Popular Matchings

Kavitha Telikepalli (TIFR, Mumbai)

[Joint work with Chien-Chung Huang]

3rd Annual Mysore Park Theory Workshop: August 2012

.—p.1/70



The input graph

® Input: a bipartite graph G = (AU B, E).

.~ p.2/70



The input graph

® Input: a bipartite graph G = (AU B, E).

2
a1
1
2 by
1
1
a2
2 —o bs

.~ p.2/70



The input graph

® Input: a bipartite graph G = (AU B, F).

2
a1
1
2 by
1
1
a2
2 —o bs
1

m A: set of students; B: set of advisers.

.—p.2/70



The input

m Each u € AU B ranks its neighbors in a strict order of
preference.

.—p.3/70



The input

m Each u € AU B ranks its neighbors in a strict order of
preference.

®m Problem: compute a “good” matching in G.

.—p.3/70



The input

m Each u € AU B ranks its neighbors in a strict order of
preference.

®m Problem: compute a “good” matching in G.

m every vertex Is selfish

.—p.3/70



The input

m Each v € AU B ranks its neighbors in a strict order of
preference.

® Problem: compute a “good” matching in G.

m every vertex Is selfish

w wants to be matched to its best ranked
neighbor who is willing to be matched to .

.—p.3/70



Optimal matchings

m Let M be the matching obtained.

.—p.4/70



Optimal matchings

m Let M be the matching obtained.

® The following property should hold for every u:

.—p.4/70



Optimal matchings

m Let M be the matching obtained.

m The following property should hold for every u:

there is no neighbor ranked better than M (u) who
IS willing to be matched to w.

.—p.4I70



Optimal matchings

m Let M be the matching obtained.

m The following property should hold for every u:

there is no neighbor ranked better than M (u) who
IS willing to be matched to w.

® Such a matching M is stable.

.—p.4I70



Stable Matchings

B A matching M is stable if it has no “blocking edges”.

.—p.5/70



Stable Matchings

B A matching M is stable if it has no “blocking edges”.

® edge (u,v) blocks M if w and v prefer each other
to their respective assignments in M.

.—p.5/70



Stable Matchings

B A matching M is stable if it has no “blocking edges”.

® edge (u,v) blocks M if w and v prefer each other
to their respective assignments in M.

u is unmatched or prefers v to M (u)

.—p.5/70



Stable Matchings

B A matching M is stable if it has no “blocking edges”.

® edge (u,v) blocks M if w and v prefer each other
to their respective assignments in M.

u is unmatched or prefers v to M (u)

v is unmatched or prefers u to M (v).

.—p.5/70



Stable matchings

.~ p.6I70



Stable matchings

® The blue matching is stable while the red is not.

.~ p.6I70



Stable matchings

m Do stable matchings always exist?

.—p.7/70



Stable matchings

m Do stable matchings always exist?

® Yes; also such a matching can be computed Iin
linear time [Gale-Shapley, 62].

.—p.7/70



Stable matchings

m Do stable matchings always exist?

® Yes; also such a matching can be computed Iin
linear time [Gale-Shapley, 62].

m Gale-Shapley algorithm: Men (vertices of A) propose
and Women (those in B) dispose.

.—p.7I70



Gale-Shapley algorithm for stable matchings

m Men (vertices of A) propose and Women (those in 5)
dispose.

.~ p.8I70



Gale-Shapley algorithm for stable matchings

m Men (vertices of A) propose and Women (those in 5)
dispose.

.~ p.8I70



Gale-Shapley algorithm for stable matchings

m Men (vertices of A) propose and Women (those in 5)
dispose.

H q; proposes to his top neighbor b;; so does as.

.—p.9I70



Gale-Shapley algorithm for stable matchings

W b, rejects a; and accepts as.

.—p.10/70



Gale-Shapley algorithm for stable matchings

W b, rejects a; and accepts as.

®m The algorithm terminates when every man is either
rejected by all his nbrs or gets matched to some nbr.

.—p.11/70



Price of stability

m |deally, M, ... IS the optimal matching.

.—p.12/70



Price of stability

m |deally, M, ... IS the optimal matching.

m Size of a stable matching:

.—p.12/70



Price of stability

m |deally, M, ... IS the optimal matching.

m Size of a stable matching:

m all stable matchings in G have the same size.

.—p.12/70



Price of stability

m |deally, M, ... IS the optimal matching.

m Size of a stable matching:

m all stable matchings in G have the same size.

m |stable matching| could be as low as |M,,..|/2.

.—p.12/70



Popular matchings

® A new notion of optimality that is a compromise
between M,,,. and a stable matching?

.—p.13/70



Popular matchings

® A new notion of optimality that is a compromise
between M,,,. and a stable matching?

