Testing Boolean Function Isomorphism

Sourav Chakraborty (Chennai Mathematical Institute, India)

based on the works with

Noga Alon, Eric Blais, Eldar Fischer, David García Soriano, Arie Matsliah

• A *property* \mathcal{P} is just a collection of boolean functions on $\{0,1\}^n$.

- A *property* \mathcal{P} is just a collection of boolean functions on $\{0,1\}^n$.
- The *distance* between two functions f and g is

$$\operatorname{dist}(f,g) = \Pr_{x \in \{0,1\}^n} [f(x) \neq g(x)].$$

- A *property* \mathcal{P} is just a collection of boolean functions on $\{0,1\}^n$.
- The *distance* between two functions f and g is

$$\operatorname{dist}(f,g) = \Pr_{x \in \{0,1\}^n} [f(x) \neq g(x)].$$

• The function g is ϵ -far from \mathcal{P} if for all $f \in \mathcal{P}$, $\operatorname{dist}(f,g) \geq \epsilon$.

- A property \mathcal{P} is just a collection of boolean functions on $\{0,1\}^n$.
- The *distance* between two functions f and g is

$$\operatorname{dist}(f,g) = \Pr_{x \in \{0,1\}^n} [f(x) \neq g(x)].$$

- The function g is ϵ -far from \mathcal{P} if for all $f \in \mathcal{P}$, $\operatorname{dist}(f,g) \geq \epsilon$.
- We have oracle access to some *unknown* boolean function

$$g: \{0,1\}^n \to \{0,1\}.$$

- A property \mathcal{P} is just a collection of boolean functions on $\{0,1\}^n$.
- The *distance* between two functions f and g is

$$\operatorname{dist}(f,g) = \Pr_{x \in \{0,1\}^n} [f(x) \neq g(x)].$$

- The function g is ϵ -far from \mathcal{P} if for all $f \in \mathcal{P}$, $\operatorname{dist}(f,g) \geq \epsilon$.
- We have oracle access to some *unknown* boolean function

$$g: \{0,1\}^n \to \{0,1\}.$$

• Want to test if g satisfies property \mathcal{P} or is ϵ -far from it.

Definition

Let \mathcal{P} be a property of boolean functions on $\{0,1\}^n$. A tester for \mathcal{P} is a *randomized* algorithm \mathcal{A} with black box access to a function $g:\{0,1\}^n \to \{0,1\}$ that satisfies:

- $g \in \mathcal{P} \Rightarrow \Pr[\mathcal{A} \text{ accepts}] \geq 2/3.$
- g is ϵ -far from $\mathcal{P} \Rightarrow \Pr[\mathcal{A} \text{ rejects}] \geq 2/3$.

We allow the algorithm to be *adaptive* (queries may depend on the outcome of previous queries).

Can we test if f is a constant function?

Query complexity for the tester \mathcal{A} is the maximum number of queries queried by the tester on any input.

Query complexity for the tester \mathcal{A} is the maximum number of queries queried by the tester on any input.

Query complexity of a property \mathcal{P} is the query complexity of the tester that has the minimum query complexity.

Query complexity for the tester \mathcal{A} is the maximum number of queries queried by the tester on any input.

Query complexity of a property \mathcal{P} is the query complexity of the tester that has the minimum query complexity.

Trivial example: let \mathcal{P} be the property " $g \equiv 0$ ". Then taking $O(1/\epsilon)$ independent samples works w.h.p.

The property \mathcal{P} can be defined in terms of some *known* boolean function

$$f: \{0,1\}^n \to \{0,1\}.$$

- If $\mathcal{P} = \{f\}$, it's easy to test \mathcal{P} in $O(1/\epsilon)$.
- But what if we are allowed to shuffle around the input variables? (*P* = {permuted versions of f})

The property \mathcal{P} can be defined in terms of some *known* boolean function

$$f: \{0,1\}^n \to \{0,1\}.$$

- If $\mathcal{P} = \{f\}$, it's easy to test \mathcal{P} in $O(1/\epsilon)$.
- But what if we are allowed to shuffle around the input variables? (*P* = {permuted versions of f})

Various function property testing questions can be reduced to testing of function isomorphism.

(日) (同) (三) (三) (三) (○) (○)

Function isomorphism

Definition (isomorphism)

Two boolean functions are *isomorphic* (in short, $f \cong g$) if they are the same up to relabelling of the variables, i.e.

$$f(x_1x_2\ldots x_n) = g(x_{\pi(1)}x_{\pi(2)}\ldots x_{\pi(n)}) \triangleq g^{\pi}(x_1\ldots x_n)$$

for some permutation $\pi : [n] \rightarrow [n]$.

