Popular Matchings

Kavitha Telikepalli (TIFR, Mumbai)

[Joint work with Chien-Chung Huang]

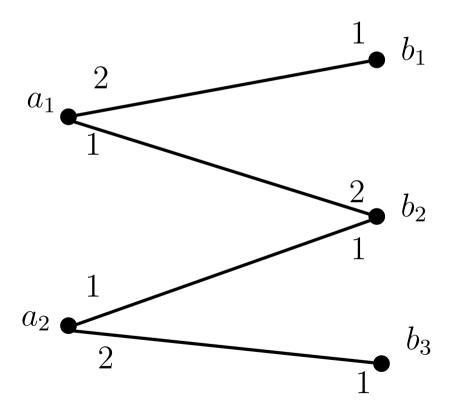
3rd Annual Mysore Park Theory Workshop: August 2012

The input graph

■ Input: a bipartite graph $G = (A \cup B, E)$.

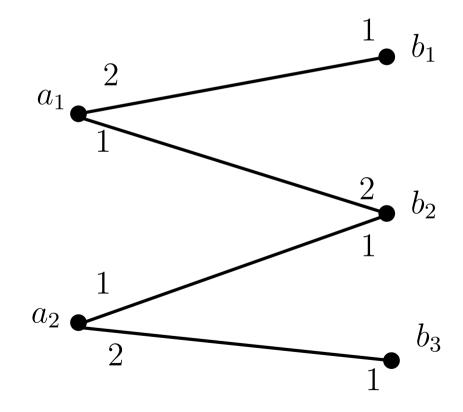
The input graph

■ Input: a bipartite graph $G = (A \cup B, E)$.



The input graph

■ Input: a bipartite graph $G = (A \cup B, E)$.



 \blacksquare \mathcal{A} : set of students; \mathcal{B} : set of advisers.

■ Each $u \in A \cup B$ ranks its neighbors in a strict order of preference.

■ Each $u \in A \cup B$ ranks its neighbors in a strict order of preference.

■ Problem: compute a "good" matching in G.

■ Each $u \in A \cup B$ ranks its neighbors in a strict order of preference.

■ Problem: compute a "good" matching in G.

every vertex is selfish

■ Each $u \in A \cup B$ ranks its neighbors in a strict order of preference.

■ Problem: compute a "good" matching in G.

every vertex is selfish

u wants to be matched to its best ranked neighbor who is willing to be matched to u.

lacksquare Let M be the matching obtained.

 \blacksquare Let M be the matching obtained.

■ The following property should hold for every u:

■ Let *M* be the matching obtained.

■ The following property should hold for every u:

there is no neighbor ranked better than M(u) who is willing to be matched to u.

■ Let *M* be the matching obtained.

■ The following property should hold for every *u*:

there is no neighbor ranked better than M(u) who is willing to be matched to u.

 \blacksquare Such a matching M is *stable*.

lacksquare A matching M is stable if it has no "blocking edges".

 \blacksquare A matching M is stable if it has no "blocking edges".

edge (u, v) blocks M if u and v prefer each other to their respective assignments in M.

lacksquare A matching M is stable if it has no "blocking edges".

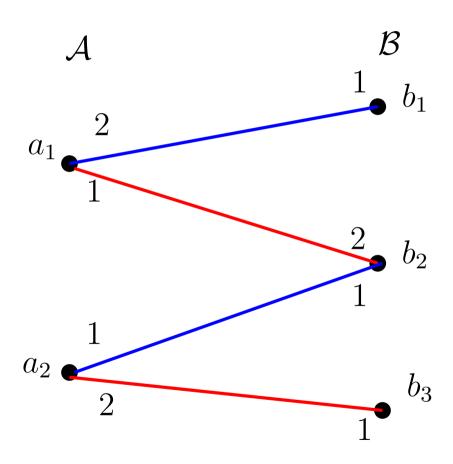
edge (u, v) blocks M if u and v prefer each other to their respective assignments in M.

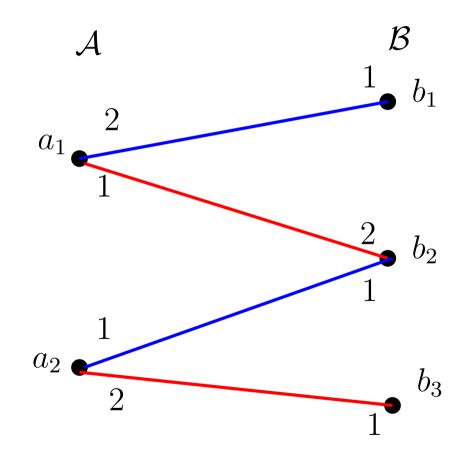
 $lue{}$ u is unmatched or prefers v to M(u)

 \blacksquare A matching M is stable if it has no "blocking edges".

edge (u, v) blocks M if u and v prefer each other to their respective assignments in M.

- $\blacksquare u$ is unmatched or prefers v to M(u)
- ullet v is unmatched or prefers u to M(v).





■ The blue matching is stable while the red is not.

■ Do stable matchings always exist?

Do stable matchings always exist?

Yes; also such a matching can be computed in linear time [Gale-Shapley, 62].

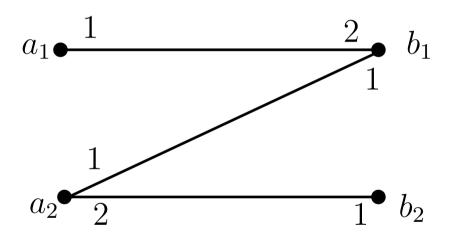
Do stable matchings always exist?

Yes; also such a matching can be computed in linear time [Gale-Shapley, 62].

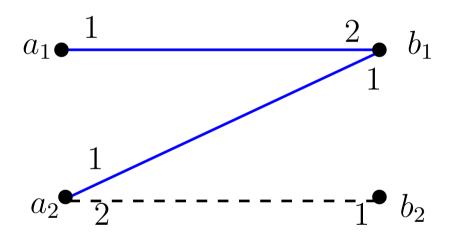
■ Gale-Shapley algorithm: Men (vertices of A) propose and Women (those in B) dispose.

■ Men (vertices of A) propose and Women (those in B) dispose.

■ Men (vertices of A) propose and Women (those in B) dispose.

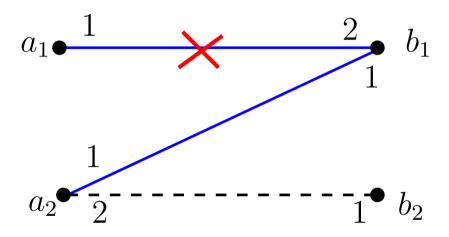


■ Men (vertices of A) propose and Women (those in B) dispose.

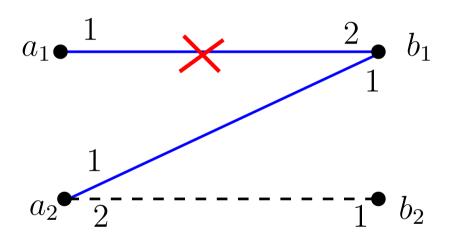


 $\blacksquare a_1$ proposes to his top neighbor b_1 ; so does a_2 .

lacksquare b_1 rejects a_1 and accepts a_2 .



lacksquare b_1 rejects a_1 and accepts a_2 .