B A notion based on popularity:

.—p.13/70



Popular matchings

® A new notion of optimality that is a compromise
between M,,,. and a stable matching?

B A notion based on popularity:

Matching M, is more popular than matching M, if
|{vertices that prefer M, }| > |{vertices that prefer M,}|.

.—p.13/70



An example

.—p.14/70



An example

® ¢; and b; prefer the red matching

.—p.14/70



An example

B
lbl
2[)2
1
1
a
2 5 1b3

® ¢; and b; prefer the red matching
m by, by, and ay prefer the blue matching

.—p.14/70



An example

B
161
2[)2
1
1
a
2 5 1b3

® ¢; and b; prefer the red matching
m by, by, and ay prefer the blue matching

® blue matching is more popular than red matching.

. —p.14/70



Popular matchings

m We use M, = M, to denote the relation that M, Is
more popular than Ms.

.—p.15/70



Popular matchings

m We use M, = M, to denote the relation that M, Is
more popular than Ms.

® The “more popular than” relation is not transitive: we
can have M, = M, = M5 = M;.

.= p.15/70



Popular matchings

m \We use M, = M, to denote the relation that M, Is
more popular than Ms.

® The “more popular than” relation is not transitive: we
can have M, = M, = M5 = M;.

m )/ is popular if there is no M’ such that M’ - M.

.= p.15/70



Popular matchings

M is popular = for every matching M’ we have:
[{vertices that prefer M'}| < |{vertices that prefer M }|.

.—p.16/70



Popular matchings

M is popular = for every matching M’ we have:
[{vertices that prefer M'}| < |{vertices that prefer M }|.

®m Do popular matchings always exist in GG?

.~ p.16/70



Popular matchings

M is popular = for every matching M’ we have:
[{vertices that prefer M'}| < |{vertices that prefer M }|.

®m Do popular matchings always exist in GG?

m yes, In fact, every stable matching is popular.

.—p.16/70



stable = popular

m Comparing a stable matching S with any matching M::

.—p.17/70



stable = popular

m Comparing a stable matching S with any matching M::

u prefers M to S = M (u) has to prefer S to M.

.—p.17/70



stable = popular

m Comparing a stable matching S with any matching M::

u prefers M to S = M (u) has to prefer S to M.

®m So number of votes for M < number of votes for S.

.—p.17/70



stable = popular

m Comparing a stable matching .S with any matching M:

u prefers M to S = M (u) has to prefer S to M.

B So number of votes for M < number of votes for S.

m So a stable matching is always popular.

.—p.17/70



stable = popular

m Comparing a stable matching .S with any matching M:

u prefers M to S = M (u) has to prefer S to M.

B So number of votes for M < number of votes for S.

m So a stable matching is always popular.

In fact, it Is a minimum size popular matching.

.—p.17/70



Stable matchings

m Let S be a stable matching and let M be a smaller
matching.

.—p.18/70



Stable matchings

m Let S be a stable matching and let M be a smaller
matching.

= we will show that M has to be unpopular.

.—p.18/70



Stable matchings

m Let S be a stable matching and let M be a smaller
matching.

= we will show that M has to be unpopular.

m M| <]|S

, SO0 M & S has an augmenting path p wrt M.

.—p.18/70



Stable matchings

m Let S be a stable matching and let M be a smaller
matching.

= we will show that M has to be unpopular.

m M| <]|S

, SO0 M & S has an augmenting path p wrt M.

m Claim: M & p = M.

.—p.18/70



Stable matchings

m Let S be a stable matching and let M be a smaller
matching.

= we will show that M has to be unpopular.

m|M| <|S

, SO0 M & S has an augmenting path p wrt M.

mClaim: M & p >~ M.

(M ®p)(u)=S(u)ifuep,
M (u) otherwise.

=
o
=
=
||

.—p.18/70



The alternating path p

.—p.19/70



The alternating path p

m red: edges of M; black: edges of S.

.—p.19/70



The alternating path p

m red: edges of M; black: edges of S.

® both the endpoints of p prefer S to M.

.—p.19/70



The alternating path p

m red: edges of M; black: edges of S.
® both the endpoints of p prefer S to M.

m for every NM-edge (u,v) in p:
u prefers M to S = v prefers S to M.
(otherwise (u, v) would block S)

.—p.19/70



The alternating path p

m red: edges of M; black: edges of S.
® both the endpoints of p prefer S to M.

m for every NM-edge (u,v) in p:
u prefers M to S = v prefers S to M.
(otherwise (u, v) would block S)

®m Thus restricted to p, we have S = M.
SoM Dp - M.