Definition (isomorphism)

Two boolean functions are *isomorphic* (in short, $f \cong g$) if they are the same up to relabelling of the variables, i.e.

$$f(x_1x_2\ldots x_n) = g(x_{\pi(1)}x_{\pi(2)}\ldots x_{\pi(n)}) \triangleq g^{\pi}(x_1\ldots x_n)$$

for some permutation $\pi : [n] \rightarrow [n]$.

Examples:

- $f(x_1x_2x_3) = x_1 \lor (x_2 \land x_3)$ is isomorphic to $g(x_1x_2x_3) = x_3 \lor (x_1 \land x_2).$
- The function f(x₁x₂x₃) = majority(x₁x₂x₃) is only isomorphic to itself (because it is symmetric).

Function isomorphism (cont.)

Definition (distance)

The distance up to isomorphism between f and g is

$$\operatorname{distiso}(f,g) = \min_{\pi \in \mathcal{S}_n} \operatorname{dist}(f,g^{\pi})$$

(日)、(四)、(E)、(E)、(E)

Function isomorphism (cont.)

Definition (distance)

The distance up to isomorphism between f and g is

$$\operatorname{distiso}(f,g) = \min_{\pi \in \mathcal{S}_n} \operatorname{dist}(f,g^{\pi})$$

For example, consider two parities

$$f(x_1\ldots x_n)=x_1\oplus x_2\ldots \oplus x_k$$

and

$$g(x_1\ldots x_n)=x_{100}\oplus\ldots\oplus x_{100+k'}.$$

Then

k = k' ⇒ distiso(f,g) = 0.
 k ≠ k' ⇒ distiso(f,g) = ¹/₂.

Definition (restated)

A property tester of isomorphism to a known function $f : \{0,1\}^n \to \{0,1\}$ is an *adaptive* algorithm \mathcal{A} with black box access to some $g : \{0,1\}^n \to \{0,1\}$ such that satisfies:

•
$$f \cong g \Rightarrow \Pr[\mathcal{A} \text{ accepts}] \ge 2/3.$$

• distiso
$$(f,g) \ge \epsilon \Rightarrow \Pr[\mathcal{A} \text{ rejects}] \ge 2/3$$
,

where ϵ is a distance parameter.

Goal: minimize the number of queries to g. We will think of ϵ as a *constant*. The analogous of testing isomorphism between *graphs* is well-understood:

- [AFKS00] characterized graphs for which isomorphism is testable in O(1).
- [FM08] gave tight bounds on the query complexity of testing graph isomorphism.

• [BC10] studied the question for *uniform hypergraphs*.

Testing if g is a dictator, i.e. g(x₁x₂...x_n) = x_i for some i ∈ [n].

Testing if g is a dictator, i.e. g(x₁x₂...x_n) = x_i for some i ∈ [n].
 Equivalent to testing isomorphism to f(x₁x₂...x_n) = x₁.
 Takes O(1) queries [PRS02].

Testing if g is a dictator, i.e. g(x₁x₂...x_n) = x_i for some i ∈ [n].
 Equivalent to testing isomorphism to f(x₁x₂...x_n) = x₁.
 Takes O(1) queries [PRS02].

• Testing if g is a k-monomial. Same as testing isomorphism to $f(x_1x_2...x_n) = x_1 \land x_2... \land x_k$. Takes O(1) queries too [PRS02].

- Testing if g is a dictator, i.e. g(x₁x₂...x_n) = x_i for some i ∈ [n].
 Equivalent to testing isomorphism to f(x₁x₂...x_n) = x₁.
 Takes O(1) queries [PRS02].
- Testing if g is a k-monomial. Same as testing isomorphism to $f(x_1x_2...x_n) = x_1 \wedge x_2... \wedge x_k$. Takes O(1) queries too [PRS02].
- Testing if g is a parity on k variables (k-parity).
 Same as isomorphism to f(x₁x₂...x_k) = x₁ ⊕ x₂...⊕ x_k.

- How easy is to test isomorphism to a given function?
- What is the *query complexity* of testing isomorphism to the *worst* possible function *f*?
- Does the task become easier if f enjoys some additional property? (e.g. if f depends only on k < n variables (k-junta)).
- Can we characterize the functions for which testing isomorphism to can be tested with constant number of queries?

Theorem (lower bound) [C-G.Soriano-Matsliah (SODA'11), Alon-Blais (RANDOM'10)]

There are functions $f : \{0,1\}^n \to \{0,1\}$ requiring $\Omega(n)$ queries to test isomorphism to (even for adaptive, two-sided algorithms).

Moreover, for any $k \leq n$ for most k-juntas $f : \{0,1\}^n \to \{0,1\}$ testing isomorphism to f requires $\Omega(k)$ queries.