The algorithm terminates when every man is either rejected by all his nbrs or gets matched to some nbr.

■ Ideally, M_{max} is the optimal matching.

■ Ideally, M_{max} is the optimal matching.

Size of a stable matching:

■ Ideally, M_{max} is the optimal matching.

Size of a stable matching:

 \blacksquare all stable matchings in G have the same size.

■ Ideally, M_{max} is the optimal matching.

Size of a stable matching:

 \blacksquare all stable matchings in G have the same size.

■ stable matching could be as low as $|M_{max}|/2$.

Popular matchings

■ A new notion of optimality that is a compromise between M_{max} and a stable matching?

Popular matchings

■ A new notion of optimality that is a compromise between M_{max} and a stable matching?

A notion based on *popularity*:

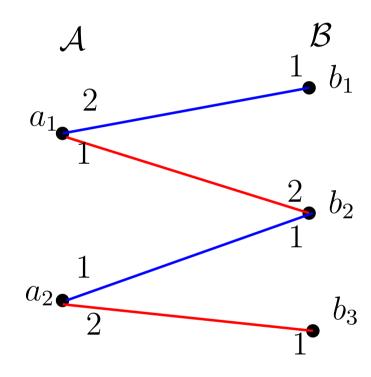
Popular matchings

■ A new notion of optimality that is a compromise between M_{max} and a stable matching?

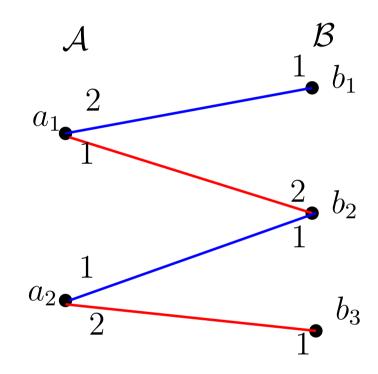
A notion based on *popularity*:

Matching M_1 is more popular than matching M_2 if $|\{\text{vertices that prefer } M_1\}| > |\{\text{vertices that prefer } M_2\}|.$

An example

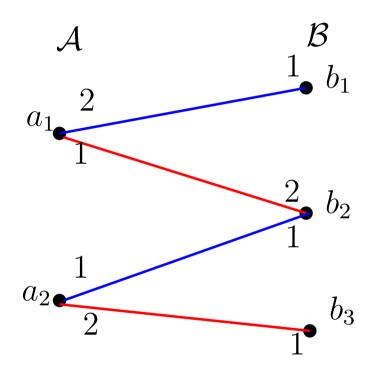


An example



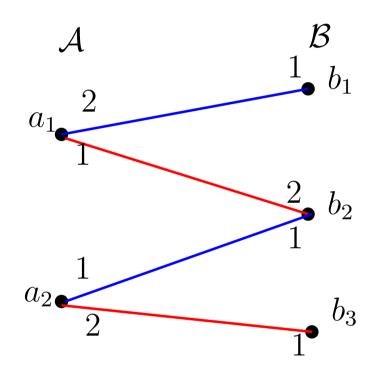
 $\blacksquare a_1$ and b_3 prefer the red matching

An example



- $\blacksquare a_1$ and b_3 prefer the red matching
- $\blacksquare b_1, b_2$, and a_2 prefer the blue matching

An example



- $\blacksquare a_1$ and b_3 prefer the red matching
- $\blacksquare b_1, b_2$, and a_2 prefer the blue matching
- blue matching is more popular than red matching.

■ We use $M_1 \succ M_2$ to denote the relation that M_1 is more popular than M_2 .

■ We use $M_1 \succ M_2$ to denote the relation that M_1 is more popular than M_2 .

■ The "more popular than" relation is not transitive: we can have $M_1 > M_2 > M_3 > M_1$.

■ We use $M_1 \succ M_2$ to denote the relation that M_1 is more popular than M_2 .

■ The "more popular than" relation is not transitive: we can have $M_1 \succ M_2 \succ M_3 \succ M_1$.

■ M is popular if there is no M' such that $M' \succ M$.

M is popular \Rightarrow for every matching M' we have: $|\{\text{vertices that prefer }M'\}| \leq |\{\text{vertices that prefer }M\}|.$

M is popular \Rightarrow for every matching M' we have: $|\{\text{vertices that prefer } M'\}| \leq |\{\text{vertices that prefer } M\}|.$

■ Do popular matchings always exist in *G*?

M is popular \Rightarrow for every matching M' we have: $|\{\text{vertices that prefer } M'\}| \leq |\{\text{vertices that prefer } M\}|.$

■ Do popular matchings always exist in *G*?

yes, in fact, every stable matching is popular.

stable \Longrightarrow **popular**

lacktriangle Comparing a stable matching S with any matching M:

stable \Longrightarrow **popular**

lacktriangle Comparing a stable matching S with any matching M:

u prefers M to $S \Rightarrow M(u)$ has to prefer S to M.

stable \implies popular

Comparing a stable matching S with any matching M:

u prefers M to $S \Rightarrow M(u)$ has to prefer S to M.

 \blacksquare So number of votes for $M \leq$ number of votes for S.

stable ⇒ popular

Comparing a stable matching S with any matching M:

u prefers M to $S \Rightarrow M(u)$ has to prefer S to M.

- \blacksquare So number of votes for $M \leq$ number of votes for S.
 - So a stable matching is always popular.

stable ⇒ popular

Comparing a stable matching S with any matching M:

u prefers M to $S \Rightarrow M(u)$ has to prefer S to M.

- \blacksquare So number of votes for $M \leq$ number of votes for S.
 - So a stable matching is always popular.
 - In fact, it is a minimum size popular matching.

Let S be a stable matching and let M be a smaller matching.

■ Let S be a stable matching and let M be a smaller matching.

 \blacksquare we will show that M has to be unpopular.

- Let S be a stable matching and let M be a smaller matching.
 - \blacksquare we will show that M has to be unpopular.

 $\blacksquare |M| < |S|$, so $M \oplus S$ has an augmenting path p wrt M.

- Let S be a stable matching and let M be a smaller matching.
 - \blacksquare we will show that M has to be unpopular.

- $\blacksquare |M| < |S|$, so $M \oplus S$ has an augmenting path p wrt M.
- Claim: $M \oplus p \succ M$.

- Let S be a stable matching and let M be a smaller matching.
 - \blacksquare we will show that M has to be unpopular.

- $\blacksquare |M| < |S|$, so $M \oplus S$ has an augmenting path p wrt M.
- Claim: $M \oplus p \succ M$.
- $(M \oplus p)(u) = S(u) \text{ if } u \in p,$ $(M \oplus p)(u) = M(u) \text{ otherwise.}$

red: edges of M; black: edges of S.

