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The input graph

® Input: a bipartite graph G = (AU B, E).
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The input graph

® Input: a bipartite graph G = (AU B, F).

2
a1
1
2 by
1
1
a2
2 —o bs
1

m A: set of students; B: set of advisers.
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The input

m Each u € AU B ranks its neighbors in a strict order of
preference.
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The input

m Each v € AU B ranks its neighbors in a strict order of
preference.

® Problem: compute a “good” matching in G.

m every vertex Is selfish

w wants to be matched to its best ranked
neighbor who is willing to be matched to .
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Optimal matchings

m Let M be the matching obtained.
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Optimal matchings

m Let M be the matching obtained.

m The following property should hold for every u:

there is no neighbor ranked better than M (u) who
IS willing to be matched to w.

.—p.4I70



Optimal matchings

m Let M be the matching obtained.

m The following property should hold for every u:

there is no neighbor ranked better than M (u) who
IS willing to be matched to w.

® Such a matching M is stable.
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Stable Matchings

B A matching M is stable if it has no “blocking edges”.
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B A matching M is stable if it has no “blocking edges”.

® edge (u,v) blocks M if w and v prefer each other
to their respective assignments in M.
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Stable Matchings

B A matching M is stable if it has no “blocking edges”.

® edge (u,v) blocks M if w and v prefer each other
to their respective assignments in M.

u is unmatched or prefers v to M (u)

v is unmatched or prefers u to M (v).
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Stable matchings
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Stable matchings

® The blue matching is stable while the red is not.
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Stable matchings

m Do stable matchings always exist?
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Stable matchings

m Do stable matchings always exist?

® Yes; also such a matching can be computed Iin
linear time [Gale-Shapley, 62].
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Stable matchings

m Do stable matchings always exist?

® Yes; also such a matching can be computed Iin
linear time [Gale-Shapley, 62].

m Gale-Shapley algorithm: Men (vertices of A) propose
and Women (those in B) dispose.
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Gale-Shapley algorithm for stable matchings

m Men (vertices of A) propose and Women (those in 5)
dispose.
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Gale-Shapley algorithm for stable matchings

m Men (vertices of A) propose and Women (those in 5)
dispose.
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Gale-Shapley algorithm for stable matchings

m Men (vertices of A) propose and Women (those in 5)
dispose.

H q; proposes to his top neighbor b;; so does as.
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Gale-Shapley algorithm for stable matchings

W b, rejects a; and accepts as.
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Gale-Shapley algorithm for stable matchings

W b, rejects a; and accepts as.

®m The algorithm terminates when every man is either
rejected by all his nbrs or gets matched to some nbr.
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Price of stability

m |deally, M, ... IS the optimal matching.

.—p.12/70



Price of stability

m |deally, M, ... IS the optimal matching.

m Size of a stable matching:

.—p.12/70



Price of stability

m |deally, M, ... IS the optimal matching.

m Size of a stable matching:

m all stable matchings in G have the same size.
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Price of stability

m |deally, M, ... IS the optimal matching.

m Size of a stable matching:

m all stable matchings in G have the same size.

m |stable matching| could be as low as |M,,..|/2.
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Popular matchings

® A new notion of optimality that is a compromise
between M,,,. and a stable matching?
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Popular matchings

® A new notion of optimality that is a compromise
between M,,,. and a stable matching?

B A notion based on popularity:

Matching M, is more popular than matching M, if
|{vertices that prefer M, }| > |{vertices that prefer M,}|.
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An example
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An example

® ¢; and b; prefer the red matching
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An example
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® ¢; and b; prefer the red matching
m by, by, and ay prefer the blue matching
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An example

B
161
2[)2
1
1
a
2 5 1b3

® ¢; and b; prefer the red matching
m by, by, and ay prefer the blue matching

® blue matching is more popular than red matching.
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Popular matchings

m We use M, = M, to denote the relation that M, Is
more popular than Ms.
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more popular than Ms.