.—p.19/70



Min vs max size popular matchings

® The blue matching is a minimum size popular
matching.

.= p.20/70



Min vs max size popular matchings

® The blue matching is a minimum size popular
matching.

®m The red matching is a maximum size popular matching.

.= p.20/70



Some guestions

® |s |max size popular matching|/|M,,...| always larger
than 1/27?

.= p.21/70



Some guestions

® |s |max size popular matching|/|M,,....| always larger
than 1/27?

m Can a maximum size popular matching be efficiently
computed?

.—p.21/70



Some guestions

® |s |max size popular matching|/|M,,...| always larger
than 1/27?

m Can a maximum size popular matching be efficiently
computed?

m Characterization of a maximum size popular matching?

.—p.21/70



A characterization of popular matchings

m Call an edge (u,v) negative wrt M if

.= p.22/70



A characterization of popular matchings

m Call an edge (u,v) negative wrt M if

u prefers M(u) tov and v prefers M (v) to w.

.= p.22/70



A characterization of popular matchings

m Call an edge (u,v) negative wrt M if

u prefers M(u) tov and v prefers M (v) to w.

m Delete from G all negative edges wrt M — call this
subgraph G,.

.= p.22/70



A characterization of popular matchings

m ) Is popular <= M has these 3 properties in G,

.= p.23/70



A characterization of popular matchings

m ) Is popular <= M has these 3 properties in G,

® no alternating cycle has a blocking edge.

.= p.23/70



A characterization of popular matchings

m ) Is popular <= M has these 3 properties in G,

® no alternating cycle has a blocking edge.

® no alternating path with a free endpoint has a
blocking edge.

.—p.23/70



A characterization of popular matchings

m )/ Is popular < M has these 3 properties in G,

® no alternating cycle has a blocking edge.

® no alternating path with a free endpoint has a
blocking edge.

® no alternating path has 2 blocking edges.

.—p.23/70



Max size popular matchings

m In addition, if M has this 4th property:

.= p.24170



Max size popular matchings

m In addition, if M has this 4th property:

® there is no augmenting path wrt M in G ;.

.= p.24170



Max size popular matchings

m In addition, if M has this 4th property:

® there is no augmenting path wrt M in G ;.

= any larger matching has to be unpopular.

.= Pp.24/70



Max size popular matchings

m [n addition, if M has this 4th property:

® there is no augmenting path wrt M in G ;.

= any larger matching has to be unpopular.

That is, M will be a maximum size popular
matching.

.= Pp.24/70



A first attempt

m Goal: To compute a matching that satisfies those 4
properties.

.~ p.25/70



A first attempt

m Goal: To compute a matching that satisfies those 4
properties.

® Idea: come up with a suitable partition (L, R) of
A U B such that

.= p.25/70



A first attempt

m Goal: To compute a matching that satisfies those 4
properties.

® Idea: come up with a suitable partition (L, R) of
A U B such that

Gale-Shapley algorithm on (L, R) yields such a
matching.

.= p.25/70



Our first algorithm (Huang and K., 2011)

®m Run Gale-Shapley algorithm on (A, B): let S be this
matching.

.~ p.26/70



Our first algorithm (Huang and K., 2011)

®m Run Gale-Shapley algorithm on (A, B): let S be this
matching.

m Set [, = set of vertices left unmatched in S
and R, = (AU B) \ L.

.= p.26/70



Our first algorithm (Huang and K., 2011)

®m Run Gale-Shapley algorithm on (A, B): let S be this
matching.

m Set [, = set of vertices left unmatched in S
and R, = (AU B) \ L.

® Run Gale-Shapley algorithm on (L, R,): let M, be
this matching.

.= Pp.26/70



Our first algorithm (Huang and K., 2011)

®m Run Gale-Shapley algorithm on (A, B): let S be this
matching.

m Set [, = set of vertices left unmatched in S
and R, = (AU B) \ L.

® Run Gale-Shapley algorithm on (L, R,): let M, be
this matching.

If M, Is R;-perfect, then M, satisfies those 4
properties.

.= Pp.26/70



Our first algorithm

m Else let A, be the set of unmatched men in R;.

.= p.27170



Our first algorithm

m Else let A, be the set of unmatched men in R;.

mSet i =LUA and R, = (AUB)\ Lj.

.= p.27170



Our first algorithm

m Else let A, be the set of unmatched men in R;.

mSet i =LUA and R, = (AUB)\ Lj.

® Run Gale-Shapley algorithm on (L}, R}): let M] be
this matching.

.= p.27/70



Our first algorithm

m Else let A, be the set of unmatched men in R;.

mSet i =LUA and R, = (AUB)\ Lj.

® Run Gale-Shapley algorithm on (L}, R}): let M] be
this matching.

