
Testing Boolean Function Isomorphism

Sourav Chakraborty
(Chennai Mathematical Institute, India)

based on the works with

Noga Alon, Eric Blais, Eldar Fischer,
David Garćıa Soriano, Arie Matsliah

Let’s dive into property testing of functions

A property P is just a collection of boolean functions on
{0, 1}n.

The distance between two functions f and g is

dist(f , g) = Pr
x∈{0,1}n

[f (x) 6= g(x)].

The function g is ε-far from P if for all f ∈ P, dist(f , g) ≥ ε.
We have oracle access to some unknown boolean function

g : {0, 1}n → {0, 1}.

Want to test if g satisfies property P or is ε-far from it.

Let’s dive into property testing of functions

A property P is just a collection of boolean functions on
{0, 1}n.

The distance between two functions f and g is

dist(f , g) = Pr
x∈{0,1}n

[f (x) 6= g(x)].

The function g is ε-far from P if for all f ∈ P, dist(f , g) ≥ ε.
We have oracle access to some unknown boolean function

g : {0, 1}n → {0, 1}.

Want to test if g satisfies property P or is ε-far from it.

Let’s dive into property testing of functions

A property P is just a collection of boolean functions on
{0, 1}n.

The distance between two functions f and g is

dist(f , g) = Pr
x∈{0,1}n

[f (x) 6= g(x)].

The function g is ε-far from P if for all f ∈ P, dist(f , g) ≥ ε.
We have oracle access to some unknown boolean function

g : {0, 1}n → {0, 1}.

Want to test if g satisfies property P or is ε-far from it.

Let’s dive into property testing of functions

A property P is just a collection of boolean functions on
{0, 1}n.

The distance between two functions f and g is

dist(f , g) = Pr
x∈{0,1}n

[f (x) 6= g(x)].

The function g is ε-far from P if for all f ∈ P, dist(f , g) ≥ ε.

We have oracle access to some unknown boolean function

g : {0, 1}n → {0, 1}.

Want to test if g satisfies property P or is ε-far from it.

Let’s dive into property testing of functions

A property P is just a collection of boolean functions on
{0, 1}n.

The distance between two functions f and g is

dist(f , g) = Pr
x∈{0,1}n

[f (x) 6= g(x)].

The function g is ε-far from P if for all f ∈ P, dist(f , g) ≥ ε.
We have oracle access to some unknown boolean function

g : {0, 1}n → {0, 1}.

Want to test if g satisfies property P or is ε-far from it.

Let’s dive into property testing of functions

A property P is just a collection of boolean functions on
{0, 1}n.

The distance between two functions f and g is

dist(f , g) = Pr
x∈{0,1}n

[f (x) 6= g(x)].

The function g is ε-far from P if for all f ∈ P, dist(f , g) ≥ ε.
We have oracle access to some unknown boolean function

g : {0, 1}n → {0, 1}.

Want to test if g satisfies property P or is ε-far from it.

Intro to propery testing (cont.)

Definition

Let P be a property of boolean functions on {0, 1}n. A tester for
P is a randomized algorithm A with black box access to a function
g : {0, 1}n → {0, 1} that satisfies:

g ∈ P ⇒ Pr[A accepts] ≥ 2/3.

g is ε-far from P ⇒ Pr[A rejects] ≥ 2/3.

We allow the algorithm to be adaptive (queries may depend on the
outcome of previous queries).

Can we test if f is a constant function?

Query Complexity

Query complexity for the tester A is the maximum number of
queries queried by the tester on any input.

Query complexity of a property P is the query complexity of the
tester that has the minimum query complexity.

Trivial example: let P be the property “g ≡ 0”. Then taking
O(1/ε) independent samples works w.h.p.

Query Complexity

Query complexity for the tester A is the maximum number of
queries queried by the tester on any input.

Query complexity of a property P is the query complexity of the
tester that has the minimum query complexity.

Trivial example: let P be the property “g ≡ 0”. Then taking
O(1/ε) independent samples works w.h.p.

Query Complexity

Query complexity for the tester A is the maximum number of
queries queried by the tester on any input.

Query complexity of a property P is the query complexity of the
tester that has the minimum query complexity.

Trivial example: let P be the property “g ≡ 0”. Then taking
O(1/ε) independent samples works w.h.p.

Motivation for function isomorphism

The property P can be defined in terms of some known boolean
function

f : {0, 1}n → {0, 1}.

If P = {f }, it’s easy to test P in O(1/ε).

But what if we are allowed to shuffle around the input
variables? (P = {permuted versions of f})

Various function property testing questions can be reduced to
testing of function isomorphism.

Motivation for function isomorphism

The property P can be defined in terms of some known boolean
function

f : {0, 1}n → {0, 1}.

If P = {f }, it’s easy to test P in O(1/ε).

But what if we are allowed to shuffle around the input
variables? (P = {permuted versions of f})

Various function property testing questions can be reduced to
testing of function isomorphism.

Function isomorphism

Definition (isomorphism)

Two boolean functions are isomorphic (in short, f∼=g) if they are
the same up to relabelling of the variables, i.e.

f (x1x2 . . . xn) = g(xπ(1)xπ(2) . . . xπ(n)) , gπ(x1 . . . xn)

for some permutation π : [n]→ [n].

Examples:

f (x1x2x3) = x1 ∨ (x2 ∧ x3) is isomorphic to
g(x1x2x3) = x3 ∨ (x1 ∧ x2).