Theorem (lower bound) [C-G.Soriano-Matsliah (SODA'11), Alon-Blais (RANDOM'10)]

There are functions $f : \{0,1\}^n \to \{0,1\}$ requiring $\Omega(n)$ queries to test isomorphism to (even for adaptive, two-sided algorithms).

Moreover, for any $k \leq n$ for most k-juntas $f : \{0,1\}^n \to \{0,1\}$ testing isomorphism to f requires $\Omega(k)$ queries.

Theorem (upper bound) [CGM 2011, AB 2010]

Isomorphism to any k-junta can be tested with $O(k \log k)$ queries.

(日) (同) (三) (三) (三) (○) (○)

Main Question: What are functions easy to test isomorphism to?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Main Question: What are functions easy to test isomorphism to?

• O(1)-juntas. [Fischer et al, Alon-Blais-C-G.Soriano-Matsliah]

Main Question: What are functions easy to test isomorphism to?

- O(1)-juntas. [Fischer et al, Alon-Blais-C-G.Soriano-Matsliah]
- Symmetric function.

Proof.

Pick a random k from $\frac{n}{2} \pm \sqrt{n}$. Pick randomly a constant number of x's of weigh k and query these g(x)'s. If g is ϵ -far from being isomorphic f then you catch a witness whp.

What are functions easy to test isomorphism to?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- O(1)-juntas.
- Symmetric functions.

What are functions easy to test isomorphism to?

- O(1)-juntas.
- Symmetric functions.
- Functions with small isomorphisms.

The set of all distinct permutations of f be $Isom(f) = \{f^{\pi} \mid \pi \in S_n\}.$

Observe that

• The function f is symmetric if and only if |Isom(f)| = 1.

- A dictator $f(x) = x_1$ has |Isom(f)| = n.
- A k-junta satisfies $|\text{Isom}(f)| \le {n \choose k} k! \le n^k$.

The set of all distinct permutations of f be $Isom(f) = \{f^{\pi} \mid \pi \in S_n\}.$

Observe that

• The function f is symmetric if and only if |Isom(f)| = 1.

- A dictator $f(x) = x_1$ has |Isom(f)| = n.
- A k-junta satisfies $|\text{Isom}(f)| \le {n \choose k} k! \le n^k$.

Hence |Isom(f)| measures the "degree of symmetry" of f.

The set of all distinct permutations of f be $\text{lsom}(f) = \{f^{\pi} \mid \pi \in S_n\}.$

Observe that

- The function f is symmetric if and only if |Isom(f)| = 1.
- A dictator $f(x) = x_1$ has |Isom(f)| = n.
- A k-junta satisfies $|\text{Isom}(f)| \le {n \choose k} k! \le n^k$.

Hence |Isom(f)| measures the "degree of symmetry" of f.

|Isom(f)| is also equal to the index of the *automorphism group of* f in S_n . In fact n is the smallest possible size of Isom(f) for non-symmetric functions.

Some easy-to-test functions

Observation

 $O(\log |\text{Isom}(f)|)$ queries are enough to test isomorphism to f.

(ロ)、(型)、(E)、(E)、 E) のQの

Some easy-to-test functions

Observation

 $O(\log |\text{Isom}(f)|)$ queries are enough to test isomorphism to f.

For a k-junta f and k = O(1), $\text{Isom}(f) \le n^k = n^{O(1)}$. Yet we know that isomorphism to k-juntas can be tested with O(1) queries.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Observation

 $O(\log |\text{Isom}(f)|)$ queries are enough to test isomorphism to f.

For a k-junta f and k = O(1), $\text{Isom}(f) \le n^k = n^{O(1)}$. Yet we know that isomorphism to k-juntas can be tested with O(1) queries.

Are there any other such functions?

Observation

 $O(\log |\text{Isom}(f)|)$ queries are enough to test isomorphism to f.

For a k-junta f and k = O(1), $\text{Isom}(f) \le n^k = n^{O(1)}$. Yet we know that isomorphism to k-juntas can be tested with O(1) queries.

Are there any other such functions?

• Majority on the first n-1 variables Maj_{n-1} . This is very close to Maj_n , so we can use the trivial isomorphism tester for Maj_n .

Observation

 $O(\log ||\text{som}(f)|)$ queries are enough to test isomorphism to f.

For a k-junta f and k = O(1), $\text{Isom}(f) \le n^k = n^{O(1)}$. Yet we know that isomorphism to k-juntas can be tested with O(1) queries.

Are there any other such functions?

