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Let’s dive into property testing of functions

A property P is just a collection of boolean functions on
{0, 1}n.

The distance between two functions f and g is

dist(f , g) = Pr
x∈{0,1}n

[f (x) 6= g(x)].

The function g is ε-far from P if for all f ∈ P, dist(f , g) ≥ ε.
We have oracle access to some unknown boolean function

g : {0, 1}n → {0, 1}.

Want to test if g satisfies property P or is ε-far from it.
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Intro to propery testing (cont.)

Definition

Let P be a property of boolean functions on {0, 1}n. A tester for
P is a randomized algorithm A with black box access to a function
g : {0, 1}n → {0, 1} that satisfies:

g ∈ P ⇒ Pr[A accepts] ≥ 2/3.

g is ε-far from P ⇒ Pr[A rejects] ≥ 2/3.

We allow the algorithm to be adaptive (queries may depend on the
outcome of previous queries).

Can we test if f is a constant function?



Query Complexity

Query complexity for the tester A is the maximum number of
queries queried by the tester on any input.

Query complexity of a property P is the query complexity of the
tester that has the minimum query complexity.

Trivial example: let P be the property “g ≡ 0”. Then taking
O(1/ε) independent samples works w.h.p.
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Motivation for function isomorphism

The property P can be defined in terms of some known boolean
function

f : {0, 1}n → {0, 1}.

If P = {f }, it’s easy to test P in O(1/ε).

But what if we are allowed to shuffle around the input
variables? (P = {permuted versions of f})

Various function property testing questions can be reduced to
testing of function isomorphism.
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Function isomorphism

Definition (isomorphism)

Two boolean functions are isomorphic (in short, f∼=g) if they are
the same up to relabelling of the variables, i.e.

f (x1x2 . . . xn) = g(xπ(1)xπ(2) . . . xπ(n)) , gπ(x1 . . . xn)

for some permutation π : [n]→ [n].

Examples:

f (x1x2x3) = x1 ∨ (x2 ∧ x3) is isomorphic to
g(x1x2x3) = x3 ∨ (x1 ∧ x2).

The function f (x1x2x3) = majority(x1x2x3) is only isomorphic
to itself (because it is symmetric).
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Function isomorphism (cont.)

Definition (distance)

The distance up to isomorphism between f and g is

distiso(f , g) = min
π∈Sn

dist(f , gπ)

For example, consider two parities

f (x1 . . . xn) = x1 ⊕ x2 . . .⊕ xk

and
g(x1 . . . xn) = x100 ⊕ . . .⊕ x100+k′ .

Then

k = k ′ ⇒ distiso(f , g) = 0.

k 6= k ′ ⇒ distiso(f , g) = 1
2 .
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Testing function isomorphism

Definition (restated)

A property tester of isomorphism to a known function
f : {0, 1}n → {0, 1} is an adaptive algorithm A with black box
access to some g : {0, 1}n → {0, 1} such that satisfies:

f∼=g ⇒ Pr[A accepts] ≥ 2/3.

distiso(f , g) ≥ ε⇒ Pr[A rejects] ≥ 2/3,

where ε is a distance parameter.

Goal: minimize the number of queries to g .
We will think of ε as a constant.



Analogous testing problems

The analogous of testing isomorphism between graphs is
well-understood:

[AFKS00] characterized graphs for which isomorphism is
testable in O(1).

[FM08] gave tight bounds on the query complexity of testing
graph isomorphism.

[BC10] studied the question for uniform hypergraphs.



Some examples for function isomorphism testing

Many testing problems can be cast as testing isomorphism:

1 Testing if g is a dictator, i.e. g(x1x2 . . . xn) = xi for some
i ∈ [n].

Equivalent to testing isomorphism to f (x1x2 . . . xn) = x1.
Takes O(1) queries [PRS02].

2 Testing if g is a k-monomial.
Same as testing isomorphism to
f (x1x2 . . . xn) = x1 ∧ x2 . . . ∧ xk .
Takes O(1) queries too [PRS02].

3 Testing if g is a parity on k variables (k-parity).
Same as isomorphism to f (x1x2 . . . xk) = x1 ⊕ x2 . . .⊕ xk .
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Driving questions

How easy is to test isomorphism to a given function?

What is the query complexity of testing isomorphism to the
worst possible function f ?

Does the task become easier if f enjoys some additional
property? (e.g. if f depends only on k < n variables
(k-junta)).

Can we characterize the functions for which testing
isomorphism to can be tested with constant number of
queries?



