms with span{{J L(f;)} has rank at
most k. Let @ be a linear map the preserves the space V' generated by | J L(f;).
Then,

fO € <f1a"' )fm> — q)(fO) € <d)(f1))"' )(D(fm»

Proof overview.

Since @ preserves V, it can be shown that @ induces an isomorphism
between the two algebras F[{y, - - - , &J and Flyq, - - - , yil...
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@ Studying the original [KayalSaxena07] test carefully, we obtained a
low-rank path certificate for non-zeroness.

@ The Vandermonde preserves ideals with small radical span.

@ Certificate can be preserved by mapping (via the Vandermonde) to just
a k-variate polynomial ring.

@ [BeeckenMittmannSaxenal1] defined a “rank” for ZTTXTT circuits, and
gave blackbox PITs for bounded rank circuits. Vandermonde used again.

Question: Can these ideas be used for -Pow-2?

Whitebox PITs are known. [Saxena08], [Kayal10]



Thank you!

Lrveateores?