If M| is R}-perfect, then )] satisfies those 4
properties.

.= p.27/70



Our first algorithm

m Else let B; be the set of unmatched vertices in R;.

.—p.28/70



Our first algorithm

m Else let B; be the set of unmatched vertices in R;.

®m Note that B; C B.

.—p.28/70



Our first algorithm

m Else let B; be the set of unmatched vertices in R;.

®m Note that B; C B.

mSetl,=L,UB and Ry = (AUDB)\ Lo.

.—p.28/70



Our first algorithm

m Else let B; be the set of unmatched vertices in R;.

m Note that B; C B.

mSetl,=1,UB;and Ry = (AUDB) \ Ls.

®m Run Gale-Shapley algorithm on (L,, R,): let M, be this
matching.

.—p.28/70



Our first algorithm

m If M, is Ry-perfect, then done.

.—p.29/70



Our first algorithm

m If M, is Ry-perfect, then done.

m Else move unmatched men from right to left and
compute M.

.= p.29/70



Our first algorithm

m If M, is Ry-perfect, then done.

m Else move unmatched men from right to left and
compute M.

mif M} is R,-perfect, then done

.= p.29/70



Our first algorithm

m If M, is Ry-perfect, then done.

m Else move unmatched men from right to left and
compute M.

mif M} is R,-perfect, then done

else move the above men back to the right

.= Pp.29/70



Our first algorithm

m If M, Is Ry-perfect, then done.

m Else move unmatched men from right to left and
compute M.

mif M} is R,-perfect, then done

else move the above men back to the right

move unmatched women from right to left

.= Pp.29/70



Our first algorithm

m If M, Is Ry-perfect, then done.

m Else move unmatched men from right to left and
compute M.

mif M} is R,-perfect, then done

else move the above men back to the right
move unmatched women from right to left

start the next round.

.= Pp.29/70



Our first algorithm

®m The number of rounds is at most |B|:

.~ p.30/70



Our first algorithm

®m The number of rounds is at most |B|:

m either round ¢ Is the last round or L,,; = L; + at
least 1 woman

.~ p.30/70



Our first algorithm

®m The number of rounds is at most |B]:

m either round ¢ Is the last round or L,,; = L; + at
least 1 woman

B once a woman moves from right to left, she never
moves back to the right side again.

. —p.30/70



Our first algorithm

®m The number of rounds is at most |B]:

m either round ¢ Is the last round or L,,; = L; + at
least 1 woman

B once a woman moves from right to left, she never
moves back to the right side again.

® Running time: O(m/|B|), where m = |E].

. —p.30/70



Max size popular matching

m Result: an O(mng) time algorithm to compute a max
size popular matching. (m = |E|, ng = min(|A|, |B))).

.~ p.31/70



Max size popular matching

m Result: an O(mng) time algorithm to compute a max
size popular matching. (m = |E|, ng = min(|A|, |B))).

® However a stable matching is faster to compute.

.~ p.31/70



Max size popular matching

® Result: an O(mng) time algorithm to compute a max
size popular matching. (m = |E|, ng = min(|A|, |B))).

m However a stable matching is faster to compute.

® A linear time algorithm for maximum size popular
matching?

.—p.31/70



Stable vs max size popular matching

® The blue matching is stable.

1 2 by

.—p.32/70



Stable vs max size popular matching

® The blue matching is stable.

die L 2 by

B The red matching is a maximum size popular matching.

.—p.32/70



Modifying Gale-Shapley ...

.~ p.33/70



Modifying Gale-Shapley ...

m Modify the Gale-Shapley algorithm so that a; gets a
“second chance” to propose to b;.

.—p.33/70



Modifying Gale-Shapley ...

m Modify the Gale-Shapley algorithm so that a; gets a
“second chance” to propose to b;.

®m when a; proposes for the second time to b, then b,
should prefer a; to as.

.—p.33/70



Implementing this idea

m Have two copies «” and a' of every man a:

.~ p.34/70



Implementing this idea

m Have two copies o’ and «' of every man a:

m there will be two edges (a',b) and (a°, b)
corresponding to every edge (a,b) in G.

.~ p.34/70



Implementing this idea

m Have two copies ¢’ and a' of every man a:

m there will be two edges (a',b) and (a°, b)
corresponding to every edge (a,b) in G.

every woman prefers a level 1 nbr to a level O nbr.

.—p.34/70



Implementing this idea

m Have two copies «" and a' of every man a:

m there will be two edges (a',b) and (a°, b)
corresponding to every edge (a,b) in G.

every woman prefers a level 1 nbr to a level O nbr.

among level 1 nbrs: her original preference order.

