Algorithmic Game Theory and Economics: A very short introduction

Mysore Park Workshop

August, 2012

PRELIMINARIES

Game

Choose Your Weapon

Rock Paper Scissors

Bimatrix Notation

Zero Sum Game: A + B = all zero matrix

It needn't exist

Mixed Strategies and Equilibrium

 q_1, q_2, \cdots, q_n

 q_1, q_2, \cdots, q_n

Expected utility of A = $\sum_{i,j} p_i A_{ij} q_j = p^T A q$ Expected utility of B = $\sum_{i,j} p_i B_{ij} q_j = p^T B q$

 $p^{\mathsf{T}}Aq \ge p'^{\mathsf{T}}Aq \quad \forall p' \quad p^{\mathsf{T}}Bq \ge p^{\mathsf{T}}Bq' \quad \forall q'$

J. von Nuemann's Minimax Theorem

Theorem (1928) If A+B=0, then equilibrium mixed strategies (p,q) exist.

$$\max_p \min_q p^\top Aq = \min_q \max_p p^\top Aq$$

"As far as I can see, there could be no theory of games ... without that theorem ... I thought there was nothing worth publishing until the Minimax Theorem was proved"

John Nash and Nash Equilibrium

Theorem (1950) Mixed Equilibrium always exist for finite games.

$$\begin{array}{l} \exists \ (\vec{p}, \vec{q}): \\ p^{\top}Aq \geq p'^{\top}Aq \quad \forall p' \\ p^{\top}Bq \geq p^{\top}Bq' \quad \forall q' \end{array}$$

Markets

Walrasian Model: Exchange Economies

- N goods {1,2,...,N} $e_i \coloneqq (e_{i1}, e_{i2}, ..., e_{iN})$ M agents {1,2,...,M} $U_i(x) = U_i(x_{i1}, ..., x_{iN})$

Walrasian Model: Exchange Economies

- N goods {1,2,...,N} $e_i := (e_{i1}, e_{i2}, ..., e_{iN})$
- Magents {1,2,...,M} $U_i(x) = U_i(x_{i1}, ..., x_{iN})$
- Prices $\boldsymbol{p} = (p_1, \dots, p_N) \Rightarrow \text{Demand}(D_1, \dots, D_M)$ $D_i(\boldsymbol{p}) = \arg \max \{ U_i(\boldsymbol{x}) : \boldsymbol{p} \cdot \boldsymbol{x} \le \boldsymbol{p} \cdot \boldsymbol{e_i} \}$
- $(p, x^1, ..., x^M)$ are a <u>Walrasian equilibrium</u> if $\circ x^i \in D_i(p)$ for all $i \in [M]$ Utility Maximization $\circ \sum_i x_j^i = \sum_i e_{ij}$ for all $j \in [N]$ Market Clearing

Leon Walras and the tatonnement

- Given price **p**, calculate demand for each good i.
- If demand exceeds supply, raise price.
- If demand is less than supply, decrease price.

1874

Does this process converge? Does equilibrium exist?

Arrow and Debreu

Theorem (1954).

If utilities of agents are continuous, and strictly quasiconcave, then Walrasian equilibrium exists.

How does one prove such theorems?

Nash.
$$\exists (\vec{p}, \vec{q}):$$

 $p^{\top} A q \ge p'^{\top} A q \quad \forall p'$
 $p^{\top} B q \ge p^{\top} B q' \quad \forall q'$

Define: $\Phi(p,q) = (p',q')$

- p' is a best-response to q
- q' is a best-response to p

 $\phi(p,q) = (p,q)$ \Rightarrow Equilibrium.

Mapping is continuous.

Brouwers Fixed Point Theorem.

Every continuous mapping from a convex, compact set to itself has a **fixed point.**

EQUILIBRIUM COMPUTATION

Support Enumeration Algorithms

Nash. $\exists (\vec{p}, \vec{q}): p^{\top}Aq \ge p'^{\top}Aq \quad \forall p'; p^{\top}Bq \ge p^{\top}Bq' \forall q'$

Suppose knew the *support* S and T of (p,q).

$$\begin{aligned} (\vec{p}, \vec{q}): \\ e_i^{\mathsf{T}} A q &\geq e_{i'}^{\mathsf{T}} A q; \quad \forall i \in S, \forall i' \\ p^{\mathsf{T}} B e_j &\geq p^{\mathsf{T}} B e_{j'} \quad \forall j \in T, \forall j' \\ p_i &= 0; q_j = 0 \quad \forall i \notin S, \forall j \notin T \end{aligned}$$

Every point above is a Nash equilibrium.

Lipton-Markakis-Mehta

Lemma. There exists ϵ -approximate NE with support size at most $K = O\left(\frac{\log n}{\epsilon^2}\right)$.

Given **true** NE (p,q), sample P,Q i.i.d. K times. Uniform distribution over P,Q is ϵ -Nash.

Chernoff Bounds

Approximate Nash Equilibrium

Theorem (2003) [LMM]

For any bimatrix game with at most n strategies, an ϵ -approximate Nash equilibrium can be computed in time $n^{O(\log n / \epsilon^2)}$

Theorem (2009) [Daskalakis, Papadimitriou] Any *oblivious* algorithm for Nash equilibrium runs in expected time $\Omega(n^{[0.8-0.34\epsilon]\log n})$.