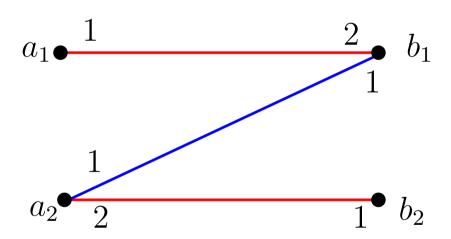
- red: edges of M; black: edges of S.
- \blacksquare both the endpoints of p prefer S to M.

- red: edges of M; black: edges of S.
- \blacksquare both the endpoints of p prefer S to M.
- for every M-edge (u, v) in p: u prefers M to $S \Rightarrow v$ prefers S to M. (otherwise (u, v) would block S)

- red: edges of M; black: edges of S.
- \blacksquare both the endpoints of p prefer S to M.
- for every M-edge (u, v) in p: u prefers M to $S \Rightarrow v$ prefers S to M. (otherwise (u, v) would block S)
- Thus restricted to p, we have $S \succ M$. So $M \oplus p \succ M$.

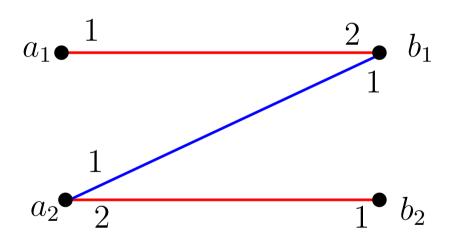
Min vs max size popular matchings

■ The blue matching is a minimum size popular matching.



Min vs max size popular matchings

The blue matching is a minimum size popular matching.



■ The red matching is a maximum size popular matching.

Some questions

Is $|\max \text{ size popular matching}|/|M_{max}|$ always larger than 1/2?

Some questions

■ Is $|\max \text{ size popular matching}|/|M_{max}|$ always larger than 1/2?

Can a maximum size popular matching be efficiently computed?

Some questions

■ Is $|\max \text{ size popular matching}|/|M_{max}|$ always larger than 1/2?

Can a maximum size popular matching be efficiently computed?

Characterization of a maximum size popular matching?

■ Call an edge (u, v) negative wrt M if

■ Call an edge (u, v) negative wrt M if

u prefers M(u) to v <u>and</u> v prefers M(v) to u.

■ Call an edge (u, v) negative wrt M if

u prefers M(u) to v <u>and</u> v prefers M(v) to u.

■ Delete from G all negative edges wrt M — call this subgraph G_M .

■ M is popular $\iff M$ has these 3 properties in G_M :

■ M is popular $\iff M$ has these 3 properties in G_M :

no alternating cycle has a blocking edge.

■ M is popular $\iff M$ has these 3 properties in G_M :

no alternating cycle has a blocking edge.

no alternating path with a free endpoint has a blocking edge.

■ M is popular $\iff M$ has these 3 properties in G_M :

no alternating cycle has a blocking edge.

no alternating path with a free endpoint has a blocking edge.

no alternating path has 2 blocking edges.

Max size popular matchings

 \blacksquare In addition, if M has this 4th property:

Max size popular matchings

■ In addition, if *M* has this 4th property:

■ there is no augmenting path wrt M in G_M .

Max size popular matchings

■ In addition, if *M* has this 4th property:

■ there is no augmenting path wrt M in G_M .

⇒ any larger matching has to be *unpopular*.

Max size popular matchings

 \blacksquare In addition, if M has this 4th property:

■ there is no augmenting path wrt M in G_M .

⇒ any larger matching has to be *unpopular*.

That is, M will be a maximum size popular matching.

A first attempt

Goal: To compute a matching that satisfies those 4 properties.

A first attempt

Goal: To compute a matching that satisfies those 4 properties.

■ *Idea*: come up with a suitable partition (L, R) of $\mathcal{A} \cup \mathcal{B}$ such that

A first attempt

Goal: To compute a matching that satisfies those 4 properties.

■ *Idea*: come up with a suitable partition (L, R) of $\mathcal{A} \cup \mathcal{B}$ such that

■ Gale-Shapley algorithm on (L,R) yields such a matching.

■ Run Gale-Shapley algorithm on (A, B): let S be this matching.

- Run Gale-Shapley algorithm on (A, B): let S be this matching.
 - Set $L_1 =$ set of vertices left unmatched in S and $R_1 = (\mathcal{A} \cup \mathcal{B}) \setminus L_1$.

- Run Gale-Shapley algorithm on (A, B): let S be this matching.
 - Set $L_1 =$ set of vertices left unmatched in S and $R_1 = (\mathcal{A} \cup \mathcal{B}) \setminus L_1$.
 - Run Gale-Shapley algorithm on (L_1, R_1) : let M_1 be this matching.

- Run Gale-Shapley algorithm on (A, B): let S be this matching.
 - Set $L_1 =$ set of vertices left unmatched in S and $R_1 = (\mathcal{A} \cup \mathcal{B}) \setminus L_1$.
 - Run Gale-Shapley algorithm on (L_1, R_1) : let M_1 be this matching.
 - If M_1 is R_1 -perfect, then M_1 satisfies those 4 properties.

■ Else let A_1 be the set of unmatched men in R_1 .

■ Else let A_1 be the set of unmatched men in R_1 .

■ Set $L'_1 = L_1 \cup A_1$ and $R'_1 = (\mathcal{A} \cup \mathcal{B}) \setminus L'_1$.

■ Else let A_1 be the set of unmatched men in R_1 .

■ Set $L'_1 = L_1 \cup A_1$ and $R'_1 = (\mathcal{A} \cup \mathcal{B}) \setminus L'_1$.

■ Run Gale-Shapley algorithm on (L'_1, R'_1) : let M'_1 be this matching.

■ Else let A_1 be the set of unmatched men in R_1 .

■ Set $L_1' = L_1 \cup A_1$ and $R_1' = (\mathcal{A} \cup \mathcal{B}) \setminus L_1'$.

- Run Gale-Shapley algorithm on (L'_1, R'_1) : let M'_1 be this matching.
 - If M'_1 is R'_1 -perfect, then M'_1 satisfies those 4 properties.

■ Else let B_1 be the set of unmatched vertices in R'_1 .

■ Else let B_1 be the set of unmatched vertices in R'_1 .

■ Note that $B_1 \subset \mathcal{B}$.

■ Else let B_1 be the set of unmatched vertices in R'_1 .

■ Note that $B_1 \subset \mathcal{B}$.

■ Set $L_2 = L_1 \cup B_1$ and $R_2 = (\mathcal{A} \cup \mathcal{B}) \setminus L_2$.

■ Else let B_1 be the set of unmatched vertices in R'_1 .

■ Note that $B_1 \subset \mathcal{B}$.

■ Set $L_2 = L_1 \cup B_1$ and $R_2 = (\mathcal{A} \cup \mathcal{B}) \setminus L_2$.

■ Run Gale-Shapley algorithm on (L_2, R_2) : let M_2 be this matching.

■ If M_2 is R_2 -perfect, then done.