.—p.34/70



Implementing this idea

m Have two copies «" and a' of every man a:

m there will be two edges (a',b) and (a°, b)
corresponding to every edge (a,b) in G.

every woman prefers a level 1 nbr to a level O nbr.

among level 1 nbrs: her original preference order.

among level O nbrs: her original preference order.

.—p.34/70



In the new graph

m o} is rejected by his only neighbor b;.

.~ p.35/70



In the new graph

m So a; becomes active and proposes to b;.

.~ p.36/70



In the new graph

m ), accepts a7 and rejects ay.

.~ p.37/70



In the new graph

® So o) proposes to his next preferred neighbor b,.

.~ p.38/70



In the new graph

m The matching {(at,b;), (a3, bs)} is computed.

.~ p.39/70



Back in the original graph

®m Thus OPT = {(ay, b1), (as, b2) }, the red matching, is
found.

.~ p.40/70



A linear time algorithm (K., 2012)

m Let GG, be the graph on A, U B where A, consists of
two copies ¢' and a! of each a € A.

.—p.41/70



A linear time algorithm (K., 2012)

m Let GG, be the graph on A, U B where A, consists of
two copies ¢' and a! of each a € A.

m Initially only the menin {a" : a € A} are “active”.

.—p.41/70



A linear time algorithm (K., 2012)

m Let GG, be the graph on A, U B where A, consists of
two copies ¢' and a! of each a € A.

m Initially only the menin {a" : a € A} are “active”.

= Active men propose and women dispose in Gb.

.= p.41/70



A linear time algorithm (K., 2012)

m Let G, be the graph on A, U B where A, consists of
two copies ¢' and a! of each a € A.

m Initially only the menin {a" : a € A} are “active”.

= Active men propose and women dispose in Gb.

m When any a! is rejected by all his neighbors:

.= p.41/70



A linear time algorithm (K., 2012)

m Let G, be the graph on A, U B where A, consists of
two copies ¢' and a! of each a € A.

m Initially only the menin {a" : a € A} are “active”.

= Active men propose and women dispose in Gb.

m When any a! is rejected by all his neighbors:

introduce «; into the set of active vertices.

.= p.41/70



A linear time algorithm

® Termination condition: every «’ is either inactive or
gets matched to some nbr.

.~ p.42/70



A linear time algorithm

® Termination condition: every «’ is either inactive or
gets matched to some nbr.

m Our algorithm is essentially Gale-Shapley algorithm on
Gs.

.= p.42/70



A linear time algorithm

® Termination condition: every «’ is either inactive or
gets matched to some nbr.

m Our algorithm is essentially Gale-Shapley algorithm on

® Running time is O(m + n), which is O(m).

.= p.42/70



Properties of the output matching .5

i Sl C (AO X B()) U (Al X Bl)

second-time _
proposers — By = 51(4)
first-time — By =B\ B

Proposers

.~ p.43/70



Properties of the output matching .5

m All unmatched vertices are in A; U B,.

. —p.44/70



Properties of the output matching .5

m All unmatched vertices are in A; U B,.

m S restricted to A; U B; (2 = 0, 1) Is stable.

Ay

B,

. —p.44/70



Properties of the output matching 5
m All unmatched vertices are in A; U B,.

m S restricted to A; U B; (2 = 0, 1) Is stable.

Al Bl

AO BO

m Any blocking edge to S, has to be in Ay x B;.

. —p.44/70



Partition of 4 and B

m Every edge (a,b) € A; X By is negative wrt S;.

.—p.45/70



Partition of 4 and B

m Every edge (a,b) € A; X By is negative wrt S;.

.—p.45/70



Popularity of S,

m Consider the subgraph Gg,.

. —p.46/70



Popularity of 5

m Consider the subgraph Gg,.

® S, has the following properties in Gg,:

.~ p.46/70



Popularity of 5

m Consider the subgraph Gg,.

® S, has the following properties in Gg,:

no alternating cycle has a blocking edge.

.~ p.46/70



Popularity of 5

m Consider the subgraph Gg,.

® S, has the following properties in Gg,:

no alternating cycle has a blocking edge.

no alternating path with a free endpoint has a
blocking edge.

. — p.46/70



Popularity of 5

m Consider the subgraph Gg,.

® S, has the following properties in Gg,:

no alternating cycle has a blocking edge.

no alternating path with a free endpoint has a
blocking edge.

no alternating path has 2 blocking edges.

. — p.46/70



Size of the matching 5;

®m There Is no augmenting path wrt S; In Gg,.

.—p.47/70



Size of the matching 5;

®m There Is no augmenting path wrt S; In Gg,.

®m Thus 5; Is a maximum size popular matching.