The function f (x1x2x3) = majority(x1x2x3) is only isomorphic
to itself (because it is symmetric).

Function isomorphism

Definition (isomorphism)

Two boolean functions are isomorphic (in short, f∼=g) if they are
the same up to relabelling of the variables, i.e.

f (x1x2 . . . xn) = g(xπ(1)xπ(2) . . . xπ(n)) , gπ(x1 . . . xn)

for some permutation π : [n]→ [n].

Examples:

f (x1x2x3) = x1 ∨ (x2 ∧ x3) is isomorphic to
g(x1x2x3) = x3 ∨ (x1 ∧ x2).

The function f (x1x2x3) = majority(x1x2x3) is only isomorphic
to itself (because it is symmetric).

Function isomorphism (cont.)

Definition (distance)

The distance up to isomorphism between f and g is

distiso(f , g) = min
π∈Sn

dist(f , gπ)

For example, consider two parities

f (x1 . . . xn) = x1 ⊕ x2 . . .⊕ xk

and
g(x1 . . . xn) = x100 ⊕ . . .⊕ x100+k′ .

Then

k = k ′ ⇒ distiso(f , g) = 0.

k 6= k ′ ⇒ distiso(f , g) = 1
2 .

Function isomorphism (cont.)

Definition (distance)

The distance up to isomorphism between f and g is

distiso(f , g) = min
π∈Sn

dist(f , gπ)

For example, consider two parities

f (x1 . . . xn) = x1 ⊕ x2 . . .⊕ xk

and
g(x1 . . . xn) = x100 ⊕ . . .⊕ x100+k′ .

Then

k = k ′ ⇒ distiso(f , g) = 0.

k 6= k ′ ⇒ distiso(f , g) = 1
2 .

Testing function isomorphism

Definition (restated)

A property tester of isomorphism to a known function
f : {0, 1}n → {0, 1} is an adaptive algorithm A with black box
access to some g : {0, 1}n → {0, 1} such that satisfies:

f∼=g ⇒ Pr[A accepts] ≥ 2/3.

distiso(f , g) ≥ ε⇒ Pr[A rejects] ≥ 2/3,

where ε is a distance parameter.

Goal: minimize the number of queries to g .
We will think of ε as a constant.

Analogous testing problems

The analogous of testing isomorphism between graphs is
well-understood:

[AFKS00] characterized graphs for which isomorphism is
testable in O(1).

[FM08] gave tight bounds on the query complexity of testing
graph isomorphism.

[BC10] studied the question for uniform hypergraphs.

Some examples for function isomorphism testing

Many testing problems can be cast as testing isomorphism:

1 Testing if g is a dictator, i.e. g(x1x2 . . . xn) = xi for some
i ∈ [n].

Equivalent to testing isomorphism to f (x1x2 . . . xn) = x1.
Takes O(1) queries [PRS02].

2 Testing if g is a k-monomial.
Same as testing isomorphism to
f (x1x2 . . . xn) = x1 ∧ x2 . . . ∧ xk .
Takes O(1) queries too [PRS02].

3 Testing if g is a parity on k variables (k-parity).
Same as isomorphism to f (x1x2 . . . xk) = x1 ⊕ x2 . . .⊕ xk .

Some examples for function isomorphism testing

Many testing problems can be cast as testing isomorphism:

1 Testing if g is a dictator, i.e. g(x1x2 . . . xn) = xi for some
i ∈ [n].
Equivalent to testing isomorphism to f (x1x2 . . . xn) = x1.
Takes O(1) queries [PRS02].

2 Testing if g is a k-monomial.
Same as testing isomorphism to
f (x1x2 . . . xn) = x1 ∧ x2 . . . ∧ xk .
Takes O(1) queries too [PRS02].

3 Testing if g is a parity on k variables (k-parity).
Same as isomorphism to f (x1x2 . . . xk) = x1 ⊕ x2 . . .⊕ xk .

Some examples for function isomorphism testing

Many testing problems can be cast as testing isomorphism:

1 Testing if g is a dictator, i.e. g(x1x2 . . . xn) = xi for some
i ∈ [n].
Equivalent to testing isomorphism to f (x1x2 . . . xn) = x1.
Takes O(1) queries [PRS02].

2 Testing if g is a k-monomial.
Same as testing isomorphism to
f (x1x2 . . . xn) = x1 ∧ x2 . . . ∧ xk .
Takes O(1) queries too [PRS02].

3 Testing if g is a parity on k variables (k-parity).
Same as isomorphism to f (x1x2 . . . xk) = x1 ⊕ x2 . . .⊕ xk .

Some examples for function isomorphism testing

Many testing problems can be cast as testing isomorphism:

1 Testing if g is a dictator, i.e. g(x1x2 . . . xn) = xi for some
i ∈ [n].
Equivalent to testing isomorphism to f (x1x2 . . . xn) = x1.
Takes O(1) queries [PRS02].

2 Testing if g is a k-monomial.
Same as testing isomorphism to
f (x1x2 . . . xn) = x1 ∧ x2 . . . ∧ xk .
Takes O(1) queries too [PRS02].

3 Testing if g is a parity on k variables (k-parity).
Same as isomorphism to f (x1x2 . . . xk) = x1 ⊕ x2 . . .⊕ xk .

Driving questions

How easy is to test isomorphism to a given function?

What is the query complexity of testing isomorphism to the
worst possible function f ?