- Majority on the first n 1 variables Maj_{n-1}. This is very close to Maj_n, so we can use the trivial isomorphism tester for Maj_n.
- Parity on the first n − 1 variables χ_{n−1}. This satisfies χ_{n−1} = χ_n ⊕ x_n. We can translate queries for the dictator x_n into queries for χ_n, and the problem turns into testing isomorphism to x_n.

Observation

 $O(\log |\text{Isom}(f)|)$ queries are enough to test isomorphism to f.

For a k-junta f and k = O(1), $\text{Isom}(f) \le n^k = n^{O(1)}$. Yet we know that isomorphism to k-juntas can be tested with O(1) queries.

Are there any other such functions?

- Majority on the first n 1 variables Maj_{n-1}. This is very close to Maj_n, so we can use the trivial isomorphism tester for Maj_n.
- Parity on the first n − 1 variables χ_{n−1}. This satisfies χ_{n−1} = χ_n ⊕ x_n. We can translate queries for the dictator x_n into queries for χ_n, and the problem turns into testing isomorphism to x_n.

What do these two have in common?

Junto-symmetric functions

Definition (Junto-Symmetric)

A function $f: \{0,1\}^n \to \{0,1\}$ is called *k-junto-symmetric* if it can be written in the form

$$f(x) = \hat{f}(|x|, x|_J)$$

<ロト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

for some \hat{f} : $\{0,\ldots,n\} \times \{0,1\}^{|J|} \rightarrow \{0,1\}$ and |J| = k.

Junto-symmetric functions

Definition (Junto-Symmetric)

A function $f \colon \{0,1\}^n \to \{0,1\}$ is called *k-junto-symmetric* if it can be written in the form

$$f(x) = \hat{f}(|x|, x|_J)$$

for some
$$\hat{f}$$
: $\{0,\ldots,n\} \times \{0,1\}^{|J|} \rightarrow \{0,1\}$ and $|J| = k$.

Theorem (O(1)-junto-symmetric \equiv poly-symmetric)

The following are equivalent:

- (a) $|\text{Isom}(f)| = n^{O(1)}$ (f is poly-symmetric);
- (b) f is an O(1)-junto-symmetric;
- (c) each f_n is a boolean combination of O(1)-many dictators and O(1)-many symmetric functions;

Testing junto-symmetry

Theorem

[C-Fischer-G.Soriano-Matsliah (CCC'12)] There are $poly(k/\epsilon)$ algorithms to test if f is k-junto-symmetric and to test isomorphism to k-junto-symmetric functions.

Theorem

[C-Fischer-G.Soriano-Matsliah (CCC'12)] There are $poly(k/\epsilon)$ algorithms to test if f is k-junto-symmetric and to test isomorphism to k-junto-symmetric functions.

Theorem

[C-Fischer-G.Soriano-Matsliah (CCC'12)] There are $poly(k/\epsilon)$ algorithms to test if f is "close" to k-junto-symmetric and to test isomorphism to functions that are "close" to k-junto-symmetric functions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Theorem

[C-Fischer-G.Soriano-Matsliah (CCC'12)] There are $poly(k/\epsilon)$ algorithms to test if f is k-junto-symmetric and to test isomorphism to k-junto-symmetric functions.

Theorem

[C-Fischer-G.Soriano-Matsliah (CCC'12)] There are $poly(k/\epsilon)$ algorithms to test if f is "close" to k-junto-symmetric and to test isomorphism to functions that are "close" to k-junto-symmetric functions.

Open:

isomorphism to f can be tested with O(1) queries

f is close to O(1)-junto-symmetric?

Further Works

Similar statement has been independently been proved by Blais-Weinstein-Yoshida (FOCS'12).

Theorem

There are $poly(k/\epsilon)$ algorithms to test if f is "close" to k-junto-symmetric and to test isomorphism to functions that are "close" to k-junto-symmetric functions.

Open:

isomorphism to f can be tested with O(1) queries

 \Leftrightarrow

f is close to O(1)-junto-symmetric?

Conjecture

If f is "far" from a k-junto-symmetric then testing isomorphism to f requires log* k queries.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (lower bound) [C-G.Soriano-Matsliah (SODA'11), Alon-Blais (RANDOM'10)]

There are functions $f : \{0,1\}^n \to \{0,1\}$ requiring $\Omega(n)$ queries to test isomorphism to (even for adaptive, two-sided algorithms).

Moreover, for any $k \leq n$ for most k-juntas $f : \{0,1\}^n \to \{0,1\}$ testing isomorphism to f requires $\Omega(k)$ queries.

Theorem (upper bound) [CGM 2011, AB 2010]

Isomorphism to any k-junta can be tested with $O(k \log k)$ queries.

(日) (同) (三) (三) (三) (○) (○)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Make f the known function. And with let the unknown function be f with probability 1/2 and g with probability 1/2.