.—p.47/70



Size of the matching 5;

®m There Is no augmenting path wrt S; In Gg,.

®m Thus 5; Is a maximum size popular matching.

m What about |S;| in terms of |M,,,q.|?

.—p.47/70



Size of the matching 5;

® Any augmenting path wrt Sy in G has size > 5:

.~ p.48/70



Size of the matching 5;

® Any augmenting path wrt S; In G has size > 5 =

.~ p.49/70



Size of the matching 5;

® Any augmenting path wrt S; In G has size > 5 =

N ‘Sl‘ Z %‘Mmaaz|-

.~ p.49/70



A tight example for the 2/3 bound

m (S| = 2 while [ M,,..| = 3.

.~ p.50/70



Larger size matchings

m Trade-off between popularity and size?

.—p.51/70



Larger size matchings

m Trade-off between popularity and size?

m Unpopularity factor u(-)

.—p.51/70



Larger size matchings
m Trade-off between popularity and size?
m Unpopularity factor u(-)

m define 6(M, M') as the following ratio:

[{vertices that prefer M'}|/|{vertices that prefer M }|

.—p.51/70



Larger size matchings
m Trade-off between popularity and size?
m Unpopularity factor u(-)

m define 6(M, M') as the following ratio:

[{vertices that prefer M'}|/|{vertices that prefer M }|

mu(M) =maxyy 0(M, M.

.—p.51/70



Larger size matchings

m Trade-off between popularity and size?
m Unpopularity factor u(-)

m define 6(M, M') as the following ratio:

[{vertices that prefer M'}|/|{vertices that prefer M }|

mu(M) =maxyy 0(M, M.

u(M) = [ = for every matching M’ we have:
[{vertices that prefer M'}| < S - |{vertices that prefer M }|.

.—p.51/70



Popularity vs Size

m )M is popular < u(M) < 1.

.—p.52/70



Popularity vs Size

m )M is popular < u(M) < 1.

m We can find a matching S; with «(S;) < 1 and
‘Sl‘ Z %‘Mmaml-

.—p.52/70



Popularity vs Size

m ) is popular < u(M) < 1.

m We can find a matching S; with «(S;) < 1 and
‘Sl‘ Z %‘Mmam|-

m For every integer £ > 2, can we find a matching .S,
with u(S,) < k — 1 and |S;| > M az|?

L|
k+1

.—p.52/70



Popularity vs Size

m )\ is popular < u(M) < 1.

m We can find a matching S; with «(S;) < 1 and
‘Sl‘ Z %‘Mmaa:|-

m For every integer £ > 2, can we find a matching .S,
with u(S,) < k — 1 and |S;| > M az|?

L|
k+1

m Is there an M* = a maximum cardinality matching s.t.

for each max cardinality matching M: M* = M?

.—p.52/70



Extending the 2-level algorithm

m For any integer k£ > 2, we can extend the 2-level
algorithm to & levels.

.~ p.53/70



Extending the 2-level algorithm

m For any integer k£ > 2, we can extend the 2-level
algorithm to & levels.

= So the graph becomes G, on A, U B.

.~ p.53/70



Extending the 2-level algorithm

m For any integer k£ > 2, we can extend the 2-level
algorithm to & levels.

= So the graph becomes G, on A, U B.

A, has k copies a°,a!, ... a* ! of each a € A.
(a' is a level i vertex)

.~ p.53/70



Extending the 2-level algorithm

m For any integer k£ > 2, we can extend the 2-level
algorithm to £ levels.

= So the graph becomes G}, on A, U B.

A, has k copies a°,a!, ... a* ! of each a € A.
(a' is a level 7 vertex)

For each a € A: at mostone of a°, at, ... . a" 1is
active at any point.

.—p.53/70



The k-level algorithm

m Corresponding to each edge (a,b) in G-

.—p.54/70



The k-level algorithm

m Corresponding to each edge (a,b) in G-

= we have k edges (a’,b)fori =0,...,k—1in Gy.

.—p.54/70



The k-level algorithm

m Corresponding to each edge (a,b) in G-

= we have k edges (a’,b)fori =0,...,k—1in Gy.

m In Gy, the preference list of any b € B:

.—p.54/70



The k-level algorithm

m Corresponding to each edge (a,b) in G-

= we have k edges (a’,b)fori =0,...,k—1in Gy.

m In G,, the preference list of any b € B:

m level (kK — 1) neighbors

. —Pp.54/70



The k-level algorithm

m Corresponding to each edge (a,b) in G-

= we have k edges (a’,b)fori =0,...,k—1in Gy.

m In G,, the preference list of any b € B:

m level (kK — 1) neighbors

m then level (k — 2) neighbors, ... and so on ...,

. —Pp.54/70



The k-level algorithm

m Corresponding to each edge (a,b) in G-

= we have k edges (a’,b) fori =0,...,k —1in G.

m In G, the preference list of any b € B;

m level (kK — 1) neighbors
m then level (k — 2) neighbors, ... and so on ...,

® and at the bottom are level O neighbors.