Results from the recent past

Theorem (lower bound) [C-G.Soriano-Matsliah (SODA’11),
Alon-Blais (RANDOM’10)]

There are functions f : {0, 1}n → {0, 1} requiring Ω(n) queries to
test isomorphism to (even for adaptive, two-sided algorithms).

Moreover, for any k ≤ n for most k-juntas f : {0, 1}n → {0, 1}
testing isomorphism to f requires Ω(k) queries.

Theorem (upper bound) [CGM 2011, AB 2010]

Isomorphism to any k-junta can be tested with O(k log k) queries.



Results from the recent past

Theorem (lower bound) [C-G.Soriano-Matsliah (SODA’11),
Alon-Blais (RANDOM’10)]

There are functions f : {0, 1}n → {0, 1} requiring Ω(n) queries to
test isomorphism to (even for adaptive, two-sided algorithms).

Moreover, for any k ≤ n for most k-juntas f : {0, 1}n → {0, 1}
testing isomorphism to f requires Ω(k) queries.

Theorem (upper bound) [CGM 2011, AB 2010]

Isomorphism to any k-junta can be tested with O(k log k) queries.



Main Question: What are functions easy to test
isomorphism to?

O(1)-juntas. [Fischer et al, Alon-Blais-C-G.Soriano-Matsliah]

Symmetric function.

Proof.

Pick a random k from n
2 ±
√
n.

Pick randomly a constant number of x ’s of weigh k and query
these g(x)’s.
If g is ε-far from being isomorphic f then you catch a witness
whp.
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Number of permutations

The set of all distinct permutations of f be
Isom(f ) = {f π | π ∈ Sn}.

Observe that

The function f is symmetric if and only if |Isom(f )| = 1.

A dictator f (x) = x1 has |Isom(f )| = n.

A k-junta satisfies |Isom(f )| ≤
(n
k

)
k! ≤ nk .

Hence |Isom(f )| measures the “degree of symmetry” of f .

|Isom(f )| is also equal to the index of the automorphism group of
f in Sn. In fact n is the smallest possible size of Isom(f ) for
non-symmetric functions.
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Some easy-to-test functions

Observation

O(log |Isom(f )|) queries are enough to test isomorphism to f .

For a k-junta f and k = O(1), Isom(f ) ≤ nk = nO(1). Yet we know
that isomorphism to k-juntas can be tested with O(1) queries.

Are there any other such functions?

Majority on the first n − 1 variables Majn−1. This is very
close to Majn, so we can use the trivial isomorphism tester for
Majn.
Parity on the first n − 1 variables χn−1. This satisfies
χn−1 = χn ⊕ xn. We can translate queries for the dictator xn
into queries for χn, and the problem turns into testing
isomorphism to xn.

What do these two have in common?
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Junto-symmetric functions

Definition (Junto-Symmetric)

A function f : {0, 1}n → {0, 1} is called k-junto-symmetric if it can
be written in the form

f (x) = f̂ (|x |, x�
J
)

for some f̂ : {0, . . . , n} × {0, 1}|J| → {0, 1} and |J| = k .

Theorem (O(1)-junto-symmetric ≡ poly-symmetric)

The following are equivalent:

(a) |Isom(f )| = nO(1) (f is poly-symmetric);

(b) f is an O(1)-junto-symmetric;

(c) each fn is a boolean combination of O(1)-many dictators and
O(1)-many symmetric functions;
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Testing junto-symmetry

Theorem

[C-Fischer-G.Soriano-Matsliah (CCC’12)] There are poly(k/ε)
algorithms to test if f is k-junto-symmetric and to test
isomorphism to k-junto-symmetric functions.

Theorem

[C-Fischer-G.Soriano-Matsliah (CCC’12)] There are poly(k/ε)
algorithms to test if f is “close” to k-junto-symmetric and to test
isomorphism to functions that are “close” to k-junto-symmetric
functions.

Open:

isomorphism to f can be tested with O(1) queries

⇐⇒
f is close to O(1)-junto-symmetric?
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Further Works

Similar statement has been independently been proved by
Blais-Weinstein-Yoshida (FOCS’12).

Theorem

There are poly(k/ε) algorithms to test if f is “close” to
k-junto-symmetric and to test isomorphism to functions that are
“close” to k-junto-symmetric functions.

Open:

isomorphism to f can be tested with O(1) queries

⇐⇒

f is close to O(1)-junto-symmetric?