■ If M_2 is R_2 -perfect, then done.

■ Else move unmatched men from right to left and compute M_2' .

■ If M_2 is R_2 -perfect, then done.

■ Else move unmatched men from right to left and compute M_2' .

 \blacksquare if M_2' is R_2' -perfect, then done

- If M_2 is R_2 -perfect, then done.
- Else move unmatched men from right to left and compute M_2' .
 - \blacksquare if M_2' is R_2' -perfect, then done
 - else move the above men back to the right

- If M_2 is R_2 -perfect, then done.
- Else move unmatched men from right to left and compute M_2' .
 - \blacksquare if M_2' is R_2' -perfect, then done
 - else move the above men back to the right
 - move unmatched women from right to left

- If M_2 is R_2 -perfect, then done.
- Else move unmatched men from right to left and compute M_2' .
 - \blacksquare if M_2' is R_2' -perfect, then done
 - else move the above men back to the right
 - move unmatched women from right to left
 - start the next round.

■ The number of rounds is at most $|\mathcal{B}|$:

- The number of rounds is at most $|\mathcal{B}|$:
 - lacksquare either round i is the last round or $L_{i+1} = L_i + at$ least 1 woman

- The number of rounds is at most $|\mathcal{B}|$:
 - lacksquare either round i is the last round or $L_{i+1} = L_i + at$ least 1 woman
 - once a woman moves from right to left, she never moves back to the right side again.

- The number of rounds is at most $|\mathcal{B}|$:
 - lacksquare either round i is the last round or $L_{i+1} = L_i + at$ least 1 woman
 - once a woman moves from right to left, she never moves back to the right side again.

■ Running time: $O(m|\mathcal{B}|)$, where m = |E|.

Max size popular matching

Result: an $O(mn_0)$ time algorithm to compute a max size popular matching. $(m = |E|, n_0 = \min(|A|, |B|))$.

Max size popular matching

■ Result: an $O(mn_0)$ time algorithm to compute a max size popular matching. $(m = |E|, n_0 = \min(|A|, |B|))$.

However a stable matching is faster to compute.

Max size popular matching

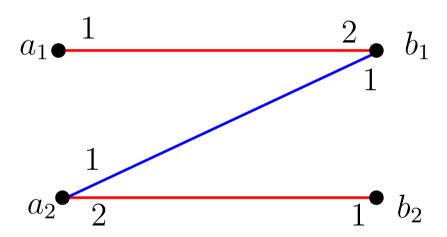
■ Result: an $O(mn_0)$ time algorithm to compute a max size popular matching. $(m = |E|, n_0 = \min(|A|, |B|))$.

However a stable matching is faster to compute.

A linear time algorithm for maximum size popular matching?

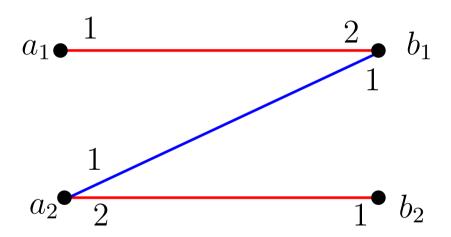
Stable vs max size popular matching

■ The blue matching is stable.



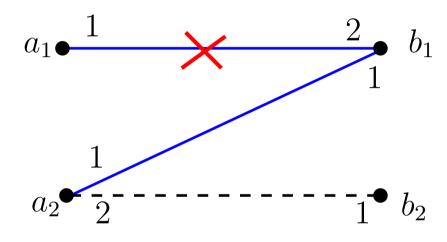
Stable vs max size popular matching

■ The blue matching is stable.

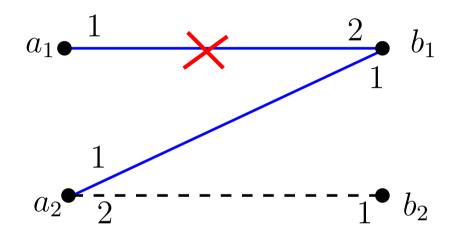


■ The red matching is a maximum size popular matching.

Modifying Gale-Shapley ...

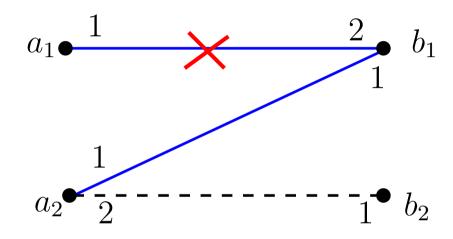


Modifying Gale-Shapley ...



■ Modify the Gale-Shapley algorithm so that a_1 gets a "second chance" to propose to b_1 .

Modifying Gale-Shapley ...



- Modify the Gale-Shapley algorithm so that a_1 gets a "second chance" to propose to b_1 .
- when a_1 proposes for the *second* time to b_1 , then b_1 should prefer a_1 to a_2 .

Implementing this idea

■ Have *two* copies a^0 and a^1 of every man a:

■ Have *two* copies a^0 and a^1 of every man a:

■ there will be two edges (a^1, b) and (a^0, b) corresponding to every edge (a, b) in G.

■ Have *two* copies a^0 and a^1 of every man a:

there will be two edges (a^1, b) and (a^0, b) corresponding to every edge (a, b) in G.

every woman prefers a level 1 nbr to a level 0 nbr.

■ Have *two* copies a^0 and a^1 of every man a:

■ there will be two edges (a^1, b) and (a^0, b) corresponding to every edge (a, b) in G.

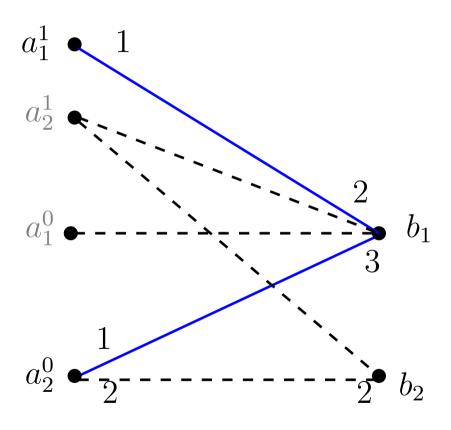
- every woman prefers a level 1 nbr to a level 0 nbr.
- among level 1 nbrs: her original preference order.

■ Have *two* copies a^0 and a^1 of every man a:

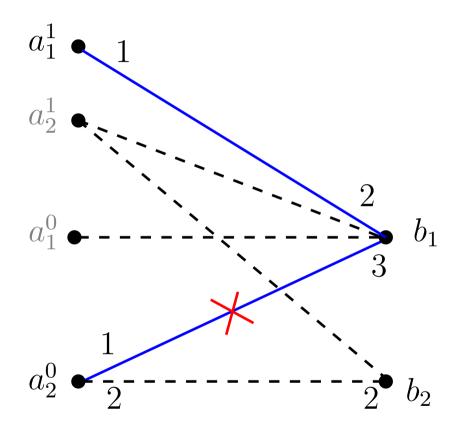
- there will be two edges (a^1, b) and (a^0, b) corresponding to every edge (a, b) in G.
 - every woman prefers a level 1 nbr to a level 0 nbr.
 - among level 1 nbrs: her original preference order.
 - among level 0 nbrs: her original preference order.