. —Pp.54/70



The k-level algorithm

m Set level O men to be active and set higher level men to
be inactive.

.~ p.55/70



The k-level algorithm

m Set level O men to be active and set higher level men to
be inactive.

m Essentially Gale-Shapley with the active men
proposing and women disposing:

.= Pp.55/70



The k-level algorithm

m Set level O men to be active and set higher level men to
be inactive.

m Essentially Gale-Shapley with the active men
proposing and women disposing:

mi < k—1:if o' is rejected by all his neighbors, then
a‘t1 becomes active.

.= Pp.55/70



The k-level algorithm

m Set level O men to be active and set higher level men to
be inactive.

m Essentially Gale-Shapley with the active men
proposing and women disposing:

mi < k—1:if o' is rejected by all his neighbors, then
a‘t1 becomes active.

m Let S;_; be the matching returned by this algorithm.

.= Pp.55/70



The partition of A and B

mA; = {a € Asuchthataisinlevel ; at the end}.

(for1 <:<k—1)

.~ p.56/70



The 3-level algorithm

m Say we run the 3-level algorithm on our tight example
for the 2-level algorithm ...

1 2 b,

.—p.57/70



In the 3-level algorithm

/‘. B

by 2

" B

Fh, | b

: AO of"" ® B
a2 b3 0

.~ p.58/70



In the 3-level algorithm

/‘. B
‘/‘/ - b]. 2

ra B
by

AO ."/ ' o B
a2 b3 0

®m The matching S; = {(ag, b1), (a1, b2), (as, b3)} is output
by the 3-level algorithm.

.~ p.58/70



Properties of the matching S,

N Sk—l C (Ak—l X Bk—l) U (Ak_g X Bk_g) J-.--uU (AO X B())

.~ p.59/70



Properties of the matching S,

m Every unmatched vertex is in A,_; U B,.

.~ p.60I70



Properties of the matching S,

m Every unmatched vertex is in A,_; U B,.

m For all 2: no edge in G between A,_; U---U A, and
BZ'_1U"'UB().

.~ p.60I70



Properties of the matching S,

m Every unmatched vertex is in A,_; U B,.

m For all 2: no edge in G between A,_; U---U A, and
B;_1U---UBy.

® any augmenting path wrt S;,_; has length > 2k + 1.

. —p.60/70



Properties of the matching S,

m Every unmatched vertex is in A,_; U B,.

m For all 2: no edge in G between A,_; U---U A, and
B;_1U---UBy.

® any augmenting path wrt S;,_; has length > 2k + 1.

hence |S,_{| > Moz |-

L‘
k+1

. —p.60/70



Unpopularity of S,

m Consider the subgraph G, ..

.~ p.61/70



Unpopularity of S,

m Consider the subgraph G, ..

® S;_; has the following properties in this graph:

.~ p.61/70



Unpopularity of S,

m Consider the subgraph G, ..

® S;_; has the following properties in this graph:

no alternating cycle has a blocking edge.

.—p.61/70



Unpopularity of S,

m Consider the subgraph Gg, _,.

® S;_; has the following properties in this graph:

no alternating cycle has a blocking edge.

no alternating path with a free endpoint has a
blocking edge.

.—p.61/70



Unpopularity of S,

m Consider the subgraph Gg, _,.

® S;_; has the following properties in this graph:

no alternating cycle has a blocking edge.

no alternating path with a free endpoint has a
blocking edge.

no alternating path has & blocking edges.

.—p.61/70



Trade-off between size and unpopularity

® This implies that u(S;_1) < k — 1.

.~ p.62/70



Trade-off between size and unpopularity

m This implies that u(S;_1) < k — 1.

m Thus for any £ > 2, there exists a matching S;_; S.t.

w(Se—1) <k —1 and [Sp_1| > Z5 [ Mz,

.~ p.62/70



Trade-off between size and unpopularity

m This implies that u(S;_1) < k — 1.

m Thus for any £ > 2, there exists a matching S;_; S.t.

w(Se—1) <k —1 and [Sp_1| > Z5 [ Mz,

m S, _; can be computed in O(mk) time.