® The “more popular than” relation is not transitive: we
can have M, = M, = M5 = M;.
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Popular matchings

m \We use M, = M, to denote the relation that M, Is
more popular than Ms.

® The “more popular than” relation is not transitive: we
can have M, = M, = M5 = M;.

m )/ is popular if there is no M’ such that M’ - M.
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Popular matchings

M is popular = for every matching M’ we have:
[{vertices that prefer M'}| < |{vertices that prefer M }|.
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Popular matchings

M is popular = for every matching M’ we have:
[{vertices that prefer M'}| < |{vertices that prefer M }|.

®m Do popular matchings always exist in GG?

m yes, In fact, every stable matching is popular.
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stable = popular

m Comparing a stable matching S with any matching M::
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m Comparing a stable matching S with any matching M::

u prefers M to S = M (u) has to prefer S to M.
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stable = popular

m Comparing a stable matching .S with any matching M:

u prefers M to S = M (u) has to prefer S to M.

B So number of votes for M < number of votes for S.

m So a stable matching is always popular.
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stable = popular

m Comparing a stable matching .S with any matching M:

u prefers M to S = M (u) has to prefer S to M.

B So number of votes for M < number of votes for S.

m So a stable matching is always popular.

In fact, it Is a minimum size popular matching.
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Stable matchings

m Let S be a stable matching and let M be a smaller
matching.
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Stable matchings

m Let S be a stable matching and let M be a smaller
matching.

= we will show that M has to be unpopular.
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m Let S be a stable matching and let M be a smaller
matching.

= we will show that M has to be unpopular.

m M| <]|S

, SO0 M & S has an augmenting path p wrt M.
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Stable matchings

m Let S be a stable matching and let M be a smaller
matching.

= we will show that M has to be unpopular.

m M| <]|S

, SO0 M & S has an augmenting path p wrt M.

m Claim: M & p = M.
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Stable matchings

m Let S be a stable matching and let M be a smaller
matching.

= we will show that M has to be unpopular.

m|M| <|S

, SO0 M & S has an augmenting path p wrt M.

mClaim: M & p >~ M.

(M ®p)(u)=S(u)ifuep,
M (u) otherwise.

=
o
=
=
||
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The alternating path p
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The alternating path p

m red: edges of M; black: edges of S.

.—p.19/70



The alternating path p

m red: edges of M; black: edges of S.

® both the endpoints of p prefer S to M.
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The alternating path p

m red: edges of M; black: edges of S.
® both the endpoints of p prefer S to M.

m for every NM-edge (u,v) in p:
u prefers M to S = v prefers S to M.
(otherwise (u, v) would block S)
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The alternating path p

m red: edges of M; black: edges of S.
® both the endpoints of p prefer S to M.

m for every NM-edge (u,v) in p:
u prefers M to S = v prefers S to M.
(otherwise (u, v) would block S)

®m Thus restricted to p, we have S = M.
SoM Dp - M.
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Min vs max size popular matchings

® The blue matching is a minimum size popular
matching.
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Min vs max size popular matchings

® The blue matching is a minimum size popular
matching.

®m The red matching is a maximum size popular matching.
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Some guestions

® |s |max size popular matching|/|M,,...| always larger
than 1/27?
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Some guestions

® |s |max size popular matching|/|M,,....| always larger
than 1/27?

m Can a maximum size popular matching be efficiently
computed?
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Some guestions

® |s |max size popular matching|/|M,,...| always larger
than 1/27?

m Can a maximum size popular matching be efficiently
computed?

m Characterization of a maximum size popular matching?
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A characterization of popular matchings

m Call an edge (u,v) negative wrt M if
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A characterization of popular matchings

m Call an edge (u,v) negative wrt M if

u prefers M(u) tov and v prefers M (v) to w.
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A characterization of popular matchings

m Call an edge (u,v) negative wrt M if

u prefers M(u) tov and v prefers M (v) to w.

m Delete from G all negative edges wrt M — call this
subgraph G,.
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A characterization of popular matchings

m ) Is popular <= M has these 3 properties in G,
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A characterization of popular matchings

m ) Is popular <= M has these 3 properties in G,

® no alternating cycle has a blocking edge.
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A characterization of popular matchings

m ) Is popular <= M has these 3 properties in G,

® no alternating cycle has a blocking edge.