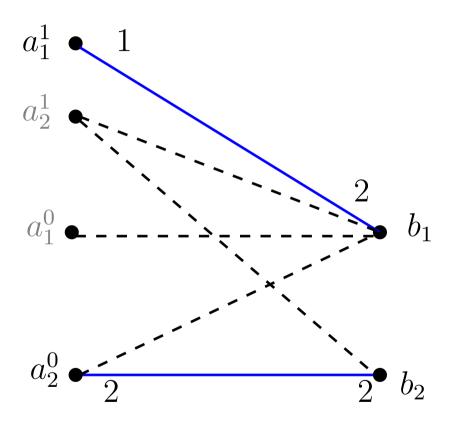
 $\blacksquare a_1^0$ is rejected by his only neighbor b_1 .



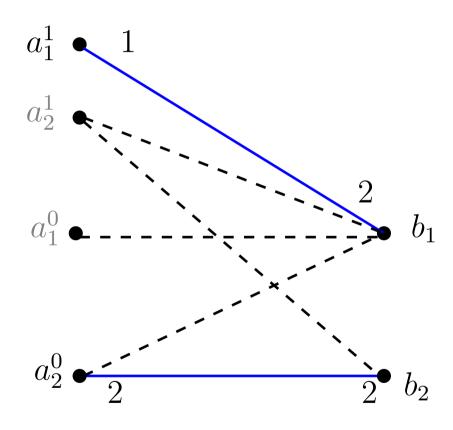
■ So a_1^1 becomes active and proposes to b_1 .



lacksquare b_1 accepts a_1^1 and rejects a_2^0 .



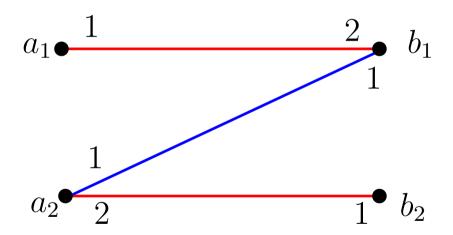
■ So a_2^0 proposes to his next preferred neighbor b_2 .



■ The matching $\{(a_1^1,b_1),\ (a_2^0,b_2)\}$ is computed.

Back in the original graph

■ Thus OPT = $\{(a_1, b_1), (a_2, b_2)\}$, the red matching, is found.



Let \tilde{G}_2 be the graph on $\tilde{A}_2 \cup \mathcal{B}$ where \tilde{A}_2 consists of two copies a^0 and a^1 of each $a \in \mathcal{A}$.

- Let \tilde{G}_2 be the graph on $\tilde{A}_2 \cup \mathcal{B}$ where \tilde{A}_2 consists of two copies a^0 and a^1 of each $a \in \mathcal{A}$.
- Initially only the men in $\{a^0 : a \in A\}$ are "active".

- Let \tilde{G}_2 be the graph on $\tilde{A}_2 \cup \mathcal{B}$ where \tilde{A}_2 consists of two copies a^0 and a^1 of each $a \in \mathcal{A}$.
- Initially only the men in $\{a^0 : a \in A\}$ are "active".
 - \blacksquare Active men propose and women dispose in \tilde{G}_2 .

- Let \tilde{G}_2 be the graph on $\tilde{A}_2 \cup \mathcal{B}$ where \tilde{A}_2 consists of two copies a^0 and a^1 of each $a \in \mathcal{A}$.
- Initially only the men in $\{a^0 : a \in A\}$ are "active".
 - \blacksquare Active men propose and women dispose in \tilde{G}_2 .
 - When any a_i^0 is rejected by all his neighbors:

- Let \tilde{G}_2 be the graph on $\tilde{A}_2 \cup \mathcal{B}$ where \tilde{A}_2 consists of two copies a^0 and a^1 of each $a \in \mathcal{A}$.
- Initially only the men in $\{a^0 : a \in A\}$ are "active".
 - Active men propose and women dispose in G_2 .
 - When any a_i^0 is rejected by all his neighbors:
 - introduce a_i^1 into the set of active vertices.

A linear time algorithm

■ Termination condition: every a_i^j is either inactive or gets matched to some nbr.

A linear time algorithm

■ Termination condition: every a_i^j is either inactive or gets matched to some nbr.

lacksquare Our algorithm is essentially Gale-Shapley algorithm on \tilde{G}_2 .

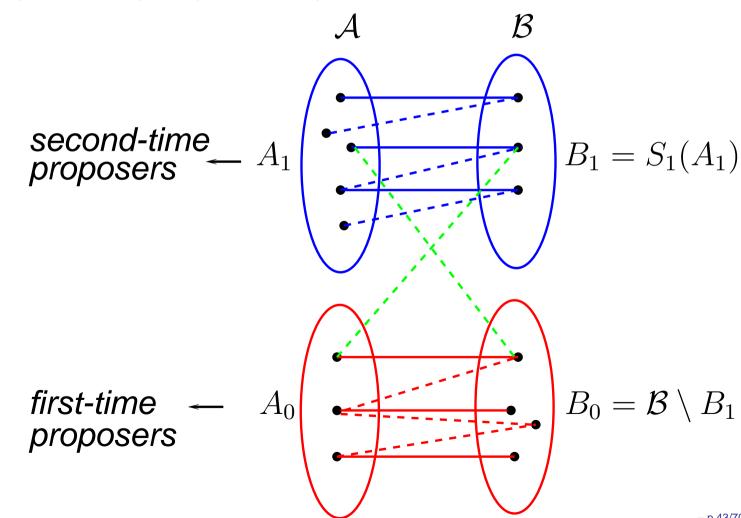
A linear time algorithm

■ Termination condition: every a_i^j is either inactive or gets matched to some nbr.

lacksquare Our algorithm is essentially Gale-Shapley algorithm on \tilde{G}_2 .

■ Running time is O(m+n), which is O(m).

$$\blacksquare S_1 \subseteq (A_0 \times B_0) \cup (A_1 \times B_1).$$

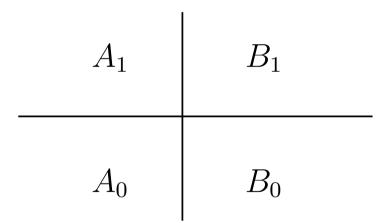


■ All unmatched vertices are in $A_1 \cup B_0$.

- All unmatched vertices are in $A_1 \cup B_0$.
- $\blacksquare S_1$ restricted to $A_i \cup B_i$ (i = 0, 1) is stable.

$$egin{array}{c|c} A_1 & B_1 \ \hline A_0 & B_0 \ \hline \end{array}$$

- All unmatched vertices are in $A_1 \cup B_0$.
- $\blacksquare S_1$ restricted to $A_i \cup B_i$ (i = 0, 1) is stable.