.~ p.62/70



The boundary cases

mLiL=2. S;IsSamaximum size popular matching

.~ p.63/70



The boundary cases

mLiL=2. S;IsSamaximum size popular matching

mL=n

.~ p.63/70



The boundary cases

mLiL=2. S;IsSamaximum size popular matching

mL=n

.S, _

‘Mmax’ and ‘Mmax‘ S 1o,

SO |Sn0—1| — ’Mmax|-

.~ p.63/70



The boundary cases

mLiL=2. S;IsSamaximum size popular matching

mL=n

[ ‘Sng—l‘ 2 ngb_?_l‘Mmaa:’ and ‘Mmax‘ S no,

SO |Sn0—1| — |Mmax|-

m for any max cardinality matching M: S,,,_1 = M.

.~ p.63/70



In general graphs

m Input G = (V, E)): a general graph with strict 2-sided
preference lists

.~ p.64/70



In general graphs

m Input G = (V, E): a general graph with strict 2-sided
preference lists

m Stable matchings need not always exist in non-bipartite
graphs.

. —p.64/70



In general graphs

mInput G = (V, E): a general graph with strict 2-sided
preference lists

m Stable matchings need not always exist in non-bipartite
graphs.

. —p.64/70



In general graphs

mInput G = (V, E): a general graph with strict 2-sided
preference lists

m Stable matchings need not always exist in non-bipartite
graphs: every matching here has a “blocking edge”.

. —p.65/70



In general graphs

m In fact, this instance has no popular matching either.

.~ p.66I70



In general graphs

m In fact, this instance has no popular matching either.

m We have M, < M, < M5 < M, here,
where M; = {(a,b)}, My = {(b,c)}, and M35 = {(a,c)}.

. —p.66/70



In general graphs

® An instance with no stable matching but with popular
matchings:

m ( Is the least preferred neighbor for a, b, c.

.—p.67/70



In general graphs

® An instance with no stable matching but with popular
matchings:

m {(a,d),(b,c)} is popular.

. —p.68/70



In general graphs (Huang and K., 2011)

m There is always a matching M such that u(M) is
O(logn).

.~ p.69I70



In general graphs (Huang and K., 2011)

m There is always a matching M such that u(M) is
O(logn).

®m Such a matching can be computed in linear time.

.~ p.69I70



In general graphs (Huang and K., 2011)

®m There is always a matching M such that u(M) is
O(logn).

®m Such a matching can be computed in linear time.

m Computing a least unpopularity factor matching is
NP-hard.

. —p.69/70



In general graphs (Huang and K., 2011)

m There is always a matching M such that u(M) is
O(logn).

®m Such a matching can be computed in linear time.

m Computing a least unpopularity factor matching is
NP-hard.

m Open problem: complexity of determining if G admits a
popular matching or not.

. —p.69/70



Thank you!



	
	small The input graph
	small The input
	small Optimal matchings
	small Stable Matchings
	small Stable matchings
	small Stable matchings
	small Gale-Shapley algorithm for stable matchings
	small Gale-Shapley algorithm for stable matchings
	small Gale-Shapley algorithm for stable matchings
	small Gale-Shapley algorithm for stable matchings
	small Price of stability
	small Popular matchings
	small An example
	small Popular matchings
	small Popular matchings
	small stable $implies $ popular
	small Stable matchings
	small The alternating path $p$
	small Min vs max size popular matchings
	small Some questions
	small A characterization of popular matchings
	small A characterization of popular matchings
	small Max size popular matchings
	small A first attempt
	small Our first algorithm (Huang and K., 2011)
	small Our first algorithm
	small Our first algorithm
	small Our first algorithm
	small Our first algorithm
	small Max size popular matching
	small Stable vs max size popular matching
	small Modifying Gale-Shapley ...
	small Implementing this idea
	small In the new graph
	small In the new graph
	small In the new graph
	small In the new graph
	small In the new graph
	small Back in the original graph
	small A linear time algorithm (K., 2012)
	small A linear time algorithm
	small Properties of the output matching $S_1$
	small Properties of the output matching $S_1$
	small Partition of $A $ and $p $
	small Popularity of $S_1$
	small Size of the matching $S_1$
	small Size of the matching $S_1$
	small Size of the matching $S_1$
	small A tight example for the $2/3$ bound
	small Larger size matchings
	small Popularity vs Size
	small Extending the 2-level algorithm
	small The $k$-level algorithm
	small The $k$-level algorithm
	small The partition of $A $ and $p $
	small The 3-level algorithm
	small In the 3-level algorithm
	small Properties of the matching $S_{k-1}$
	small Properties of the matching $S_{k-1}$
	small Unpopularity of $S_{k-1}$
	small Trade-off between size and unpopularity
	small The boundary cases
	small In general graphs
	small In general graphs
	small In general graphs
	small In general graphs
	small In general graphs
	small In general graphs (Huang and K., 2011)
	