How far we from a lower bound?

Conjecture

If f is “far” from a k-junto-symmetric then testing isomorphism to
f requires log∗ k queries.



Results from the recent past

Theorem (lower bound) [C-G.Soriano-Matsliah (SODA’11),
Alon-Blais (RANDOM’10)]

There are functions f : {0, 1}n → {0, 1} requiring Ω(n) queries to
test isomorphism to (even for adaptive, two-sided algorithms).

Moreover, for any k ≤ n for most k-juntas f : {0, 1}n → {0, 1}
testing isomorphism to f requires Ω(k) queries.

Theorem (upper bound) [CGM 2011, AB 2010]

Isomorphism to any k-junta can be tested with O(k log k) queries.



Ω(n) lower bound: First attempt

Pick f , g to be two random functions from {0, 1}n → {0, 1}.

Make f the known function. And with let the unknown function be
f with probability 1/2 and g with probability 1/2.

Prove that f and g are ε-far.

Prove that any small set of queries cannot distinguish f from g .

Does NOT work: Since f is known so the “light weight” queries
reveal a lot and helps to distinguish f from g . Infact

√
n number

of queries suffices.
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Ω(k) lower bound : Second attempt

We show there is f : {0, 1}n → {0, 1} whose permutations look
“almost random” to any tester making o(n) queries.
Our functions are non-zero only for balanced inputs (x with
|x | ∈ [n/2− 2

√
n, n/2 + 2

√
n]).

Definition

f is q-regular if for all sets Q = {x1, . . . , xq} of balanced queries and all
assigments a : {0, 1}q → {0, 1},

Pr
π

[f π(x1) = a1 ∧ f π(x2) = a2 ∧ . . . ∧ f π(xq) = aq] = (1± 1/6)2−q.

f is q-regular ⇒ more than q queries are needed to test if g∼=f .

We use the probabilistic method to prove the existence of
Ω(n)-regular functions.

An Ω(k) lower bound for k-juntas follows by padding.
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Existence of q-regular functions

Definition

f is q-regular if for all sets Q = {x1, . . . , xq} of balanced queries
and all assigments a : {0, 1}q → {0, 1},

Pr
π

[f π(x1) = a1 ∧ f π(x2) = a2 ∧ . . . ∧ f π(xq) = aq] = (1± 1/6)2−q.

Even if f is a random function on the balanced queries, it is not
obvious it is q-regular - since Q and π(Q) can intersect and hence
the event that f π(x1) = a1 ∧ f π(x2) = a2 ∧ . . . ∧ f π(xq) = aq and
the event that f (x1) = a1 ∧ f (x2) = a2 ∧ . . . ∧ f (xq) = aq are not
independent.

So we have to calculate the probability in a different way - using
ideas from [BC10] .



Existence of q-regular functions

Let N ,
( n
n/2−d

√
ne
)

and X (g , τ) = I[g τ |Q = a].

Let G be the permutation of variables subgroup of Sym({0, 1}n).

We have to compute Prτ∈G [X (f , τ) = 1].

Lemma

There exist s , dN/q2e permutations σ1, . . . , σs ∈ G such that
σ1Q, . . . , σsQ are disjoint.

Pr
τ∈G

[X (f , τ) = 1] = Ei∈[s]Eτ∈GX (f , τ◦σi ) = Eτ∈GEi∈[s]X (f , τ◦σi ).

Now Ei∈[s]X (f , τ ◦ σi ) is close to its expectation with high
probability [by Chernoff Bound]. And by union bound we show
that a q-regular function exists.
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From Ω(n) to Ω(k) for k-juntas

Consider two q-regular functions f , g : {0, 1}k → {0, 1} with
dist(f , g) ≥ ε.

Random permutations of f and g look random, so it is also
hard to distinguish random f π from random gπ

′
.

Pad f , g to obtain functions f ′, g ′ : {0, 1}n → {0, 1} by
ignoring the last n − k variables.

One can show distiso(f ′,g ′)
2 ≤ distiso(f , g) ≤ distiso(f ′, g ′).

Hence an Ω(k) lower bound for k-juntas follows from padding.



Thus ....

Theorem (lower bound) [C-G.Soriano-Matsliah (SODA’11),
Alon-Blais (RANDOM’10)]

There are functions f : {0, 1}n → {0, 1} requiring Ω(n) queries to
test isomorphism to (even for adaptive, two-sided algorithms).