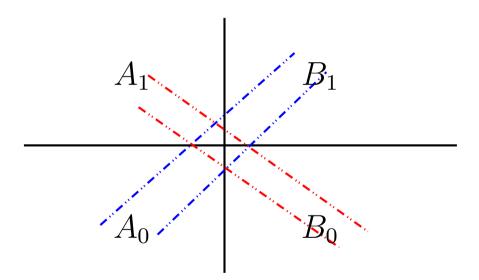
■ Any blocking edge to S_1 has to be in $A_0 \times B_1$.

Partition of A and B

■ Every edge $(a,b) \in A_1 \times B_0$ is negative wrt S_1 .

Partition of A and B

■ Every edge $(a,b) \in A_1 \times B_0$ is negative wrt S_1 .



lacksquare Consider the subgraph G_{S_1} .

 \blacksquare Consider the subgraph G_{S_1} .

 \blacksquare S_1 has the following properties in G_{S_1} :

- \blacksquare Consider the subgraph G_{S_1} .
 - \blacksquare S_1 has the following properties in G_{S_1} :
 - no alternating cycle has a blocking edge.

- \blacksquare Consider the subgraph G_{S_1} .
 - \blacksquare S_1 has the following properties in G_{S_1} :
 - no alternating cycle has a blocking edge.
 - no alternating path with a free endpoint has a blocking edge.

- \blacksquare Consider the subgraph G_{S_1} .
 - \blacksquare S_1 has the following properties in G_{S_1} :
 - no alternating cycle has a blocking edge.
 - no alternating path with a free endpoint has a blocking edge.
 - no alternating path has 2 blocking edges.

■ There is *no* augmenting path wrt S_1 in G_{S_1} .

■ There is *no* augmenting path wrt S_1 in G_{S_1} .

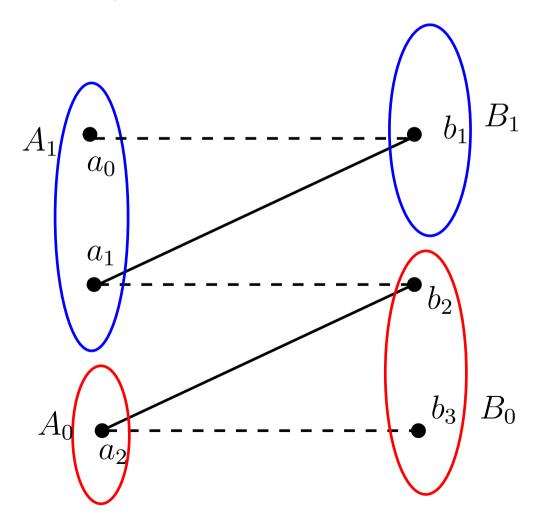
■ Thus S_1 is a maximum size popular matching.

■ There is *no* augmenting path wrt S_1 in G_{S_1} .

■ Thus S_1 is a maximum size popular matching.

■ What about $|S_1|$ in terms of $|M_{max}|$?

■ Any augmenting path wrt S_1 in G has size ≥ 5 :

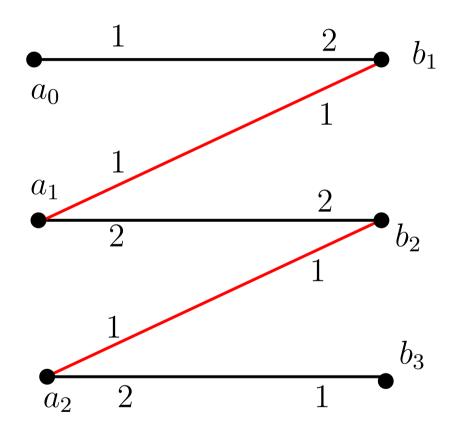


■ Any augmenting path wrt S_1 in G has size $\geq 5 \Rightarrow$

■ Any augmenting path wrt S_1 in G has size $\geq 5 \Rightarrow$

$$|S_1| \ge \frac{2}{3} |M_{max}|.$$

A tight example for the 2/3 bound



 $|S_1| = 2$ while $|M_{max}| = 3$.

■ Trade-off between popularity and size?

- Trade-off between popularity and size?
- Unpopularity factor $u(\cdot)$

- Trade-off between popularity and size?
- Unpopularity factor $u(\cdot)$
 - lacktriangle define $\delta(M, M')$ as the following ratio:

 $|\{\text{vertices that prefer } M'\}|/|\{\text{vertices that prefer } M\}|$

- Trade-off between popularity and size?
- Unpopularity factor $u(\cdot)$
 - define $\delta(M, M')$ as the following ratio: $|\{\text{vertices that prefer } M'\}|/|\{\text{vertices that prefer } M\}|$
 - $\mathbf{u}(M) = \max_{M'} \delta(M, M').$

- Trade-off between popularity and size?
- Unpopularity factor $u(\cdot)$
 - define $\delta(M, M')$ as the following ratio: $|\{\text{vertices that prefer } M'\}|/|\{\text{vertices that prefer } M\}|$
 - $\mathbf{u}(M) = \max_{M'} \delta(M, M').$

 $u(M) = \beta \Rightarrow$ for every matching M' we have: $|\{\text{vertices that prefer } M'\}| \leq \beta \cdot |\{\text{vertices that prefer } M\}|.$

■ M is popular $\Leftrightarrow u(M) \leq 1$.

- M is popular $\Leftrightarrow u(M) \leq 1$.
 - We can find a matching S_1 with $u(S_1) \leq 1$ and $|S_1| \geq \frac{2}{3} |M_{max}|$.

- M is popular $\Leftrightarrow u(M) \leq 1$.
 - We can find a matching S_1 with $u(S_1) \leq 1$ and $|S_1| \geq \frac{2}{3} |M_{max}|$.
 - For every integer $k \geq 2$, can we find a matching S_k with $u(S_k) \leq k-1$ and $|S_k| \geq \frac{k}{k+1} |M_{max}|$?

- M is popular $\Leftrightarrow u(M) \leq 1$.
 - We can find a matching S_1 with $u(S_1) \leq 1$ and $|S_1| \geq \frac{2}{3} |M_{max}|$.
 - For every integer $k \geq 2$, can we find a matching S_k with $u(S_k) \leq k 1$ and $|S_k| \geq \frac{k}{k+1} |M_{max}|$?
- Is there an $M^* \equiv$ a maximum cardinality matching s.t. for each max cardinality matching $M: M^* \succeq M$?

■ For any integer $k \ge 2$, we can extend the 2-level algorithm to k levels.

- For any integer $k \ge 2$, we can extend the 2-level algorithm to k levels.
 - lacksquare So the graph becomes \tilde{G}_k on $\tilde{\mathcal{A}}_k \cup \mathcal{B}$.