Does the task become easier if f enjoys some additional
property? (e.g. if f depends only on k < n variables
(k-junta)).

Can we characterize the functions for which testing
isomorphism to can be tested with constant number of
queries?

Results from the recent past

Theorem (lower bound) [C-G.Soriano-Matsliah (SODA’11),
Alon-Blais (RANDOM’10)]

There are functions f : {0, 1}n → {0, 1} requiring Ω(n) queries to
test isomorphism to (even for adaptive, two-sided algorithms).

Moreover, for any k ≤ n for most k-juntas f : {0, 1}n → {0, 1}
testing isomorphism to f requires Ω(k) queries.

Theorem (upper bound) [CGM 2011, AB 2010]

Isomorphism to any k-junta can be tested with O(k log k) queries.

Results from the recent past

Theorem (lower bound) [C-G.Soriano-Matsliah (SODA’11),
Alon-Blais (RANDOM’10)]

There are functions f : {0, 1}n → {0, 1} requiring Ω(n) queries to
test isomorphism to (even for adaptive, two-sided algorithms).

Moreover, for any k ≤ n for most k-juntas f : {0, 1}n → {0, 1}
testing isomorphism to f requires Ω(k) queries.

Theorem (upper bound) [CGM 2011, AB 2010]

Isomorphism to any k-junta can be tested with O(k log k) queries.

Main Question: What are functions easy to test
isomorphism to?

O(1)-juntas. [Fischer et al, Alon-Blais-C-G.Soriano-Matsliah]

Symmetric function.

Proof.

Pick a random k from n
2 ±
√
n.

Pick randomly a constant number of x ’s of weigh k and query
these g(x)’s.
If g is ε-far from being isomorphic f then you catch a witness
whp.

Main Question: What are functions easy to test
isomorphism to?

O(1)-juntas. [Fischer et al, Alon-Blais-C-G.Soriano-Matsliah]

Symmetric function.

Proof.

Pick a random k from n
2 ±
√
n.

Pick randomly a constant number of x ’s of weigh k and query
these g(x)’s.
If g is ε-far from being isomorphic f then you catch a witness
whp.

Main Question: What are functions easy to test
isomorphism to?

O(1)-juntas. [Fischer et al, Alon-Blais-C-G.Soriano-Matsliah]

Symmetric function.

Proof.

Pick a random k from n
2 ±
√
n.

Pick randomly a constant number of x ’s of weigh k and query
these g(x)’s.
If g is ε-far from being isomorphic f then you catch a witness
whp.

What are functions easy to test isomorphism to?

O(1)-juntas.

Symmetric functions.

Functions with small isomorphisms.

What are functions easy to test isomorphism to?

O(1)-juntas.

Symmetric functions.

Functions with small isomorphisms.

Number of permutations

The set of all distinct permutations of f be
Isom(f) = {f π | π ∈ Sn}.

Observe that

The function f is symmetric if and only if |Isom(f)| = 1.

A dictator f (x) = x1 has |Isom(f)| = n.

A k-junta satisfies |Isom(f)| ≤
(n
k

)
k! ≤ nk .

Hence |Isom(f)| measures the “degree of symmetry” of f .

|Isom(f)| is also equal to the index of the automorphism group of
f in Sn. In fact n is the smallest possible size of Isom(f) for
non-symmetric functions.

Number of permutations

The set of all distinct permutations of f be
Isom(f) = {f π | π ∈ Sn}.

Observe that

The function f is symmetric if and only if |Isom(f)| = 1.

A dictator f (x) = x1 has |Isom(f)| = n.

A k-junta satisfies |Isom(f)| ≤
(n
k

)
k! ≤ nk .

Hence |Isom(f)| measures the “degree of symmetry” of f .

|Isom(f)| is also equal to the index of the automorphism group of
f in Sn. In fact n is the smallest possible size of Isom(f) for
non-symmetric functions.

Number of permutations

The set of all distinct permutations of f be
Isom(f) = {f π | π ∈ Sn}.

Observe that

The function f is symmetric if and only if |Isom(f)| = 1.

A dictator f (x) = x1 has |Isom(f)| = n.

A k-junta satisfies |Isom(f)| ≤
(n
k

)
k! ≤ nk .

Hence |Isom(f)| measures the “degree of symmetry” of f .

|Isom(f)| is also equal to the index of the automorphism group of
f in Sn. In fact n is the smallest possible size of Isom(f) for
non-symmetric functions.

Some easy-to-test functions

Observation

O(log |Isom(f)|) queries are enough to test isomorphism to f .

For a k-junta f and k = O(1), Isom(f) ≤ nk = nO(1). Yet we know
that isomorphism to k-juntas can be tested with O(1) queries.

Are there any other such functions?

Majority on the first n − 1 variables Majn−1. This is very
close to Majn, so we can use the trivial isomorphism tester for
Majn.
Parity on the first n − 1 variables χn−1. This satisfies
χn−1 = χn ⊕ xn. We can translate queries for the dictator xn
into queries for χn, and the problem turns into testing
isomorphism to xn.

What do these two have in common?

Some easy-to-test functions

Observation

O(log |Isom(f)|) queries are enough to test isomorphism to f .

For a k-junta f and k = O(1), Isom(f) ≤ nk = nO(1). Yet we know
that isomorphism to k-juntas can be tested with O(1) queries.

Are there any other such functions?