® no alternating path with a free endpoint has a
blocking edge.
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A characterization of popular matchings

m )/ Is popular < M has these 3 properties in G,

® no alternating cycle has a blocking edge.

® no alternating path with a free endpoint has a
blocking edge.

® no alternating path has 2 blocking edges.
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Max size popular matchings

m In addition, if M has this 4th property:

.= p.24170



Max size popular matchings

m In addition, if M has this 4th property:

® there is no augmenting path wrt M in G ;.
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m In addition, if M has this 4th property:

® there is no augmenting path wrt M in G ;.
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Max size popular matchings

m [n addition, if M has this 4th property:

® there is no augmenting path wrt M in G ;.

= any larger matching has to be unpopular.

That is, M will be a maximum size popular
matching.

.= Pp.24/70



A first attempt

m Goal: To compute a matching that satisfies those 4
properties.
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m Goal: To compute a matching that satisfies those 4
properties.
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A U B such that
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A first attempt

m Goal: To compute a matching that satisfies those 4
properties.

® Idea: come up with a suitable partition (L, R) of
A U B such that

Gale-Shapley algorithm on (L, R) yields such a
matching.
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Our first algorithm (Huang and K., 2011)

®m Run Gale-Shapley algorithm on (A, B): let S be this
matching.
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and R, = (AU B) \ L.
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Our first algorithm (Huang and K., 2011)

®m Run Gale-Shapley algorithm on (A, B): let S be this
matching.

m Set [, = set of vertices left unmatched in S
and R, = (AU B) \ L.

® Run Gale-Shapley algorithm on (L, R,): let M, be
this matching.

If M, Is R;-perfect, then M, satisfies those 4
properties.
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Our first algorithm

m Else let A, be the set of unmatched men in R;.
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Our first algorithm

m Else let A, be the set of unmatched men in R;.

mSet i =LUA and R, = (AUB)\ Lj.

® Run Gale-Shapley algorithm on (L}, R}): let M] be
this matching.

If M| is R}-perfect, then )] satisfies those 4
properties.
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Our first algorithm

m Else let B; be the set of unmatched vertices in R;.
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®m Note that B; C B.
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m Else let B; be the set of unmatched vertices in R;.

®m Note that B; C B.

mSetl,=L,UB and Ry = (AUDB)\ Lo.
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Our first algorithm

m Else let B; be the set of unmatched vertices in R;.

m Note that B; C B.

mSetl,=1,UB;and Ry = (AUDB) \ Ls.

®m Run Gale-Shapley algorithm on (L,, R,): let M, be this
matching.
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Our first algorithm

m If M, is Ry-perfect, then done.
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Our first algorithm

m If M, is Ry-perfect, then done.

m Else move unmatched men from right to left and
compute M.
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Our first algorithm

m If M, is Ry-perfect, then done.

m Else move unmatched men from right to left and
compute M.

mif M} is R,-perfect, then done

else move the above men back to the right
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Our first algorithm

m If M, Is Ry-perfect, then done.

m Else move unmatched men from right to left and
compute M.

mif M} is R,-perfect, then done

else move the above men back to the right

move unmatched women from right to left
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Our first algorithm

m If M, Is Ry-perfect, then done.

m Else move unmatched men from right to left and
compute M.

mif M} is R,-perfect, then done

else move the above men back to the right
move unmatched women from right to left

start the next round.
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Our first algorithm

®m The number of rounds is at most |B|:
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®m The number of rounds is at most |B|:

m either round ¢ Is the last round or L,,; = L; + at
least 1 woman
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Our first algorithm

®m The number of rounds is at most |B]:

m either round ¢ Is the last round or L,,; = L; + at
least 1 woman

B once a woman moves from right to left, she never
moves back to the right side again.
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Our first algorithm

®m The number of rounds is at most |B]:

m either round ¢ Is the last round or L,,; = L; + at
least 1 woman

B once a woman moves from right to left, she never
moves back to the right side again.