Lemke-Howson 1964

- Nonzero solution \approx Nash equilibrium.
- Every vertex has one "escape" and "entry"
- There must be a sink \equiv Non zero solution.

How many steps?

• n strategies imply at most $O(2^n)$ steps.

Theorem (2004).[Savani, von Stengel]
 Lemke-Howson can take Ω(cⁿ) steps, for some c > 1.

Hardness of NASH

Theorem (2005) [Daskalakis, Papadimitriou, Goldberg] Computing Nash equilibrium in a 4-player game

is PPAD hard.

Theorem (2006) [Chen, Deng]

Computing Nash equilibrium in a 2-player game is PPAD hard.

I've heard of NP. What's this PPAD?

- Subclass of "search" problems whose solutions are guaranteed to exist (more formally, TFNP)
- **PPAD** captures problems where existence is proved via a parity argument in a digraph.
- End of Line. Given G = ({0,1}ⁿ, A), in/out-deg ≤ 1 out-deg(0ⁿ)=1, oracle for in/out(v); find v with in-deg(v)=1 and out-deg(v) = 0.
- **PPAD** is problems reducible to **EOL**.

Summary of Nash equilibria

- Exact calculation is PPAD-hard. Even getting an FPTAS is PPAD-hard (Chen, Deng, Teng '07) Quasi-PTAS exists.
- Some special cases of games have had more success
 - Rank 1 games. (Ruta's talk!)
 - PTAS for constant rank (Kannan, Theobald '07) sparse games (D+P '09) small probability games (D+P '09)
- **OPEN:** Is there a PTAS to compute NE?

General Equilibrium Story

 Computing General Equilibria is PPAD-hard. (Reduction to Bimatrix games)

- Linear case and generalizations can be solved via convex programming techniques.
 Combinatorial techniques.
- "Substitutability" makes tatonnement work.

MECHANISM DESIGN

Traditional Algorithms

Auctions

Vickrey Auction

Setting

- Solicit **bids** from agents.
- Allocate item to one agent.
- Charge an agent (no more than bid.)

Second Price Auction

- Assign item to the highest bidder.
- Charge the bid of the second highest bidder.

Theorem (1961).

No player has an incentive to misrepresent bids in the second price auction.

Mechanism Design Framework

- Feasible Solution Space. $F \subseteq \mathbf{R}^N$
- Agents. Valuations $v_i: F \mapsto \mathbf{R}$ Reports type/bid $b_i: F \mapsto \mathbf{R}$
- Mechanism.
 - Allocation: $(x_1, x_2, \dots, x_N) \in F$
 - Prices: $(p_1, p_2, ..., p_N)$
 - Individual Rationality: $p_i \leq b_i(x_i)$
 - Incentive Compatibility: $v_i(x_i(v_i)) - p(v_i) \ge v_i(x_i(b_i)) - p_i(b_i)$
- Goal.

Welfare Maximization: VCG

Goal. Maximize $\sum_i v_i(x_i)$: $(x_1, \dots, x_N) \in F$

VCG Mechanism

- Find *x*^{*} which maximizes welfare.
- For agent *a* calculate
 - \widetilde{x} maximizing $\sum_{\{i \neq a\}} v_i(x_i)$: $x \in F$
 - Charge $p_a = \sum_{i \neq a} v_i(\tilde{x}_i) \sum_{i \neq a} v_i(x_i^*)$
 - Utility = $\sum_i v_i(x_i^*) \sum_{i \neq a} v_i(\tilde{x}_i)$
- For single item → second price auction.

Combinatorial Auctions

- N agents, M **indivisible** items. Utilities U_i .
- Hierarchies of utilities: subadditive, submodular, budgeted additive,
- Problem with VCG: maximization NP hard.
- Approximation and VCG don't mix: even a PTAS doesn't imply truthfulness.
- Algorithmic Mechanism Design

Nisan, Ronen 1999.

Minimax Objective: Load balancing

Goal. minimize max $v_i(x_i)$: $(x_1, \dots, x_N) \in F$

- VCG only works for SUM
- O(1)-approximation known for only special cases.
- General case = Ω(n)?
 Characterization (?)

1		
Agents		
		\bigcirc
V 💷		

Single Dimensional Settings

- Each agent controls **one** parameter privately.
- Monotone allocation algorithm \Rightarrow Truthful. (x_i should increase with v_i)

• Is there a setting where monotonicity constraint degrades performance?

Techniques in AMD

• Maximal in Range Algorithms. Restrict range a priori s.t. maximization in P. Argue restriction doesn't hurt much. Nisan-Ronen 99, Dobzinski-Nisan-Schapira '05, Dobzinski-Nisan '07, Buchfuhrer et al 2010....

• Randomized mechanisms. Linear programming techniques Lavi-Swamy 2005. Maximal in *Distributional* Range Dobzinski-Dughmi 2009. Convex programming Dughmi-Roughgarden-Yan 2011.

Lower Bounds.

Via characterizations. Dobzinski-Nisan 2007 Communication complexity. Nisan Segal 2001

Summary of Mechanism Design

• AMD opens up a whole suite of algorithm questions.

• Lower bounds to performance. Are we asking the right question?

• Can characterizations developed by economists exploited algorithmically?

WHAT I COULDN'T COVER

THANK YOU