Majority on the first n − 1 variables Majn−1. This is very
close to Majn, so we can use the trivial isomorphism tester for
Majn.
Parity on the first n − 1 variables χn−1. This satisfies
χn−1 = χn ⊕ xn. We can translate queries for the dictator xn
into queries for χn, and the problem turns into testing
isomorphism to xn.

What do these two have in common?

Some easy-to-test functions

Observation

O(log |Isom(f)|) queries are enough to test isomorphism to f .

For a k-junta f and k = O(1), Isom(f) ≤ nk = nO(1). Yet we know
that isomorphism to k-juntas can be tested with O(1) queries.

Are there any other such functions?

Majority on the first n − 1 variables Majn−1. This is very
close to Majn, so we can use the trivial isomorphism tester for
Majn.
Parity on the first n − 1 variables χn−1. This satisfies
χn−1 = χn ⊕ xn. We can translate queries for the dictator xn
into queries for χn, and the problem turns into testing
isomorphism to xn.

What do these two have in common?

Some easy-to-test functions

Observation

O(log |Isom(f)|) queries are enough to test isomorphism to f .

For a k-junta f and k = O(1), Isom(f) ≤ nk = nO(1). Yet we know
that isomorphism to k-juntas can be tested with O(1) queries.

Are there any other such functions?

Majority on the first n − 1 variables Majn−1. This is very
close to Majn, so we can use the trivial isomorphism tester for
Majn.

Parity on the first n − 1 variables χn−1. This satisfies
χn−1 = χn ⊕ xn. We can translate queries for the dictator xn
into queries for χn, and the problem turns into testing
isomorphism to xn.

What do these two have in common?

Some easy-to-test functions

Observation

O(log |Isom(f)|) queries are enough to test isomorphism to f .

For a k-junta f and k = O(1), Isom(f) ≤ nk = nO(1). Yet we know
that isomorphism to k-juntas can be tested with O(1) queries.

Are there any other such functions?

Majority on the first n − 1 variables Majn−1. This is very
close to Majn, so we can use the trivial isomorphism tester for
Majn.
Parity on the first n − 1 variables χn−1. This satisfies
χn−1 = χn ⊕ xn. We can translate queries for the dictator xn
into queries for χn, and the problem turns into testing
isomorphism to xn.

What do these two have in common?

Some easy-to-test functions

Observation

O(log |Isom(f)|) queries are enough to test isomorphism to f .

For a k-junta f and k = O(1), Isom(f) ≤ nk = nO(1). Yet we know
that isomorphism to k-juntas can be tested with O(1) queries.

Are there any other such functions?

Majority on the first n − 1 variables Majn−1. This is very
close to Majn, so we can use the trivial isomorphism tester for
Majn.
Parity on the first n − 1 variables χn−1. This satisfies
χn−1 = χn ⊕ xn. We can translate queries for the dictator xn
into queries for χn, and the problem turns into testing
isomorphism to xn.

What do these two have in common?

Junto-symmetric functions

Definition (Junto-Symmetric)

A function f : {0, 1}n → {0, 1} is called k-junto-symmetric if it can
be written in the form

f (x) = f̂ (|x |, x�
J
)

for some f̂ : {0, . . . , n} × {0, 1}|J| → {0, 1} and |J| = k .

Theorem (O(1)-junto-symmetric ≡ poly-symmetric)

The following are equivalent:

(a) |Isom(f)| = nO(1) (f is poly-symmetric);

(b) f is an O(1)-junto-symmetric;

(c) each fn is a boolean combination of O(1)-many dictators and
O(1)-many symmetric functions;

Junto-symmetric functions

Definition (Junto-Symmetric)

A function f : {0, 1}n → {0, 1} is called k-junto-symmetric if it can
be written in the form

f (x) = f̂ (|x |, x�
J
)

for some f̂ : {0, . . . , n} × {0, 1}|J| → {0, 1} and |J| = k .

Theorem (O(1)-junto-symmetric ≡ poly-symmetric)

The following are equivalent:

(a) |Isom(f)| = nO(1) (f is poly-symmetric);

(b) f is an O(1)-junto-symmetric;

(c) each fn is a boolean combination of O(1)-many dictators and
O(1)-many symmetric functions;

Testing junto-symmetry

Theorem

[C-Fischer-G.Soriano-Matsliah (CCC’12)] There are poly(k/ε)
algorithms to test if f is k-junto-symmetric and to test
isomorphism to k-junto-symmetric functions.

Theorem

[C-Fischer-G.Soriano-Matsliah (CCC’12)] There are poly(k/ε)
algorithms to test if f is “close” to k-junto-symmetric and to test
isomorphism to functions that are “close” to k-junto-symmetric
functions.

Open:

isomorphism to f can be tested with O(1) queries

⇐⇒
f is close to O(1)-junto-symmetric?

Testing junto-symmetry

Theorem

[C-Fischer-G.Soriano-Matsliah (CCC’12)] There are poly(k/ε)
algorithms to test if f is k-junto-symmetric and to test
isomorphism to k-junto-symmetric functions.

Theorem

[C-Fischer-G.Soriano-Matsliah (CCC’12)] There are poly(k/ε)
algorithms to test if f is “close” to k-junto-symmetric and to test
isomorphism to functions that are “close” to k-junto-symmetric
functions.

Open:

isomorphism to f can be tested with O(1) queries

⇐⇒
f is close to O(1)-junto-symmetric?