® Running time: O(m/|B|), where m = |E].
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Max size popular matching

m Result: an O(mng) time algorithm to compute a max
size popular matching. (m = |E|, ng = min(|A|, |B))).
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Max size popular matching

® Result: an O(mng) time algorithm to compute a max
size popular matching. (m = |E|, ng = min(|A|, |B))).

m However a stable matching is faster to compute.

® A linear time algorithm for maximum size popular
matching?
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Stable vs max size popular matching

® The blue matching is stable.

1 2 by
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Stable vs max size popular matching

® The blue matching is stable.

die L 2 by

B The red matching is a maximum size popular matching.
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Modifying Gale-Shapley ...
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Modifying Gale-Shapley ...

m Modify the Gale-Shapley algorithm so that a; gets a
“second chance” to propose to b;.
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Modifying Gale-Shapley ...

m Modify the Gale-Shapley algorithm so that a; gets a
“second chance” to propose to b;.

®m when a; proposes for the second time to b, then b,
should prefer a; to as.
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Implementing this idea

m Have two copies «” and a' of every man a:
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corresponding to every edge (a,b) in G.

every woman prefers a level 1 nbr to a level O nbr.

among level 1 nbrs: her original preference order.
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Implementing this idea

m Have two copies «" and a' of every man a:

m there will be two edges (a',b) and (a°, b)
corresponding to every edge (a,b) in G.

every woman prefers a level 1 nbr to a level O nbr.

among level 1 nbrs: her original preference order.

among level O nbrs: her original preference order.
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In the new graph

m o} is rejected by his only neighbor b;.
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In the new graph

m So a; becomes active and proposes to b;.
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In the new graph

m ), accepts a7 and rejects ay.
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In the new graph

® So o) proposes to his next preferred neighbor b,.
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In the new graph

m The matching {(at,b;), (a3, bs)} is computed.
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Back in the original graph

®m Thus OPT = {(ay, b1), (as, b2) }, the red matching, is
found.
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A linear time algorithm (K., 2012)

m Let GG, be the graph on A, U B where A, consists of
two copies ¢' and a! of each a € A.
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m Let G, be the graph on A, U B where A, consists of
two copies ¢' and a! of each a € A.

m Initially only the menin {a" : a € A} are “active”.

= Active men propose and women dispose in Gb.

m When any a! is rejected by all his neighbors:
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A linear time algorithm (K., 2012)

m Let G, be the graph on A, U B where A, consists of
two copies ¢' and a! of each a € A.

m Initially only the menin {a" : a € A} are “active”.

= Active men propose and women dispose in Gb.

m When any a! is rejected by all his neighbors:

introduce «; into the set of active vertices.
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A linear time algorithm

® Termination condition: every «’ is either inactive or
gets matched to some nbr.

.~ p.42/70



A linear time algorithm

® Termination condition: every «’ is either inactive or
gets matched to some nbr.

m Our algorithm is essentially Gale-Shapley algorithm on
Gs.
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A linear time algorithm

® Termination condition: every «’ is either inactive or
gets matched to some nbr.

m Our algorithm is essentially Gale-Shapley algorithm on

® Running time is O(m + n), which is O(m).
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Properties of the output matching .5

i Sl C (AO X B()) U (Al X Bl)

second-time _
proposers — By = 51(4)
first-time — By =B\ B

Proposers
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Properties of the output matching .5

m All unmatched vertices are in A; U B,.
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m All unmatched vertices are in A; U B,.

m S restricted to A; U B; (2 = 0, 1) Is stable.