Make f the known function. And with let the unknown function be f with probability 1/2 and g with probability 1/2.

Prove that f and g are ϵ -far.

Make f the known function. And with let the unknown function be f with probability 1/2 and g with probability 1/2.

Prove that f and g are ϵ -far.

Prove that any small set of queries cannot distinguish f from g.

Make f the known function. And with let the unknown function be f with probability 1/2 and g with probability 1/2.

Prove that f and g are ϵ -far.

Prove that any small set of queries cannot distinguish f from g.

Does NOT work: Since f is known so the "light weight" queries reveal a lot and helps to distinguish f from g. Infact \sqrt{n} number of queries suffices.

$\Omega(k)$ lower bound : Second attempt

We show there is $f : \{0,1\}^n \to \{0,1\}$ whose permutations look "almost random" to any tester making o(n) queries. Our functions are non-zero only for *balanced* inputs (x with $|x| \in [n/2 - 2\sqrt{n}, n/2 + 2\sqrt{n}]$).

- ロ ト - 4 回 ト - 4 □ - 4

$\Omega(k)$ lower bound : Second attempt

We show there is $f : \{0,1\}^n \to \{0,1\}$ whose permutations look "almost random" to any tester making o(n) queries. Our functions are non-zero only for *balanced* inputs (x with $|x| \in [n/2 - 2\sqrt{n}, n/2 + 2\sqrt{n}]$).

Definition

f is q-regular if for all sets $Q = \{x_1, \ldots, x_q\}$ of *balanced* queries and all assignments $a : \{0, 1\}^q \to \{0, 1\}$,

$$\Pr_{\pi}[f^{\pi}(x_1) = a_1 \wedge f^{\pi}(x_2) = a_2 \wedge \ldots \wedge f^{\pi}(x_q) = a_q] = (1 \pm 1/6)2^{-q}.$$

$\Omega(k)$ lower bound : Second attempt

We show there is $f : \{0,1\}^n \to \{0,1\}$ whose permutations look "almost random" to any tester making o(n) queries. Our functions are non-zero only for *balanced* inputs (x with $|x| \in [n/2 - 2\sqrt{n}, n/2 + 2\sqrt{n}]$).

Definition

f is q-regular if for all sets $Q = \{x_1, \ldots, x_q\}$ of *balanced* queries and all assigments $a : \{0, 1\}^q \to \{0, 1\}$,

$$\Pr_{\pi}[f^{\pi}(x_1) = a_1 \wedge f^{\pi}(x_2) = a_2 \wedge \ldots \wedge f^{\pi}(x_q) = a_q] = (1 \pm 1/6)2^{-q}.$$

• f is q-regular \Rightarrow more than q queries are needed to test if $g \cong f$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

- We use the probabilistic method to prove the existence of Ω(n)-regular functions.
- An $\Omega(k)$ lower bound for k-juntas follows by padding.

Definition

f is q-regular if for all sets $Q = \{x_1, \ldots, x_q\}$ of balanced queries and all assignments $a : \{0, 1\}^q \to \{0, 1\}$,

$$\Pr_{\pi}[f^{\pi}(x_1) = a_1 \wedge f^{\pi}(x_2) = a_2 \wedge \ldots \wedge f^{\pi}(x_q) = a_q] = (1 \pm 1/6)2^{-q}.$$

Even if f is a random function on the *balanced* queries, it is not obvious it is q-regular - since Q and $\pi(Q)$ can intersect and hence the event that $f^{\pi}(x_1) = a_1 \wedge f^{\pi}(x_2) = a_2 \wedge \ldots \wedge f^{\pi}(x_q) = a_q$ and the event that $f(x_1) = a_1 \wedge f(x_2) = a_2 \wedge \ldots \wedge f(x_q) = a_q$ are not independent.

So we have to calculate the probability in a different way - using ideas from [BC10].

Let $N \triangleq \binom{n}{n/2-\lceil \sqrt{n} \rceil}$ and $X(g,\tau) = \mathbb{I}[g^{\tau}|_Q = a]$. Let G be the permutation of variables subgroup of $Sym(\{0,1\}^n)$.

We have to compute $\Pr_{\tau \in G}[X(f, \tau) = 1]$.

Let $N \triangleq \binom{n}{n/2-\lceil \sqrt{n} \rceil}$ and $X(g,\tau) = \mathbb{I}[g^{\tau}|_Q = a]$. Let G be the permutation of variables subgroup of $Sym(\{0,1\}^n)$.

We have to compute $\Pr_{\tau \in G}[X(f, \tau) = 1]$.