Testing junto-symmetry

Theorem

[C-Fischer-G.Soriano-Matsliah (CCC’12)] There are poly(k/ε)
algorithms to test if f is k-junto-symmetric and to test
isomorphism to k-junto-symmetric functions.

Theorem

[C-Fischer-G.Soriano-Matsliah (CCC’12)] There are poly(k/ε)
algorithms to test if f is “close” to k-junto-symmetric and to test
isomorphism to functions that are “close” to k-junto-symmetric
functions.

Open:

isomorphism to f can be tested with O(1) queries

⇐⇒
f is close to O(1)-junto-symmetric?

Further Works

Similar statement has been independently been proved by
Blais-Weinstein-Yoshida (FOCS’12).

Theorem

There are poly(k/ε) algorithms to test if f is “close” to
k-junto-symmetric and to test isomorphism to functions that are
“close” to k-junto-symmetric functions.

Open:

isomorphism to f can be tested with O(1) queries

⇐⇒

f is close to O(1)-junto-symmetric?

How far we from a lower bound?

Conjecture

If f is “far” from a k-junto-symmetric then testing isomorphism to
f requires log∗ k queries.

Results from the recent past

Theorem (lower bound) [C-G.Soriano-Matsliah (SODA’11),
Alon-Blais (RANDOM’10)]

There are functions f : {0, 1}n → {0, 1} requiring Ω(n) queries to
test isomorphism to (even for adaptive, two-sided algorithms).

Moreover, for any k ≤ n for most k-juntas f : {0, 1}n → {0, 1}
testing isomorphism to f requires Ω(k) queries.

Theorem (upper bound) [CGM 2011, AB 2010]

Isomorphism to any k-junta can be tested with O(k log k) queries.

Ω(n) lower bound: First attempt

Pick f , g to be two random functions from {0, 1}n → {0, 1}.

Make f the known function. And with let the unknown function be
f with probability 1/2 and g with probability 1/2.

Prove that f and g are ε-far.

Prove that any small set of queries cannot distinguish f from g .

Does NOT work: Since f is known so the “light weight” queries
reveal a lot and helps to distinguish f from g . Infact

√
n number

of queries suffices.

Ω(n) lower bound: First attempt

Pick f , g to be two random functions from {0, 1}n → {0, 1}.

Make f the known function. And with let the unknown function be
f with probability 1/2 and g with probability 1/2.

Prove that f and g are ε-far.

Prove that any small set of queries cannot distinguish f from g .

Does NOT work: Since f is known so the “light weight” queries
reveal a lot and helps to distinguish f from g . Infact

√
n number

of queries suffices.

Ω(n) lower bound: First attempt

Pick f , g to be two random functions from {0, 1}n → {0, 1}.

Make f the known function. And with let the unknown function be
f with probability 1/2 and g with probability 1/2.

Prove that f and g are ε-far.

Prove that any small set of queries cannot distinguish f from g .

Does NOT work: Since f is known so the “light weight” queries
reveal a lot and helps to distinguish f from g . Infact

√
n number

of queries suffices.

Ω(n) lower bound: First attempt

Pick f , g to be two random functions from {0, 1}n → {0, 1}.

Make f the known function. And with let the unknown function be
f with probability 1/2 and g with probability 1/2.

Prove that f and g are ε-far.

Prove that any small set of queries cannot distinguish f from g .

Does NOT work: Since f is known so the “light weight” queries
reveal a lot and helps to distinguish f from g . Infact

√
n number

of queries suffices.

Ω(n) lower bound: First attempt

Pick f , g to be two random functions from {0, 1}n → {0, 1}.

Make f the known function. And with let the unknown function be
f with probability 1/2 and g with probability 1/2.

Prove that f and g are ε-far.

Prove that any small set of queries cannot distinguish f from g .

Does NOT work: Since f is known so the “light weight” queries
reveal a lot and helps to distinguish f from g . Infact

√
n number

of queries suffices.

Ω(k) lower bound : Second attempt

We show there is f : {0, 1}n → {0, 1} whose permutations look
“almost random” to any tester making o(n) queries.
Our functions are non-zero only for balanced inputs (x with
|x | ∈ [n/2− 2

√
n, n/2 + 2

√
n]).

Definition

f is q-regular if for all sets Q = {x1, . . . , xq} of balanced queries and all
assigments a : {0, 1}q → {0, 1},

Pr
π

[f π(x1) = a1 ∧ f π(x2) = a2 ∧ . . . ∧ f π(xq) = aq] = (1± 1/6)2−q.

f is q-regular ⇒ more than q queries are needed to test if g∼=f .

We use the probabilistic method to prove the existence of
Ω(n)-regular functions.

An Ω(k) lower bound for k-juntas follows by padding.

Ω(k) lower bound : Second attempt

We show there is f : {0, 1}n → {0, 1} whose permutations look
“almost random” to any tester making o(n) queries.
Our functions are non-zero only for balanced inputs (x with
|x | ∈ [n/2− 2

√
n, n/2 + 2

√
n]).

Definition

f is q-regular if for all sets Q = {x1, . . . , xq} of balanced queries and all
assigments a : {0, 1}q → {0, 1},

Pr
π

[f π(x1) = a1 ∧ f π(x2) = a2 ∧ . . . ∧ f π(xq) = aq] = (1± 1/6)2−q.

f is q-regular ⇒ more than q queries are needed to test if g∼=f .

We use the probabilistic method to prove the existence of
Ω(n)-regular functions.

An Ω(k) lower bound for k-juntas follows by padding.