- For any integer $k \ge 2$, we can extend the 2-level algorithm to k levels.
 - lacksquare So the graph becomes \tilde{G}_k on $\tilde{\mathcal{A}}_k \cup \mathcal{B}$.
 - $\tilde{\mathcal{A}}_k$ has k copies a^0, a^1, \dots, a^{k-1} of each $a \in \mathcal{A}$. (a^i is a level i vertex)

- For any integer $k \ge 2$, we can extend the 2-level algorithm to k levels.
 - lacksquare So the graph becomes \tilde{G}_k on $\tilde{\mathcal{A}}_k \cup \mathcal{B}$.
 - $\tilde{\mathcal{A}}_k$ has k copies a^0, a^1, \dots, a^{k-1} of each $a \in \mathcal{A}$. (a^i is a level i vertex)
 - For each $a \in \mathcal{A}$: at most one of a^0, a^1, \dots, a^{k-1} is active at any point.

Corresponding to each edge (a, b) in G:

- \blacksquare Corresponding to each edge (a, b) in G:
 - we have k edges (a^i, b) for $i = 0, \ldots, k-1$ in \tilde{G}_k .

- \blacksquare Corresponding to each edge (a, b) in G:
 - we have k edges (a^i, b) for $i = 0, \ldots, k-1$ in \tilde{G}_k .

■ In \tilde{G}_k , the preference list of any $b \in \mathcal{B}$:

- **Corresponding to each edge** (a, b) in G:
 - \blacksquare we have k edges (a^i, b) for $i = 0, \ldots, k-1$ in \tilde{G}_k .

- In \tilde{G}_k , the preference list of any $b \in \mathcal{B}$:
 - level (k-1) neighbors

- \blacksquare Corresponding to each edge (a, b) in G:
 - we have k edges (a^i, b) for $i = 0, \ldots, k-1$ in \tilde{G}_k .

- In \tilde{G}_k , the preference list of any $b \in \mathcal{B}$:
 - level (k-1) neighbors
 - then level (k-2) neighbors, ... and so on ...,

- \blacksquare Corresponding to each edge (a, b) in G:
 - \blacksquare we have k edges (a^i, b) for $i = 0, \ldots, k-1$ in \tilde{G}_k .

- In \tilde{G}_k , the preference list of any $b \in \mathcal{B}$:
 - level (k-1) neighbors
 - then level (k-2) neighbors, ... and so on ...,
 - and at the bottom are level 0 neighbors.

Set level 0 men to be active and set higher level men to be inactive.

Set level 0 men to be active and set higher level men to be inactive.

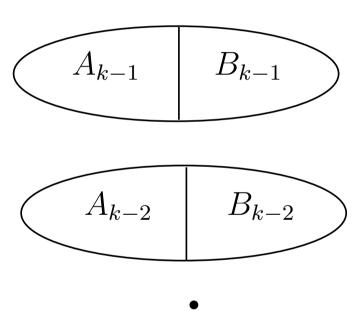
Essentially Gale-Shapley with the active men proposing and women disposing:

- Set level 0 men to be active and set higher level men to be inactive.
- Essentially Gale-Shapley with the active men proposing and women disposing:
 - i < k 1: if a^i is rejected by all his neighbors, then a^{i+1} becomes active.

- Set level 0 men to be active and set higher level men to be inactive.
- Essentially Gale-Shapley with the active men proposing and women disposing:
 - i < k 1: if a^i is rejected by all his neighbors, then a^{i+1} becomes active.
- Let S_{k-1} be the matching returned by this algorithm.

The partition of A and B

 $\blacksquare A_i = \{a \in \mathcal{A} \text{ such that } a \text{ is in level } i \text{ at the end} \}.$

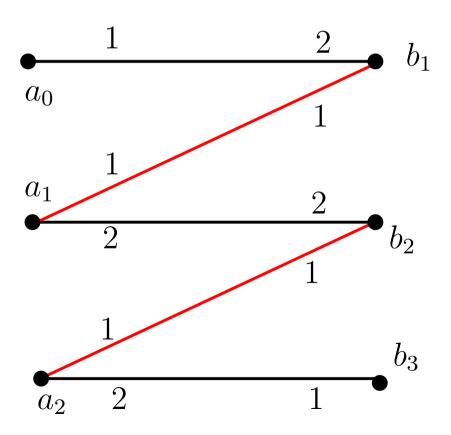


•

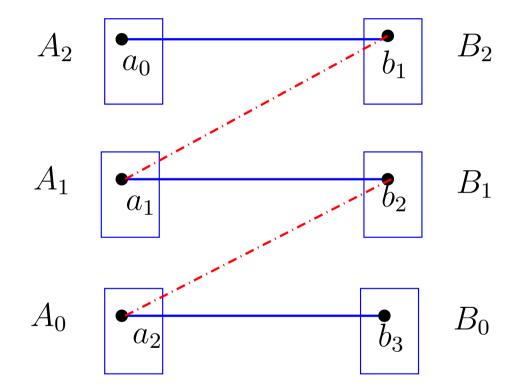
$$B_i = S_{k-1}(A_i) \qquad A_0 \qquad B_0$$

$$(\text{for } 1 \le i \le k-1) \qquad B_0$$

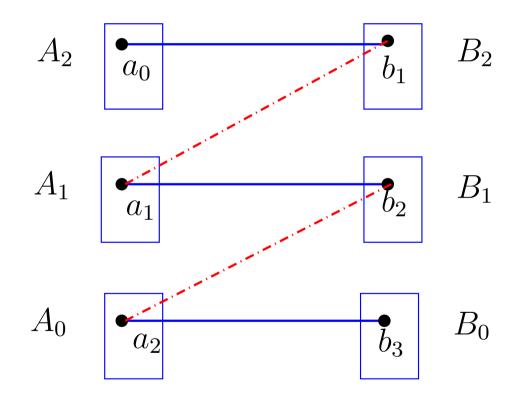
Say we run the 3-level algorithm on our tight example for the 2-level algorithm ...



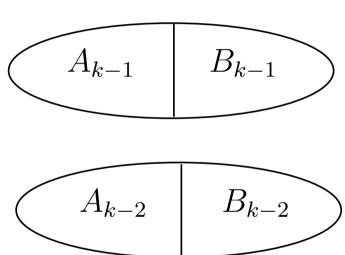
In the 3-level algorithm



In the 3-level algorithm



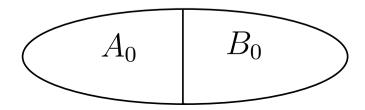
■ The matching $S_2 = \{(a_0, b_1), (a_1, b_2), (a_2, b_3)\}$ is output by the 3-level algorithm.



•

•

•



■ Every unmatched vertex is in $A_{k-1} \cup B_0$.

■ Every unmatched vertex is in $A_{k-1} \cup B_0$.

For all i: no edge in G between $A_{k-1} \cup \cdots \cup A_{i+1}$ and $B_{i-1} \cup \cdots \cup B_0$.

■ Every unmatched vertex is in $A_{k-1} \cup B_0$.

For all i: no edge in G between $A_{k-1} \cup \cdots \cup A_{i+1}$ and $B_{i-1} \cup \cdots \cup B_0$.

 \blacksquare any augmenting path wrt S_{k-1} has length $\geq 2k+1$.

■ Every unmatched vertex is in $A_{k-1} \cup B_0$.