Ay

B,
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Properties of the output matching 5
m All unmatched vertices are in A; U B,.

m S restricted to A; U B; (2 = 0, 1) Is stable.

Al Bl

AO BO

m Any blocking edge to S, has to be in Ay x B;.
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Partition of 4 and B

m Every edge (a,b) € A; X By is negative wrt S;.

.—p.45/70



Partition of 4 and B

m Every edge (a,b) € A; X By is negative wrt S;.
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Popularity of S,

m Consider the subgraph Gg,.
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Popularity of 5

m Consider the subgraph Gg,.

® S, has the following properties in Gg,:

no alternating cycle has a blocking edge.

no alternating path with a free endpoint has a
blocking edge.

no alternating path has 2 blocking edges.
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Size of the matching 5;

®m There Is no augmenting path wrt S; In Gg,.
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Size of the matching 5;

®m There Is no augmenting path wrt S; In Gg,.

®m Thus 5; Is a maximum size popular matching.
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Size of the matching 5;

®m There Is no augmenting path wrt S; In Gg,.

®m Thus 5; Is a maximum size popular matching.

m What about |S;| in terms of |M,,,q.|?
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Size of the matching 5;

® Any augmenting path wrt Sy in G has size > 5:
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Size of the matching 5;

® Any augmenting path wrt S; In G has size > 5 =
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Size of the matching 5;

® Any augmenting path wrt S; In G has size > 5 =

N ‘Sl‘ Z %‘Mmaaz|-
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A tight example for the 2/3 bound

m (S| = 2 while [ M,,..| = 3.

.~ p.50/70



Larger size matchings

m Trade-off between popularity and size?
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Larger size matchings

m Trade-off between popularity and size?
m Unpopularity factor u(-)

m define 6(M, M') as the following ratio:

[{vertices that prefer M'}|/|{vertices that prefer M }|

mu(M) =maxyy 0(M, M.

u(M) = [ = for every matching M’ we have:
[{vertices that prefer M'}| < S - |{vertices that prefer M }|.

.—p.51/70



Popularity vs Size

m )M is popular < u(M) < 1.
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m We can find a matching S; with «(S;) < 1 and
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m For every integer £ > 2, can we find a matching .S,
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Popularity vs Size

m )\ is popular < u(M) < 1.

m We can find a matching S; with «(S;) < 1 and
‘Sl‘ Z %‘Mmaa:|-

m For every integer £ > 2, can we find a matching .S,
with u(S,) < k — 1 and |S;| > M az|?

L|
k+1

m Is there an M* = a maximum cardinality matching s.t.

for each max cardinality matching M: M* = M?

.—p.52/70



Extending the 2-level algorithm

m For any integer k£ > 2, we can extend the 2-level
algorithm to & levels.
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Extending the 2-level algorithm

m For any integer k£ > 2, we can extend the 2-level
algorithm to £ levels.

= So the graph becomes G}, on A, U B.

A, has k copies a°,a!, ... a* ! of each a € A.
(a' is a level 7 vertex)

For each a € A: at mostone of a°, at, ... . a" 1is
active at any point.

.—p.53/70



The k-level algorithm

m Corresponding to each edge (a,b) in G-
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The k-level algorithm

m Corresponding to each edge (a,b) in G-

= we have k edges (a’,b)fori =0,...,k—1in Gy.

m In G,, the preference list of any b € B:

m level (kK — 1) neighbors

m then level (k — 2) neighbors, ... and so on ...,
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The k-level algorithm

m Corresponding to each edge (a,b) in G-

= we have k edges (a’,b) fori =0,...,k —1in G.

m In G, the preference list of any b € B;

m level (kK — 1) neighbors
m then level (k — 2) neighbors, ... and so on ...,

® and at the bottom are level O neighbors.