Ω(k) lower bound : Second attempt

We show there is f : {0, 1}n → {0, 1} whose permutations look
“almost random” to any tester making o(n) queries.
Our functions are non-zero only for balanced inputs (x with
|x | ∈ [n/2− 2

√
n, n/2 + 2

√
n]).

Definition

f is q-regular if for all sets Q = {x1, . . . , xq} of balanced queries and all
assigments a : {0, 1}q → {0, 1},

Pr
π

[f π(x1) = a1 ∧ f π(x2) = a2 ∧ . . . ∧ f π(xq) = aq] = (1± 1/6)2−q.

f is q-regular ⇒ more than q queries are needed to test if g∼=f .

We use the probabilistic method to prove the existence of
Ω(n)-regular functions.

An Ω(k) lower bound for k-juntas follows by padding.

Existence of q-regular functions

Definition

f is q-regular if for all sets Q = {x1, . . . , xq} of balanced queries
and all assigments a : {0, 1}q → {0, 1},

Pr
π

[f π(x1) = a1 ∧ f π(x2) = a2 ∧ . . . ∧ f π(xq) = aq] = (1± 1/6)2−q.

Even if f is a random function on the balanced queries, it is not
obvious it is q-regular - since Q and π(Q) can intersect and hence
the event that f π(x1) = a1 ∧ f π(x2) = a2 ∧ . . . ∧ f π(xq) = aq and
the event that f (x1) = a1 ∧ f (x2) = a2 ∧ . . . ∧ f (xq) = aq are not
independent.

So we have to calculate the probability in a different way - using
ideas from [BC10] .

Existence of q-regular functions

Let N ,
(n
n/2−d

√
ne
)

and X (g , τ) = I[g τ |Q = a].

Let G be the permutation of variables subgroup of Sym({0, 1}n).

We have to compute Prτ∈G [X (f , τ) = 1].

Lemma

There exist s , dN/q2e permutations σ1, . . . , σs ∈ G such that
σ1Q, . . . , σsQ are disjoint.

Pr
τ∈G

[X (f , τ) = 1] = Ei∈[s]Eτ∈GX (f , τ◦σi) = Eτ∈GEi∈[s]X (f , τ◦σi).

Now Ei∈[s]X (f , τ ◦ σi) is close to its expectation with high
probability [by Chernoff Bound]. And by union bound we show
that a q-regular function exists.

Existence of q-regular functions

Let N ,
(n
n/2−d

√
ne
)

and X (g , τ) = I[g τ |Q = a].

Let G be the permutation of variables subgroup of Sym({0, 1}n).

We have to compute Prτ∈G [X (f , τ) = 1].

Lemma

There exist s , dN/q2e permutations σ1, . . . , σs ∈ G such that
σ1Q, . . . , σsQ are disjoint.

Pr
τ∈G

[X (f , τ) = 1] = Ei∈[s]Eτ∈GX (f , τ◦σi) = Eτ∈GEi∈[s]X (f , τ◦σi).

Now Ei∈[s]X (f , τ ◦ σi) is close to its expectation with high
probability [by Chernoff Bound]. And by union bound we show
that a q-regular function exists.

Existence of q-regular functions

Let N ,
(n
n/2−d

√
ne
)

and X (g , τ) = I[g τ |Q = a].

Let G be the permutation of variables subgroup of Sym({0, 1}n).

We have to compute Prτ∈G [X (f , τ) = 1].

Lemma

There exist s , dN/q2e permutations σ1, . . . , σs ∈ G such that
σ1Q, . . . , σsQ are disjoint.

Pr
τ∈G

[X (f , τ) = 1] = Ei∈[s]Eτ∈GX (f , τ◦σi) = Eτ∈GEi∈[s]X (f , τ◦σi).

Now Ei∈[s]X (f , τ ◦ σi) is close to its expectation with high
probability [by Chernoff Bound]. And by union bound we show
that a q-regular function exists.

Existence of q-regular functions

Let N ,
(n
n/2−d

√
ne
)

and X (g , τ) = I[g τ |Q = a].

Let G be the permutation of variables subgroup of Sym({0, 1}n).

We have to compute Prτ∈G [X (f , τ) = 1].

Lemma

There exist s , dN/q2e permutations σ1, . . . , σs ∈ G such that
σ1Q, . . . , σsQ are disjoint.

Pr
τ∈G

[X (f , τ) = 1] = Ei∈[s]Eτ∈GX (f , τ◦σi) = Eτ∈GEi∈[s]X (f , τ◦σi).

Now Ei∈[s]X (f , τ ◦ σi) is close to its expectation with high
probability [by Chernoff Bound]. And by union bound we show
that a q-regular function exists.

From Ω(n) to Ω(k) for k-juntas

Consider two q-regular functions f , g : {0, 1}k → {0, 1} with
dist(f , g) ≥ ε.

Random permutations of f and g look random, so it is also
hard to distinguish random f π from random gπ

′
.

Pad f , g to obtain functions f ′, g ′ : {0, 1}n → {0, 1} by
ignoring the last n − k variables.

One can show distiso(f ′,g ′)
2 ≤ distiso(f , g) ≤ distiso(f ′, g ′).

Hence an Ω(k) lower bound for k-juntas follows from padding.

Thus

Theorem (lower bound) [C-G.Soriano-Matsliah (SODA’11),
Alon-Blais (RANDOM’10)]

There are functions f : {0, 1}n → {0, 1} requiring Ω(n) queries to
test isomorphism to (even for adaptive, two-sided algorithms).