For all i: no edge in G between $A_{k-1} \cup \cdots \cup A_{i+1}$ and $B_{i-1} \cup \cdots \cup B_0$.

 \blacksquare any augmenting path wrt S_{k-1} has length $\geq 2k+1$.

■ hence $|S_{k-1}| \ge \frac{k}{k+1} |M_{max}|$.

lacksquare Consider the subgraph $G_{S_{k-1}}$.

 \blacksquare Consider the subgraph $G_{S_{k-1}}$.

 \blacksquare S_{k-1} has the following properties in this graph:

- \blacksquare Consider the subgraph $G_{S_{k-1}}$.
 - \blacksquare S_{k-1} has the following properties in this graph:
 - no alternating cycle has a blocking edge.

- \blacksquare Consider the subgraph $G_{S_{k-1}}$.
 - \blacksquare S_{k-1} has the following properties in this graph:
 - no alternating cycle has a blocking edge.
 - no alternating path with a free endpoint has a blocking edge.

Unpopularity of S_{k-1}

- \blacksquare Consider the subgraph $G_{S_{k-1}}$.
 - \blacksquare S_{k-1} has the following properties in this graph:
 - no alternating cycle has a blocking edge.
 - no alternating path with a free endpoint has a blocking edge.
 - no alternating path has k blocking edges.

Trade-off between size and unpopularity

■ This implies that $u(S_{k-1}) \leq k-1$.

Trade-off between size and unpopularity

■ This implies that $u(S_{k-1}) \leq k-1$.

■ Thus for any $k \ge 2$, there exists a matching S_{k-1} s.t.

$$u(S_{k-1}) \le k-1$$
 and $|S_{k-1}| \ge \frac{k}{k+1} |M_{max}|$.

Trade-off between size and unpopularity

■ This implies that $u(S_{k-1}) \leq k-1$.

■ Thus for any $k \ge 2$, there exists a matching S_{k-1} s.t.

$$u(S_{k-1}) \le k-1$$
 and $|S_{k-1}| \ge \frac{k}{k+1} |M_{max}|$.

 $ightharpoonup S_{k-1}$ can be computed in O(mk) time.

■ k = 2: S_1 is a maximum size popular matching

- k = 2: S_1 is a maximum size popular matching
- $\blacksquare k = n_0$:

- k = 2: S_1 is a maximum size popular matching
- $\blacksquare k = n_0$:

$$|S_{n_0-1}| \ge \frac{n_0}{n_0+1} |M_{max}| \text{ and } |M_{max}| \le n_0,$$

so
$$|S_{n_0-1}| = |M_{max}|$$
.

- k = 2: S_1 is a maximum size popular matching
- $\blacksquare k = n_0$:
 - $|S_{n_0-1}| \ge rac{n_0}{n_0+1} |M_{max}| ext{ and } |M_{max}| \le n_0,$ so $|S_{n_0-1}| = |M_{max}|.$
 - for any max cardinality matching $M: S_{n_0-1} \succeq M$.

■ Input G = (V, E): a general graph with strict 2-sided preference lists

■ Input G = (V, E): a general graph with strict 2-sided preference lists

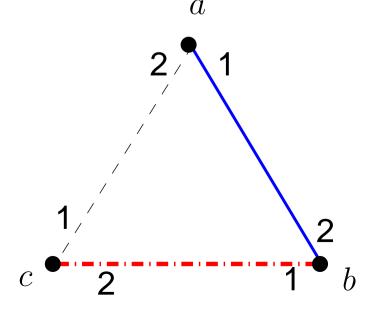
Stable matchings need not always exist in non-bipartite graphs.

- Input G = (V, E): a general graph with strict 2-sided preference lists
- Stable matchings need not always exist in non-bipartite graphs.

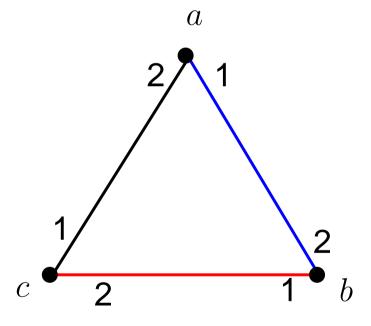


■ Input G = (V, E): a general graph with strict 2-sided preference lists

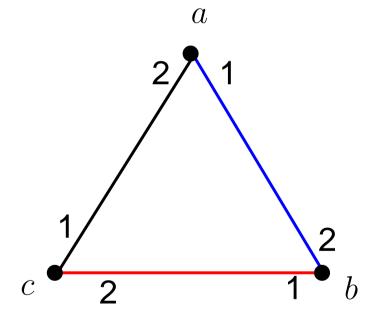
Stable matchings need not always exist in non-bipartite graphs: every matching here has a "blocking edge".



■ In fact, this instance has no popular matching either.

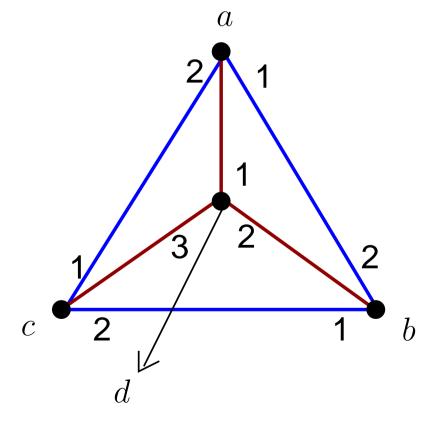


■ In fact, this instance has no popular matching either.



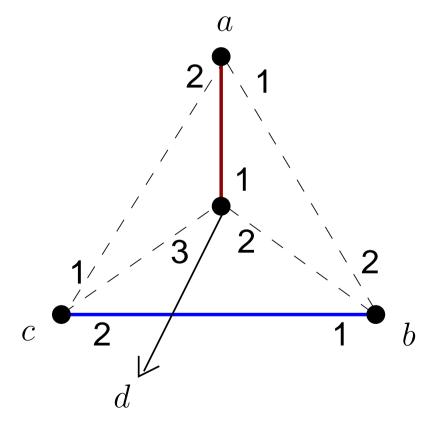
■ We have $M_1 \prec M_2 \prec M_3 \prec M_1$ here, where $M_1 = \{(a,b)\}$, $M_2 = \{(b,c)\}$, and $M_3 = \{(a,c)\}$.

An instance with no stable matching but with popular matchings:



 \blacksquare d is the least preferred neighbor for a, b, c.

An instance with no stable matching but with popular matchings:



 \blacksquare {(a,d),(b,c)} is popular.

■ There is always a matching M such that u(M) is $O(\log n)$.

■ There is always a matching M such that u(M) is $O(\log n)$.

Such a matching can be computed in linear time.

■ There is always a matching M such that u(M) is $O(\log n)$.

Such a matching can be computed in linear time.

Computing a *least* unpopularity factor matching is NP-hard.

■ There is always a matching M such that u(M) is $O(\log n)$.

Such a matching can be computed in linear time.

Computing a *least* unpopularity factor matching is NP-hard.

Open problem: complexity of determining if G admits a popular matching or not.