Moreover, for any k ≤ n for most k-juntas f : {0, 1}n → {0, 1}
testing isomorphism to f requires Ω(k) queries.



How “complex” is the hard-to-test f ?

For some f , testing isomorphism against f needs Ω(n) queries.

The proof is non-constructive; a truncated random function
works.

Random functions are usually very complicated to describe.

However, poly(n)-wise independence suffices for the proof.

By standard constructions of poly(n)-wise independent
generators, we can put f in NC .

Likewise, f can be taken to be a truncated low-degree
polynomial over F2.
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Consequences of the lower bound

Corollary

Testing if a function can be computed by a circuit of size s takes
at least poly(s) queries (for s up to poly(n)).

Proof. Let n = s1/c (c > 1). ∃ n−regular f : {0, 1}n → {0, 1}
computable by circuits of size sc = n. Any f π still has size n, but
is indistinguishable with o(s) queries from a random function,
which need circuits of size 2Ω(n) � s.

Corollary

Testing if the Fourier degree of f is ≤ d requires Ω(d) queries.

Proof. Any k-junta is a degree-k polynomial, whereas a random f
has degree Ω(n).

This settles open questions by [DLM+07].
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Results from the recent past

Theorem (lower bound) [C-G.Soriano-Matsliah (SODA’11),
Alon-Blais (RANDOM’10)]

There are functions f : {0, 1}n → {0, 1} requiring Ω(n) queries to
test isomorphism to (even for adaptive, two-sided algorithms).

Moreover, for any k ≤ n for most k-juntas f : {0, 1}n → {0, 1}
testing isomorphism to f requires Ω(k) queries.

Theorem (upper bound) [CGM 2011, AB 2010]

Isomorphism to any k-junta can be tested with O(k log k) queries.



O(k log k) upper bound for k-juntas

When k = n, there is a simple O(n log n) query algorithm:

1 Draw O(log n!) = O(n log n) uniformly random samples and
query g on them.

2 Accept iff there is some f π consistent with all samples.

Suppose the known function f is a k-junta.

Assume g is a k-junta too: g(x1 . . . xn) = g ′(xi1 . . . xik ); g ′ is
the core of the k-junta g .

The simple upper bound would still need
log(

(n
k

)
k!) = O(k log n)� k .

We would like to sample g ′ rather than g .

In general, we would need to draw samples of the core of the
k-junta closest to g , but let us ignore this issue.
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Noisy samplers

Let η > 0 and g : {0, 1}n → {0, 1} be a k-junta with core
g ′ : {0, 1}k → {0, 1}, i.e. g(x1 . . . xn) = g ′(xi1xi2 . . . xik ).

Definition

An η-noisy sampler for the core of g is a black-box probabilistic
algorithm A that on each execution outputs
(x , a) ∈ {0, 1}k → {0, 1} such that

1 The distribution of x is uniform in {0, 1}k .

2 Pr[g ′(x) = a] ≥ 1− η.

The probability is over the randomness of A.

We don’t know the relevant vars i1, . . . , ik of g , and finding
even one of them takes Ω(log n)� k queries.

Still we can draw good uniform samples from g ′!
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Construction of noisy samplers

Theorem

It is possible to construct a 0.1-noisy sampler for the core of a
k-junta g . The sampler makes one query to g on each execution,
after O(k log k) preprocessing queries.

This allows us to test isomorphism to k-juntas in
O(k log k + log k!) = O(k log k) queries.

The algorithm builds on the O(k log k) junta tester of Blais.

It starts by picking at random a partition P of [n] into
k2+O(1) blocks and finding the k-relevant blocks.

For each sample we make one query that is constant inside
each block.

These queries are highly non-uniform for any given P.

Even so, for most partitions P this yields a noisy sampler.
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Summary

testing problem prior work this work

isom. to k-juntas Ω(log k) [FKR+02, BO10, AB10]

Õ(k4) [FKR+02, DLM+07]

Ω(k)
O(k log k)

isom. to k-juntas, 1-
sided error

Ω(log log n) [FKR+02]
Ω(k log (n/k))
O(k log n)

circuits of size s Ω̃(log s) [DLM+07]

Õ(s6) [DLM+07]
sΩ(1)

Fourier degree ≤ d Ω(log d) [DLM+07]

2O(d) [DLM+07]
Ω(d)

isom. between unknown
functions

Ω(2n/2/n1/4) [AB10]
O(
√

2n n log n) [AB10]
Ω(2n/2/n1/4)
O(
√

2n n log n)

Table: Summary of results
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