Moreover, for any k ≤ n for most k-juntas f : {0, 1}n → {0, 1}
testing isomorphism to f requires Ω(k) queries.

How “complex” is the hard-to-test f ?

For some f , testing isomorphism against f needs Ω(n) queries.

The proof is non-constructive; a truncated random function
works.

Random functions are usually very complicated to describe.

However, poly(n)-wise independence suffices for the proof.

By standard constructions of poly(n)-wise independent
generators, we can put f in NC .

Likewise, f can be taken to be a truncated low-degree
polynomial over F2.

How “complex” is the hard-to-test f ?

For some f , testing isomorphism against f needs Ω(n) queries.

The proof is non-constructive; a truncated random function
works.

Random functions are usually very complicated to describe.

However, poly(n)-wise independence suffices for the proof.

By standard constructions of poly(n)-wise independent
generators, we can put f in NC .

Likewise, f can be taken to be a truncated low-degree
polynomial over F2.

Consequences of the lower bound

Corollary

Testing if a function can be computed by a circuit of size s takes
at least poly(s) queries (for s up to poly(n)).

Proof. Let n = s1/c (c > 1). ∃ n−regular f : {0, 1}n → {0, 1}
computable by circuits of size sc = n. Any f π still has size n, but
is indistinguishable with o(s) queries from a random function,
which need circuits of size 2Ω(n) � s.

Corollary

Testing if the Fourier degree of f is ≤ d requires Ω(d) queries.

Proof. Any k-junta is a degree-k polynomial, whereas a random f
has degree Ω(n).

This settles open questions by [DLM+07].

Consequences of the lower bound

Corollary

Testing if a function can be computed by a circuit of size s takes
at least poly(s) queries (for s up to poly(n)).

Proof. Let n = s1/c (c > 1). ∃ n−regular f : {0, 1}n → {0, 1}
computable by circuits of size sc = n. Any f π still has size n, but
is indistinguishable with o(s) queries from a random function,
which need circuits of size 2Ω(n) � s.

Corollary

Testing if the Fourier degree of f is ≤ d requires Ω(d) queries.

Proof. Any k-junta is a degree-k polynomial, whereas a random f
has degree Ω(n).

This settles open questions by [DLM+07].

Results from the recent past

Theorem (lower bound) [C-G.Soriano-Matsliah (SODA’11),
Alon-Blais (RANDOM’10)]

There are functions f : {0, 1}n → {0, 1} requiring Ω(n) queries to
test isomorphism to (even for adaptive, two-sided algorithms).

Moreover, for any k ≤ n for most k-juntas f : {0, 1}n → {0, 1}
testing isomorphism to f requires Ω(k) queries.

Theorem (upper bound) [CGM 2011, AB 2010]

Isomorphism to any k-junta can be tested with O(k log k) queries.

O(k log k) upper bound for k-juntas

When k = n, there is a simple O(n log n) query algorithm:

1 Draw O(log n!) = O(n log n) uniformly random samples and
query g on them.

2 Accept iff there is some f π consistent with all samples.

Suppose the known function f is a k-junta.

Assume g is a k-junta too: g(x1 . . . xn) = g ′(xi1 . . . xik); g ′ is
the core of the k-junta g .

The simple upper bound would still need
log(

(n
k

)
k!) = O(k log n)� k .

We would like to sample g ′ rather than g .

In general, we would need to draw samples of the core of the
k-junta closest to g , but let us ignore this issue.

O(k log k) upper bound for k-juntas

When k = n, there is a simple O(n log n) query algorithm:

1 Draw O(log n!) = O(n log n) uniformly random samples and
query g on them.

2 Accept iff there is some f π consistent with all samples.

Suppose the known function f is a k-junta.

Assume g is a k-junta too: g(x1 . . . xn) = g ′(xi1 . . . xik); g ′ is
the core of the k-junta g .

The simple upper bound would still need
log(

(n
k

)
k!) = O(k log n)� k .

We would like to sample g ′ rather than g .

In general, we would need to draw samples of the core of the
k-junta closest to g , but let us ignore this issue.

O(k log k) upper bound for k-juntas

When k = n, there is a simple O(n log n) query algorithm:

1 Draw O(log n!) = O(n log n) uniformly random samples and
query g on them.

2 Accept iff there is some f π consistent with all samples.

Suppose the known function f is a k-junta.

Assume g is a k-junta too: g(x1 . . . xn) = g ′(xi1 . . . xik); g ′ is
the core of the k-junta g .

The simple upper bound would still need
log(

(n
k

)
k!) = O(k log n)� k .

We would like to sample g ′ rather than g .

In general, we would need to draw samples of the core of the
k-junta closest to g , but let us ignore this issue.

Noisy samplers

Let η > 0 and g : {0, 1}n → {0, 1} be a k-junta with core
g ′ : {0, 1}k → {0, 1}, i.e. g(x1 . . . xn) = g ′(xi1xi2 . . . xik).

Definition

An η-noisy sampler for the core of g is a black-box probabilistic
algorithm A that on each execution outputs
(x , a) ∈ {0, 1}k → {0, 1} such that

1 The distribution of x is uniform in {0, 1}k .

2 Pr[g ′(x) = a] ≥ 1− η.

The probability is over the randomness of A.

We don’t know the relevant vars i1, . . . , ik of g , and finding
even one of them takes Ω(log n)� k queries.