. —Pp.54/70



The k-level algorithm

m Set level O men to be active and set higher level men to
be inactive.
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The k-level algorithm

m Set level O men to be active and set higher level men to
be inactive.

m Essentially Gale-Shapley with the active men
proposing and women disposing:

mi < k—1:if o' is rejected by all his neighbors, then
a‘t1 becomes active.

m Let S;_; be the matching returned by this algorithm.
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The partition of A and B

mA; = {a € Asuchthataisinlevel ; at the end}.

(for1 <:<k—1)
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The 3-level algorithm

m Say we run the 3-level algorithm on our tight example
for the 2-level algorithm ...

1 2 b,
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In the 3-level algorithm

/‘. B

by 2

" B

Fh, | b

: AO of"" ® B
a2 b3 0
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In the 3-level algorithm

/‘. B
‘/‘/ - b]. 2

ra B
by

AO ."/ ' o B
a2 b3 0

®m The matching S; = {(ag, b1), (a1, b2), (as, b3)} is output
by the 3-level algorithm.
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Properties of the matching S,

N Sk—l C (Ak—l X Bk—l) U (Ak_g X Bk_g) J-.--uU (AO X B())
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Properties of the matching S,

m Every unmatched vertex is in A,_; U B,.
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Properties of the matching S,

m Every unmatched vertex is in A,_; U B,.

m For all 2: no edge in G between A,_; U---U A, and
B;_1U---UBy.

® any augmenting path wrt S;,_; has length > 2k + 1.

hence |S,_{| > Moz |-

L‘
k+1

. —p.60/70



Unpopularity of S,

m Consider the subgraph G, ..
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Unpopularity of S,

m Consider the subgraph Gg, _,.

® S;_; has the following properties in this graph:

no alternating cycle has a blocking edge.

no alternating path with a free endpoint has a
blocking edge.

no alternating path has & blocking edges.
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Trade-off between size and unpopularity

® This implies that u(S;_1) < k — 1.
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Trade-off between size and unpopularity

m This implies that u(S;_1) < k — 1.

m Thus for any £ > 2, there exists a matching S;_; S.t.

w(Se—1) <k —1 and [Sp_1| > Z5 [ Mz,
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Trade-off between size and unpopularity

m This implies that u(S;_1) < k — 1.

m Thus for any £ > 2, there exists a matching S;_; S.t.

w(Se—1) <k —1 and [Sp_1| > Z5 [ Mz,

m S, _; can be computed in O(mk) time.
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The boundary cases

mLiL=2. S;IsSamaximum size popular matching
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The boundary cases

mLiL=2. S;IsSamaximum size popular matching

mL=n

[ ‘Sng—l‘ 2 ngb_?_l‘Mmaa:’ and ‘Mmax‘ S no,

SO |Sn0—1| — |Mmax|-

m for any max cardinality matching M: S,,,_1 = M.

.~ p.63/70



In general graphs

m Input G = (V, E)): a general graph with strict 2-sided
preference lists
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In general graphs

mInput G = (V, E): a general graph with strict 2-sided
preference lists

m Stable matchings need not always exist in non-bipartite
graphs: every matching here has a “blocking edge”.
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In general graphs

m In fact, this instance has no popular matching either.
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In general graphs

m In fact, this instance has no popular matching either.

m We have M, < M, < M5 < M, here,
where M; = {(a,b)}, My = {(b,c)}, and M35 = {(a,c)}.
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In general graphs

® An instance with no stable matching but with popular
matchings:

m ( Is the least preferred neighbor for a, b, c.
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In general graphs

® An instance with no stable matching but with popular
matchings:

m {(a,d),(b,c)} is popular.
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In general graphs (Huang and K., 2011)

m There is always a matching M such that u(M) is
O(logn).
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In general graphs (Huang and K., 2011)

m There is always a matching M such that u(M) is
O(logn).

®m Such a matching can be computed in linear time.

m Computing a least unpopularity factor matching is
NP-hard.

m Open problem: complexity of determining if G admits a
popular matching or not.

. —p.69/70



Thank you!
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