Lemma

There exist $s \triangleq \lceil N/q^2 \rceil$ permutations $\sigma_1, \ldots, \sigma_s \in G$ such that $\sigma_1 Q, \ldots, \sigma_s Q$ are disjoint.

Let $N \triangleq \binom{n}{n/2-\lceil \sqrt{n} \rceil}$ and $X(g,\tau) = \mathbb{I}[g^{\tau}|_Q = a]$. Let G be the permutation of variables subgroup of $Sym(\{0,1\}^n)$.

We have to compute $\Pr_{\tau \in G}[X(f, \tau) = 1]$.

Lemma

There exist $s \triangleq \lceil N/q^2 \rceil$ permutations $\sigma_1, \ldots, \sigma_s \in G$ such that $\sigma_1 Q, \ldots, \sigma_s Q$ are disjoint.

$$\Pr_{\tau \in G}[X(f,\tau) = 1] = \mathbb{E}_{i \in [s]} \mathbb{E}_{\tau \in G} X(f,\tau \circ \sigma_i) = \mathbb{E}_{\tau \in G} \mathbb{E}_{i \in [s]} X(f,\tau \circ \sigma_i).$$

Let $N \triangleq \binom{n}{n/2-\lceil \sqrt{n} \rceil}$ and $X(g,\tau) = \mathbb{I}[g^{\tau}|_Q = a]$. Let G be the permutation of variables subgroup of $Sym(\{0,1\}^n)$.

We have to compute $\Pr_{\tau \in G}[X(f, \tau) = 1]$.

Lemma

There exist $s \triangleq \lceil N/q^2 \rceil$ permutations $\sigma_1, \ldots, \sigma_s \in G$ such that $\sigma_1 Q, \ldots, \sigma_s Q$ are disjoint.

$$\Pr_{\tau \in G}[X(f,\tau) = 1] = \mathbb{E}_{i \in [s]} \mathbb{E}_{\tau \in G} X(f,\tau \circ \sigma_i) = \mathbb{E}_{\tau \in G} \mathbb{E}_{i \in [s]} X(f,\tau \circ \sigma_i).$$

Now $\mathbb{E}_{i \in [s]} X(f, \tau \circ \sigma_i)$ is close to its expectation with high probability [by Chernoff Bound]. And by union bound we show that a *q*-regular function exists.

Consider two *q*-regular functions $f, g : \{0, 1\}^k \to \{0, 1\}$ with $\operatorname{dist}(f, g) \ge \epsilon$.

- Random permutations of f and g look random, so it is also hard to distinguish random f^{π} from random $g^{\pi'}$.
- Pad f, g to obtain functions $f', g' : \{0, 1\}^n \to \{0, 1\}$ by ignoring the last n k variables.

• One can show $\frac{\operatorname{distiso}(f',g')}{2} \leq \operatorname{distiso}(f,g) \leq \operatorname{distiso}(f',g')$.

Hence an $\Omega(k)$ lower bound for k-juntas follows from padding.

Theorem (lower bound) [C-G.Soriano-Matsliah (SODA'11), Alon-Blais (RANDOM'10)]

There are functions $f : \{0,1\}^n \to \{0,1\}$ requiring $\Omega(n)$ queries to test isomorphism to (even for adaptive, two-sided algorithms).

Moreover, for any $k \leq n$ for most k-juntas $f : \{0,1\}^n \to \{0,1\}$ testing isomorphism to f requires $\Omega(k)$ queries.

For some f, testing isomorphism against f needs $\Omega(n)$ queries.

- The proof is non-constructive; a truncated random function works.
- Random functions are usually very complicated to describe.

For some f, testing isomorphism against f needs $\Omega(n)$ queries.

- The proof is non-constructive; a truncated random function works.
- Random functions are usually very complicated to describe.
- However, poly(n)-wise independence suffices for the proof.
- By standard constructions of poly(*n*)-wise independent generators, we can put *f* in *NC*.
- Likewise, f can be taken to be a truncated low-degree polynomial over 𝔽₂.

Consequences of the lower bound

Corollary

Testing if a function can be computed by a circuit of size s takes at least poly(s) queries (for s up to poly(n)).

Proof. Let $n = s^{1/c}$ (c > 1). \exists n-regular $f : \{0,1\}^n \to \{0,1\}$ computable by circuits of size $s^c = n$. Any f^{π} still has size n, but is indistinguishable with o(s) queries from a random function, which need circuits of size $2^{\Omega(n)} \gg s$.

Consequences of the lower bound

Corollary

Testing if a function can be computed by a circuit of size s takes at least poly(s) queries (for s up to poly(n)).