Still we can draw good uniform samples from g ′!

Noisy samplers

Let η > 0 and g : {0, 1}n → {0, 1} be a k-junta with core
g ′ : {0, 1}k → {0, 1}, i.e. g(x1 . . . xn) = g ′(xi1xi2 . . . xik).

Definition

An η-noisy sampler for the core of g is a black-box probabilistic
algorithm A that on each execution outputs
(x , a) ∈ {0, 1}k → {0, 1} such that

1 The distribution of x is uniform in {0, 1}k .

2 Pr[g ′(x) = a] ≥ 1− η.

The probability is over the randomness of A.

We don’t know the relevant vars i1, . . . , ik of g , and finding
even one of them takes Ω(log n)� k queries.

Still we can draw good uniform samples from g ′!

Noisy samplers

Let η > 0 and g : {0, 1}n → {0, 1} be a k-junta with core
g ′ : {0, 1}k → {0, 1}, i.e. g(x1 . . . xn) = g ′(xi1xi2 . . . xik).

Definition

An η-noisy sampler for the core of g is a black-box probabilistic
algorithm A that on each execution outputs
(x , a) ∈ {0, 1}k → {0, 1} such that

1 The distribution of x is uniform in {0, 1}k .

2 Pr[g ′(x) = a] ≥ 1− η.

The probability is over the randomness of A.

We don’t know the relevant vars i1, . . . , ik of g , and finding
even one of them takes Ω(log n)� k queries.

Still we can draw good uniform samples from g ′!

Construction of noisy samplers

Theorem

It is possible to construct a 0.1-noisy sampler for the core of a
k-junta g . The sampler makes one query to g on each execution,
after O(k log k) preprocessing queries.

This allows us to test isomorphism to k-juntas in
O(k log k + log k!) = O(k log k) queries.

The algorithm builds on the O(k log k) junta tester of Blais.

It starts by picking at random a partition P of [n] into
k2+O(1) blocks and finding the k-relevant blocks.

For each sample we make one query that is constant inside
each block.

These queries are highly non-uniform for any given P.

Even so, for most partitions P this yields a noisy sampler.

Construction of noisy samplers

Theorem

It is possible to construct a 0.1-noisy sampler for the core of a
k-junta g . The sampler makes one query to g on each execution,
after O(k log k) preprocessing queries.

This allows us to test isomorphism to k-juntas in
O(k log k + log k!) = O(k log k) queries.

The algorithm builds on the O(k log k) junta tester of Blais.

It starts by picking at random a partition P of [n] into
k2+O(1) blocks and finding the k-relevant blocks.

For each sample we make one query that is constant inside
each block.

These queries are highly non-uniform for any given P.

Even so, for most partitions P this yields a noisy sampler.

Construction of noisy samplers

Theorem

It is possible to construct a 0.1-noisy sampler for the core of a
k-junta g . The sampler makes one query to g on each execution,
after O(k log k) preprocessing queries.

This allows us to test isomorphism to k-juntas in
O(k log k + log k!) = O(k log k) queries.

The algorithm builds on the O(k log k) junta tester of Blais.

It starts by picking at random a partition P of [n] into
k2+O(1) blocks and finding the k-relevant blocks.

For each sample we make one query that is constant inside
each block.

These queries are highly non-uniform for any given P.

Even so, for most partitions P this yields a noisy sampler.

Summary

testing problem prior work this work

isom. to k-juntas Ω(log k) [FKR+02, BO10, AB10]

Õ(k4) [FKR+02, DLM+07]

Ω(k)
O(k log k)

isom. to k-juntas, 1-
sided error

Ω(log log n) [FKR+02]
Ω(k log (n/k))
O(k log n)

circuits of size s Ω̃(log s) [DLM+07]

Õ(s6) [DLM+07]
sΩ(1)

Fourier degree ≤ d Ω(log d) [DLM+07]

2O(d) [DLM+07]
Ω(d)

isom. between unknown
functions

Ω(2n/2/n1/4) [AB10]
O(
√

2n n log n) [AB10]
Ω(2n/2/n1/4)
O(
√

2n n log n)

Table: Summary of results

Noga Alon and Eric Blais.
Testing boolean function isomorphism.
In Proc. RANDOM-APPROX, pages 394–405, 2010.

Noga Alon, Eldar Fischer, Michael Krivelevich, and Mario
Szegedy.
Efficient testing of large graphs.
Combinatorica, 20:451–476, 2000.
10.1007/s004930070001.

Laszlo Babai and Sourav Chakraborty.
Property testing of equivalence under a permutation group
action.
To appear in the ACM Transactions on Computation Theory
(ToCT), 2010.

Eric Blais and Ryan O’Donnell.
Lower bounds for testing function isomorphism.

In IEEE Conference on Computational Complexity, pages
235–246, 2010.

Ilias Diakonikolas, Homin K. Lee, Kevin Matulef, Krzysztof
Onak, Ronitt Rubinfeld, Rocco A. Servedio, and Andrew Wan.
Testing for concise representations.
Proc. IEEE Symposium on Foundations of Computer Science,
0:549–558, 2007.

Eldar Fischer, Guy Kindler, Dana Ron, Shmuel Safra, and Alex
Samorodnitsky.
Testing juntas.
In FOCS, pages 103–112, 2002.

Eldar Fischer and Arie Matsliah.
Testing graph isomorphism.
SIAM J. Comput., 38(1):207–225, 2008.