Proof. Let $n = s^{1/c}$ (c > 1). \exists n-regular $f : \{0,1\}^n \to \{0,1\}$ computable by circuits of size $s^c = n$. Any f^{π} still has size n, but is indistinguishable with o(s) queries from a random function, which need circuits of size $2^{\Omega(n)} \gg s$.

Corollary

Testing if the Fourier degree of f is $\leq d$ requires $\Omega(d)$ queries.

Proof. Any *k*-junta is a degree-*k* polynomial, whereas a random *f* has degree $\Omega(n)$.

This settles open questions by $[DLM^+07]$.

Theorem (lower bound) [C-G.Soriano-Matsliah (SODA'11), Alon-Blais (RANDOM'10)]

There are functions $f : \{0,1\}^n \to \{0,1\}$ requiring $\Omega(n)$ queries to test isomorphism to (even for adaptive, two-sided algorithms).

Moreover, for any $k \leq n$ for most k-juntas $f : \{0,1\}^n \to \{0,1\}$ testing isomorphism to f requires $\Omega(k)$ queries.

Theorem (upper bound) [CGM 2011, AB 2010]

Isomorphism to any k-junta can be tested with $O(k \log k)$ queries.

(日) (同) (三) (三) (三) (○) (○)

$O(k \log k)$ upper bound for k-juntas

When k = n, there is a simple $O(n \log n)$ query algorithm:

Draw O(log n!) = O(n log n) uniformly random samples and query g on them.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

2 Accept iff there is some f^{π} consistent with all samples.

$O(k \log k)$ upper bound for k-juntas

When k = n, there is a simple $O(n \log n)$ query algorithm:

- Draw O(log n!) = O(n log n) uniformly random samples and query g on them.
- **2** Accept iff there is some f^{π} consistent with all samples.

Suppose the known function f is a k-junta.

Assume g is a k-junta too: g(x₁...x_n) = g'(x_{i1}...x_{ik}); g' is the core of the k-junta g.

• The simple upper bound would still need $log(\binom{n}{k}k!) = O(k \log n) \gg k.$

When k = n, there is a simple $O(n \log n)$ query algorithm:

- Draw O(log n!) = O(n log n) uniformly random samples and query g on them.
- **2** Accept iff there is some f^{π} consistent with all samples.

Suppose the known function f is a k-junta.

- Assume g is a k-junta too: g(x₁...x_n) = g'(x_{i1}...x_{ik}); g' is the core of the k-junta g.
- The simple upper bound would still need $log(\binom{n}{k}k!) = O(k \log n) \gg k.$
- We would like to sample g' rather than g.
- In general, we would need to draw samples of the core of the k-junta closest to g, but let us ignore this issue.

Noisy samplers

Let
$$\eta > 0$$
 and $g : \{0,1\}^n \to \{0,1\}$ be a *k*-junta with core $g' : \{0,1\}^k \to \{0,1\}$, i.e. $g(x_1 \dots x_n) = g'(x_{i_1} x_{i_2} \dots x_{i_k})$.

Definition

An η -noisy sampler for the core of g is a black-box probabilistic algorithm \mathcal{A} that on each execution outputs $(x, a) \in \{0, 1\}^k \to \{0, 1\}$ such that

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• The distribution of x is uniform in $\{0,1\}^k$.

2
$$\Pr[g'(x) = a] \ge 1 - \eta$$
.

The probability is over the randomness of A.

Let $\eta > 0$ and $g : \{0,1\}^n \to \{0,1\}$ be a *k*-junta with core $g' : \{0,1\}^k \to \{0,1\}$, i.e. $g(x_1 \dots x_n) = g'(x_{i_1} x_{i_2} \dots x_{i_k})$.

Definition

An η -noisy sampler for the core of g is a black-box probabilistic algorithm \mathcal{A} that on each execution outputs $(x, a) \in \{0, 1\}^k \to \{0, 1\}$ such that

• The distribution of x is uniform in $\{0,1\}^k$.

$$Pr[g'(x) = a] \ge 1 - \eta.$$

The probability is over the randomness of \mathcal{A} .

• We don't know the relevant vars i_1, \ldots, i_k of g, and finding even one of them takes $\Omega(\log n) \gg k$ queries.

(日) (同) (三) (三) (三) (○) (○)

• Still we can draw good uniform samples from g'!

Let $\eta > 0$ and $g : \{0,1\}^n \to \{0,1\}$ be a *k*-junta with core $g' : \{0,1\}^k \to \{0,1\}$, i.e. $g(x_1 \dots x_n) = g'(x_{i_1} x_{i_2} \dots x_{i_k})$.

Definition

An η -noisy sampler for the core of g is a black-box probabilistic algorithm \mathcal{A} that on each execution outputs $(x, a) \in \{0, 1\}^k \to \{0, 1\}$ such that

• The distribution of x is uniform in $\{0,1\}^k$.

$$Pr[g'(x) = a] \ge 1 - \eta.$$

The probability is over the randomness of \mathcal{A} .

• We don't know the relevant vars i_1, \ldots, i_k of g, and finding even one of them takes $\Omega(\log n) \gg k$ queries.

(日) (同) (三) (三) (三) (○) (○)

• Still we can draw good uniform samples from g'!

Construction of noisy samplers

Theorem

It is possible to construct a 0.1-noisy sampler for the core of a k-junta g. The sampler makes *one* query to g on each execution, after $O(k \log k)$ preprocessing queries.

This allows us to test isomorphism to k-juntas in $O(k \log k + \log k!) = O(k \log k)$ queries.

Construction of noisy samplers

Theorem

It is possible to construct a 0.1-noisy sampler for the core of a k-junta g. The sampler makes *one* query to g on each execution, after $O(k \log k)$ preprocessing queries.

This allows us to test isomorphism to k-juntas in $O(k \log k + \log k!) = O(k \log k)$ queries.

• The algorithm builds on the $O(k \log k)$ junta tester of Blais.

• It starts by picking at random a partition \mathcal{P} of [n] into $k^{2+O(1)}$ blocks and finding the *k*-relevant *blocks*.

Construction of noisy samplers

Theorem

It is possible to construct a 0.1-noisy sampler for the core of a k-junta g. The sampler makes *one* query to g on each execution, after $O(k \log k)$ preprocessing queries.

This allows us to test isomorphism to k-juntas in $O(k \log k + \log k!) = O(k \log k)$ queries.

- The algorithm builds on the $O(k \log k)$ junta tester of Blais.
- It starts by picking at random a partition \mathcal{P} of [n] into $k^{2+O(1)}$ blocks and finding the *k*-relevant *blocks*.
- For each sample we make one query that is *constant inside each block*.
- These queries are highly non-uniform for any given \mathcal{P} .
- Even so, for most partitions \mathcal{P} this yields a noisy sampler.

Summary

testing problem	prior work	this work
isom. to <i>k</i> -juntas	$\Omega(\log k)$ [FKR ⁺ 02, BO10, AB10]	$\Omega(k)$
, , , , , , , , , , , , , , , , , , ,	$\widetilde{O}(k^4)$ [FKR $^+$ 02, DLM $^+$ 07]	$O(k \log k)$
isom. to <i>k</i> -juntas, 1-	$\Omega(\log \log n)$ [FKR ⁺ 02]	$\Omega(k \log{(n/k)})$
sided error		$O(k \log n)$
circuits of size s	$\widetilde{\Omega}(\log s)$ [DLM ⁺ 07]	s ^{Ω(1)}
	$\widetilde{O}(s^6)$ [DLM ⁺ 07]	5(-)
Fourier degree < d	$\Omega(\log d)$ [DLM+07]	$\Omega(d)$
	2 ^{<i>O</i>(<i>d</i>)} [DLM ⁺ 07]	32(0)
isom. between unknown	$\Omega(2^{n/2}/n^{1/4})$ [AB10]	$\Omega(2^{n/2}/n^{1/4})$
functions	$O(\sqrt{2^n \ n \log n})$ [AB10]	$O(\sqrt{2^n \ n \log n})$

Table: Summary of results

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Noga Alon and Eric Blais. Testing boolean function isomorphism.

In Proc. RANDOM-APPROX, pages 394-405, 2010.

- Noga Alon, Eldar Fischer, Michael Krivelevich, and Mario Szegedy.
 Efficient testing of large graphs. *Combinatorica*, 20:451–476, 2000. 10.1007/s004930070001.
 - Laszlo Babai and Sourav Chakraborty.

Property testing of equivalence under a permutation group action.

To appear in the ACM Transactions on Computation Theory (*ToCT*), 2010.

Eric Blais and Ryan O'Donnell.

Lower bounds for testing function isomorphism.

In *IEEE Conference on Computational Complexity*, pages 235–246, 2010.

Ilias Diakonikolas, Homin K. Lee, Kevin Matulef, Krzysztof Onak, Ronitt Rubinfeld, Rocco A. Servedio, and Andrew Wan. Testing for concise representations.

Proc. IEEE Symposium on Foundations of Computer Science, 0:549–558, 2007.

Eldar Fischer, Guy Kindler, Dana Ron, Shmuel Safra, and Alex Samorodnitsky.

Testing juntas. In *FOCS*, pages 103–112, 2002.

Eldar Fischer and Arie Matsliah.

Testing graph isomorphism. SIAM J. Comput., 38(1):207–225, 2008.